Homogeneous Cosmological Models in Weyl’s Geometrical Scalar–Tensor Theory
Abstract
:1. Introduction
2. Weyl’s Theory
3. The Field Equations
4. Kasner Type Solution
5. A Perfect Fluid Cosmological Model
5.1. Stiff Matter Solution
5.2. Qualitative Analysis for
5.3. Invariant Rays and Regions of Negative Energy Density
5.4. Phase Diagrams
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The cases and were not analysed because they contain multiple equilibrium points or singularities. |
References
- Jordan, P. Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 1959, 157, 112. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Bergmann, P.G. Comments on the scalar-tensor theory. Int. J. Theor. Phys. 1968, 1, 25. [Google Scholar] [CrossRef]
- Wagoner, R.V. Scalar-tensor theory and gravitational waves. Phys. Rev. D 1970, 1, 3209. [Google Scholar] [CrossRef]
- Nordtvedt, K. Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences. Astrophys. J. 1970, 161, 1059. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity, 1st ed.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damour, T.; Polyakov, A. The String Dilaton and a Least Coupling Principle. Nucl. Phys. B 1994, 423, 532. [Google Scholar] [CrossRef] [Green Version]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory, 1st ed.; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- La, D.; Steinhardt, P.J. Extended Inflationary Cosmology. Phys. Rev. Lett. 1989, 62, 376. [Google Scholar] [CrossRef]
- Damour, T. Experimental tests of relativistic gravity. Nucl. Phys. B (Proc. Suppl.) 2000, 80, 41. [Google Scholar] [CrossRef] [Green Version]
- Tahura, S.; Nichols, D.A.; Yagi, K. Gravitational-Wave Memory Effects in Brans-Dicke Theory: Waveforms and Effects in the Post-Newtonian Approximation. Phys. Rev. D 2021, 104, 104010. [Google Scholar] [CrossRef]
- Morris, J.R. Dilatonic Effects on a Falling Test Mass in Scalar-Tensor Theory. Gen. Rel. Grav. 2011, 43, 2821. [Google Scholar] [CrossRef] [Green Version]
- Almeida, T.S.; Pucheu, M.L.; Romero, C.; Formiga, J.B. From Brans-Dicke Gravity to a Geometrical Scalar-Tensor Theory. Phys. Rev. D 2014, 89, 064047. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Gravitation und Elektrizität. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1918, 1918, 465. [Google Scholar]
- Weyl, H. Space, Time, Matter, 1st ed.; Dover: New York, NY, USA, 1952. [Google Scholar]
- Novello, M.; Heintzmann, H. Weyl Integrable Space-Time: A Model of our Cosmos? Phys. Lett. A 1983, 98, 10. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Konstantinov, M.Y.; Melnikov, V. Integral Weyl Geometry in Cosmology. Grav. Cosmol. 1995, 1, 60. [Google Scholar]
- Poulis, F.P.; Salim, J.M. Weyl Geometry and Gauge-invariant Gravitation. Int. J. Mod. Phys. D 2014, 23, 1450091. [Google Scholar] [CrossRef] [Green Version]
- Moon, T.; Lee, J.; Oh, P. Conformal Invariance in Einstein-Cartan-Weyl Space. Mod. Phys. Lett. A 2010, 25, 3129. [Google Scholar] [CrossRef] [Green Version]
- Scholz, E. The Unexpected Resurgence of Weyl Geometry in late 20th-Century Physics. In Beyond Einstein; Rowe, D., Sauer, T., Walter, S., Eds.; Birkhäuser: New York, NY, USA, 2018; pp. 261–360. [Google Scholar]
- Paliathanasis, A. Dynamics in Interacting Scalar-Torsion Cosmology. Universe 2021, 7, 244. [Google Scholar] [CrossRef]
