A Generalized Double Chaplygin Model for Anisotropic Matter: The Newtonian Case
Abstract
:1. Introduction
2. Anisotropic Generalized Chaplygin
3. The Generalized Double Chaplygin Model
4. Solving the Anisotropic Lane–Emden Equation
4.1. Case 1
4.2. Case 2
4.3. Case 3
- Case 1: The anisotropic factor, denoted by , exhibited a negative value for the specific set of parameters utilized in the top-left panel of Figure 1. This behavior aligns with other solutions found in the context of compact stars and is logical considering that the second term in the anisotropic formula becomes more significant than the first term. For further insights and related references, refer to [52] and the cited sources therein.
- Case 2: On this occasion, the anisotropic factor showed a positive value for the set of parameters utilized in the middle-left panel of Figure 1. Similar results were obtained in previous studies, which can be found in [50] for reference. In our current solution, the anisotropic factor increased for and . However, when , we observed that the isotropic case was recovered. This behavior is due to the fact that, according to Equation (38), when , the anisotropic factor becomes precisely zero.
- Case 3: In this scenario, the anisotropic factor can either be positive or negative, depending on the specific numerical values considered. To be precise, when and , the anisotropic factor decreases and becomes more negative. Conversely, when , the anisotropic factor takes on positive, well-defined values. This behavior can be attributed to the competition between the two terms involved in the definition of . Thus, when the first term is greater than the second term, becomes greater than zero.
5. Chandrasekhar Mass
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasekhar, S. An Introduction to the Study of Stellar Structure; Dover Publications: Mineola, NY, USA, 1939. [Google Scholar]
- Horedt, G.P. Polytropes: Applications in Astrophysics and Related Fields; Springer: Dordrecht, The Netherlands, 2004; Volume 306. [Google Scholar]
- Kippenhahn, R.; Weigert, A.; Weiss, A. Stellar Structure and Evolution; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Rodrigues, H. Modeling compact stars without numerical integration. Eur. J. Phys. 2013, 34, 667–678. [Google Scholar] [CrossRef]
- Fabris, J.C.; Velten, H. Neo-newtonian theories. arXiv 2014, arXiv:1501.01614. [Google Scholar]
- Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, U.S.; Uggla, C. General relativistic stars: Polytropic equations of state. Ann. Phys. 2001, 286, 292–319. [Google Scholar] [CrossRef] [Green Version]
- Abramowicz, M.A. Polytropes in N-dimensional spaces. Acta Astron. 1983, 33, 313–318. [Google Scholar]
- Singh, K.N.; Maurya, S.K.; Bhar, P.; Rahaman, F. Anisotropic stars with a modified polytropic equation of state. Phys. Scr. 2020, 95, 115301. [Google Scholar] [CrossRef]
- Mardan, S.A.; Rehman, M.; Noureen, I.; Jamil, R.N. Impact of generalized polytropic equation of state on charged anisotropic polytropes. Eur. Phys. J. C 2020, 80, 119. [Google Scholar] [CrossRef]
- Kumar, J.; Bharti, P. Relativistic models for anisotropic compact stars: A review. New Astron. Rev. 2022, 95, 101662. [Google Scholar] [CrossRef]
- Azam, M.; Mardan, S.A.; Noureen, I.; Rehman, M.A. Study of polytropes with generalized polytropic equation of state. Eur. Phys. J. C 2016, 76, 315. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Mardan, S.A.; Noureen, I.; Rehman, M.A. Charged cylindrical polytropes with generalized polytropic equation of state. Eur. Phys. J. C 2016, 76, 510. [Google Scholar] [CrossRef] [Green Version]
- Ngubelanga, S.A.; Maharaj, S.D. Relativistic stars with polytropic equation of state. Eur. Phys. J. Plus 2015, 130, 211. [Google Scholar] [CrossRef] [Green Version]
- León, P.; Fuenmayor, E.; Contreras, E. Double relativistic master polytrope for anisotropic matter. Phys. Rev. D 2023, 107, 064010. [Google Scholar] [CrossRef]
- Ovalle, J.; Contreras, E.; Stuchlik, Z. Energy exchange between relativistic fluids: The polytropic case. Eur. Phys. J. C 2022, 82, 211. [Google Scholar] [CrossRef]