- Novello, M.; Bittencourt, E.; Moschella, U.; Goulart, E.; Salim, J.M.; Toniato, J.D. Geometric Scalar Theory of Gravity. JCAP 2013, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Sen, D.K.; Dunn, K.A. A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold. J. Math. Phys. 1971, 12, 578. [Google Scholar] [CrossRef]
- Barros, A.; Romero, C. A Brief Note on the Limit ω → ∞ in Weyl Geometrical Scalar-Tensor Theory. Int. J. Mod. Phys. D 2021, 30, 2150113. [Google Scholar] [CrossRef]
- Pucheu, M.L.; Alves Junior, F.A.P.; Barreto, A.B.; Romero, C. Cosmological Models in Weyl Geometrical Scalar-Tensor Theory. Phys. Rev. D 2016, 94, 064010. [Google Scholar] [CrossRef] [Green Version]
- Burton, H.; Mann, R.B. Palatini variational principle for an extended Einstein-Hilbert action. Phys. Rev. D 1998, 57, 4754. [Google Scholar] [CrossRef] [Green Version]
- Goenner, H.F.M. On the History of Unified Field Theories. Living Rev. Relativ. 2004, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afriat, A. Weyl’s Gauge Argument. Found. Phys. 2013, 43, 699. [Google Scholar] [CrossRef] [Green Version]
- Tu, L.W. An Introduction to Manifolds, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Barrow, J.D.; Tipler, F.J. Analysis of the generic singularity studies by Belinskii, Khalatnikov, and Lifschitz. Phys. Rep. 1979, 56, 371. [Google Scholar] [CrossRef]
- Ruban, V.A.; Finkelstein, A.M. Generalization of the Taub-Kazner Cosmological Metric in the Scalar-Tensor Gravitation Theory. Nuovo Cimento Lett. 1972, 5, 289. [Google Scholar] [CrossRef]
- Chavanis, P.H. Cosmology with a stiff matter era. Phys. Rev. D 2015, 92, 103004. [Google Scholar] [CrossRef] [Green Version]
- Andronov, A.A.; Leontovich, E.A.; Gordon, I.I.; Maier, A.G. Qualitative Theory of Second Order Dynamic Systems, 1st ed.; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- Romero, C.; Oliveira, H.P.; de Mello Neto, J.R.T. Qualitative Analysis of Cosmological Models in Brans-Dicke Theory. Astrophys. Spce Sci. 1989, 158, 229. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.I. Evolution of Cosmological Parameters and Fundamental Constants in a Flat Quintessence Cosmology: A Dynamical Alternative to ΛCDM. Universe 2023, 9, 172. [Google Scholar] [CrossRef]
- Del Campo, S.; Fabris, J.C.; Herrera, R.; Zimdahl, W. Is the cosmological dark sector better modeled by a generalized Chaplygin gas or by a scalar field? Eur. Phys. J. C 2017, 77, 479. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Sen, A.A. Late time acceleration in Brans-Dicke cosmology. Phys. Rev. D 2001, 63, 124006. [Google Scholar] [CrossRef] [Green Version]
Intervals | |||
---|---|---|---|
Saddle points | - | - | |
Saddle points | Two-tangent nodes | Saddle points | |
() | Saddle points | Two-tangent nodes | Two-tangent nodes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, A.; Romero, C. Homogeneous Cosmological Models in Weyl’s Geometrical Scalar–Tensor Theory. Universe 2023, 9, 283. https://doi.org/10.3390/universe9060283
Barros A, Romero C. Homogeneous Cosmological Models in Weyl’s Geometrical Scalar–Tensor Theory. Universe. 2023; 9(6):283. https://doi.org/10.3390/universe9060283
Chicago/Turabian StyleBarros, Adriano, and Carlos Romero. 2023. "Homogeneous Cosmological Models in Weyl’s Geometrical Scalar–Tensor Theory" Universe 9, no. 6: 283. https://doi.org/10.3390/universe9060283
APA StyleBarros, A., & Romero, C. (2023). Homogeneous Cosmological Models in Weyl’s Geometrical Scalar–Tensor Theory. Universe, 9(6), 283. https://doi.org/10.3390/universe9060283