- Ramos, A.; Arias, C.; Fuenmayor, E.; Contreras, E. Class I polytropes for anisotropic matter. Eur. Phys. J. C 2021, 81, 203. [Google Scholar] [CrossRef]
- Jun, J.H.; Ho, Y.K.; Sato, H. Gravitational Collapse of Newtonian Stars. Int. J. Mod. Phys. D 2000, 9, 35–42. [Google Scholar] [CrossRef]
- Mach, P. All solutions of the n = 5 Lane-Emden equation. J. Math. Phys. 2012, 53, 062503. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, L.; Fortin, M.; Zdunik, J.L.; Providencia, C. Polytropic fits of modern and unified equations of state. Phys. Rev. C 2022, 106, 035805. [Google Scholar] [CrossRef]
- Santana, D.; Fuenmayor, E.; Contreras, E. Integration of the Lane–Emden equation for relativistic anisotropic polytropes through gravitational decoupling: A novel approach. Eur. Phys. J. C 2022, 82, 703. [Google Scholar] [CrossRef]
- Las Heras, C.; Leon, P. Complexity factor of spherically anisotropic polytropes from gravitational decoupling. Gen. Relativ. Gravit. 2022, 54, 138. [Google Scholar] [CrossRef]
- Khunt, A.C.; Thomas, V.O.; Vinodkumar, P.C. Distinct Classes of Compact Stars Based On Geometrically Deduced Equations of State. Int. J. Mod. Phys. D 2021, 30, 2150029. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O. Local anisotropy in self-gravitating systems. Phys. Rept. 1997, 286, 53–130. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Letelier, P.S.; Alencar, P.S.C. Anisotropic fluids with multifluid components. Phys. Rev. D 1986, 34, 343–351. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Wen, D. One possible solution of peculiar type Ia supernovae explosions caused by a charged white dwarf. Phys. Rev. D 2014, 89, 104043. [Google Scholar] [CrossRef] [Green Version]
- Jeans, J.H. The Motions of Stars in a Kapteyn Universe. Mon. Not. R. Astron. Soc. 1922, 82, 122–132. [Google Scholar] [CrossRef]
- Yagi, K.; Yunes, N. I-Love-Q anisotropically: Universal relations for compact stars with scalar pressure anisotropy. Phys. Rev. D 2015, 91, 123008. [Google Scholar] [CrossRef] [Green Version]
- Abellan, G.; Fuenmayor, E.; Herrera, L. The double polytrope for anisotropic matter: Newtonian Case. Phys. Dark Univ. 2020, 28, 100549. [Google Scholar] [CrossRef]
- León, P.; Fuenmayor, E.; Contreras, E. Gravitational cracking of general relativistic polytropes: A generalized scheme. Phys. Rev. D 2021, 104, 044053. [Google Scholar] [CrossRef]
- Azam, M.; Sajjad, W.; Mardan, S.A. Charged anisotropic generalized double polytropes. Eur. Phys. J. C 2022, 82, 363. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J. The chaplygin dark star. Phys. Rev. D 2005, 72, 123512. [Google Scholar] [CrossRef]
- Tello-Ortiz, F.; Malaver, M.; Rincón, A.; Gomez-Leyton, Y. Relativistic anisotropic fluid spheres satisfying a non-linear equation of state. Eur. Phys. J. C 2020, 80, 371. [Google Scholar] [CrossRef]
- Gorini, V.; Moschella, U.; Kamenshchik, A.Y.; Pasquier, V.; Starobinsky, A.A. Tolman-Oppenheimer-Volkoff equations in presence of the Chaplygin gas: Stars and wormhole-like solutions. Phys. Rev. D 2008, 78, 064064. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Kumar, J.; Sarkar, A. Behavior of anisotropic fluids with Chaplygin equation of state in Buchdahl spacetime. Gen. Relativ. Gravit. 2021, 53, 108. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Noh, H. Modified Chaplygin gas as a unified dark matter and dark energy model and cosmic constraints. Eur. Phys. J. C 2012, 72, 1931. [Google Scholar] [CrossRef]
- Herrera, L.; Barreto, W. Newtonian polytropes for anisotropic matter: General framework and applications. Phys. Rev. D 2013, 87, 087303. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Barreto, W. General relativistic polytropes for anisotropic matter: The general formalism and applications. Phys. Rev. D 2013, 88, 084022. [Google Scholar] [CrossRef] [Green Version]
- Shojai, F.; Fazel, M.R.; Stepanian, A.; Kohandel, M. On the Newtonian Anisotropic Configurations. Eur. Phys. J. C 2015, 75, 250. [Google Scholar] [CrossRef]
- Pourhassan, B. Viscous Modified Cosmic Chaplygin Gas Cosmology. Int. J. Mod. Phys. D 2013, 22, 1350061. [Google Scholar] [CrossRef] [Green Version]
- Panotopoulos, G.; Lopes, I.; Rincón, A. Lagrangian formulation for an extended cosmological equation-of-state. Phys. Dark Univ. 2021, 31, 100751. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincón, A.; Lopes, I. Radial oscillations and tidal Love numbers of dark energy stars. Eur. Phys. J. Plus 2020, 135, 856. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincón, A.; Lopes, I. Slowly rotating dark energy stars. Phys. Dark Univ. 2021, 34, 100885. [Google Scholar] [CrossRef]
- Collins, G.W., II. The Fundamentals of Stellar Astrophysics; W. H. Freeman and Co.: New York, NY, USA, 1989. [Google Scholar]
- Bowers, R.L.; Liang, E.P.T. Anisotropic Spheres in General Relativity. Astrophys. J. 1974, 188, 657. [Google Scholar] [CrossRef]
- Dev, K.; Gleiser, M. Anisotropic stars II: Stability. Gen. Relativ. Gravit. 2003, 35, 1435–1457. [Google Scholar] [CrossRef] [Green Version]
- Bhar, P.; Govender, M.; Sharma, R. Anisotropic stars obeying Chaplygin equation of state. Pramana 2018, 90, 5. [Google Scholar] [CrossRef]
- Estevez-Delgado, J.; Duran, M.P.; Cleary-Balderas, A.; Rodríguez Maya, N.E.; Peña, J.M. Chaplygin strange stars in presence of quintessence. Mod. Phys. Lett. A 2021, 36, 2150213. [Google Scholar] [CrossRef]
- Bhar, P.; Murad, M.H. Relativistic compact anisotropic charged stellar models with Chaplygin equation of state. Astrophys. Space Sci. 2016, 361, 334. [Google Scholar] [CrossRef]
- Estevez-Delgado, J.; Maya, N.E.R.; Peña, J.M.; Cleary-Balderas, A.; Paulin-Fuentes, J.M. An anisotropic charged fluids with Chaplygin equation of state. Mod. Phys. Lett. A 2021, 36, 2150153. [Google Scholar] [CrossRef]
- Rincón, A.; Panotopoulos, G.; Lopes, I. Anisotropic stars made of exotic matter within the complexity factor formalism. Eur. Phys. J. C 2023, 83, 116. [Google Scholar] [CrossRef]
- Howell, D.A.; Sullivan, M.; Nugent, P.E.; Ellis, R.S.; Conley, A.J.; Le Borgne, D.; Carlberg, R.G.; Guy, J.; Balam, D.; Basa, S.; et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 2006, 443, 308. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, R.A.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Childress, M.; Chotard, N.; et al. Nearby Supernova Factory Observations of SN 2007if: First Total Mass Measurement of a Super-Chandrasekhar-Mass Progenitor. Astrophys. J. 2010, 713, 1073–1094. [Google Scholar] [CrossRef]
- Scalzo, R.A.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; et al. A Search for New Candidate Super-Chandrasekhar-Mass Type Ia Supernovae in the Nearby Supernova Factory Dataset. Astrophys. J. 2012, 757, 12. [Google Scholar] [CrossRef]
- Hachisu, I.; Kato, M.; Saio, H.; Nomoto, K. A Single Degenerate Progenitor Model for Type Ia Supernovae Highly Exceeding the Chandrasekhar Mass Limit. Astrophys. J. 2012, 744, 69. [Google Scholar] [CrossRef] [Green Version]
- Das, U.; Mukhopadhyay, B. New Mass Limit for White Dwarfs: Super-Chandrasekhar Type Ia Supernova as a New Standard Candle. Phys. Rev. Lett. 2013, 110, 071102. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.M.; Velten, H.E.S.; Fabris, J.C.; Salako, I.G. Newtonian View of General Relativistic Stars. Eur. Phys. J. C 2014, 74, 3170. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Stellar structure models in modified theories of gravity: Lessons and challenges. Phys. Rept. 2020, 876, 1–75. [Google Scholar] [CrossRef]
- Pretel, J.M.Z. Radial pulsations, moment of inertia and tidal deformability of dark energy stars. Eur. Phys. J. C 2023, 83, 26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abellán, G.; Rincón, Á.; Sanchez, E. A Generalized Double Chaplygin Model for Anisotropic Matter: The Newtonian Case. Universe 2023, 9, 352. https://doi.org/10.3390/universe9080352
Abellán G, Rincón Á, Sanchez E. A Generalized Double Chaplygin Model for Anisotropic Matter: The Newtonian Case. Universe. 2023; 9(8):352. https://doi.org/10.3390/universe9080352
Chicago/Turabian StyleAbellán, Gabriel, Ángel Rincón, and Eduard Sanchez. 2023. "A Generalized Double Chaplygin Model for Anisotropic Matter: The Newtonian Case" Universe 9, no. 8: 352. https://doi.org/10.3390/universe9080352
APA StyleAbellán, G., Rincón, Á., & Sanchez, E. (2023). A Generalized Double Chaplygin Model for Anisotropic Matter: The Newtonian Case. Universe, 9(8), 352. https://doi.org/10.3390/universe9080352