Finding My Drumbeat: Applying Lessons Learned from Remo Ruffini to Understanding Astrophysical Transients
Abstract
:1. Introduction: Bandwagon Science
2. Gamma-Ray Bursts
2.1. Gamma-Ray Emission
2.2. GRB Engines
2.3. GRB Progenitors
3. Supernovae
3.1. Thermonuclear Supernovae
3.2. Core-Collapse Supernovae
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NS | Neutron Star |
NSAD | Neutron Star Accretion Disk |
BHAD | Black Hole Accretion Disk |
GRB | Gamma-Ray Burst |
BH | Black Hole |
SN | Supernova |
CCSN | Core-Collapse Supernova |
1 | It is worth noting that magnetar and NSAD disk engines require even more angular momentum. |
References
- Kobayashi, S.; Piran, T.; Sari, R. Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? Astrophys. J. 1997, 490, 92. [Google Scholar] [CrossRef] [Green Version]
- Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophys. J. Lett. 1998, 497, L17–L20. [Google Scholar] [CrossRef]
- Panaitescu, A. An external-shock origin of the relation for gamma-ray bursts. Mon. Not. R. Astron. Soc. 2009, 393, 1010–1015. [Google Scholar] [CrossRef] [Green Version]
- Panaitescu, A.; Mészáros, P. Simulations of Gamma-Ray Bursts from External Shocks: Time Variability and Spectral Correlations. Astrophys. J. 1998, 492, 683–695. [Google Scholar] [CrossRef]
- Chiang, J.; Dermer, C.D. Synchrotron and Synchrotron Self-Compton Emission and the Blast-Wave Model of Gamma-Ray Bursts. Astrophys. J. 1999, 512, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Mitman, K.E. Short-Timescale Variability in the External Shock Model of Gamma-Ray Bursts. Astrophys. J. Lett. 1999, 513, L5–L8. [Google Scholar] [CrossRef] [Green Version]
- Owocki, S.P.; Rybicki, G.B. Instabilities in line-driven stellar winds. I. Dependence on perturbation wavelength. Astrophys. J. 1984, 284, 337–350. [Google Scholar] [CrossRef]
- Fryer, C.L.; Rockefeller, G.; Young, P.A. The Environments around Long-Duration Gamma-Ray Burst Progenitors. Astrophys. J. 2006, 647, 1269–1285. [Google Scholar] [CrossRef] [Green Version]
- Puls, J.; Vink, J.S.; Najarro, F. Mass loss from hot massive stars. Astron. Astrophys. Rev. 2008, 16, 209–325. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F.; Woodward, P.R.; Lin, P.H.; Knox, M.; Fryer, C. Global Non-spherical Oscillations in Three-dimensional 4π Simulations of the H-ingestion Flash. Astrophys. J. Lett. 2014, 792, L3. [Google Scholar] [CrossRef] [Green Version]
- Quataert, E.; Fernández, R.; Kasen, D.; Klion, H.; Paxton, B. Super-Eddington stellar winds driven by near-surface energy deposition. Mon. Not. R. Astron. Soc. 2016, 458, 1214–1233. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.F.; Cantiello, M.; Bildsten, L.; Quataert, E.; Blaes, O.; Stone, J. Outbursts of luminous blue variable stars from variations in the helium opacity. Nature 2018, 561, 498–501. [Google Scholar] [CrossRef] [Green Version]
- Owocki, S.P.; Hirai, R.; Podsiadlowski, P.; Schneider, F.R.N. Hydrodynamical simulations and similarity relations for eruptive mass-loss from massive stars. Mon. Not. R. Astron. Soc. 2019, 485, 988–1000. [Google Scholar] [CrossRef]
- Brown, P.J.; Breeveld, A.A.; Holland, S.; Kuin, P.; Pritchard, T. SOUSA: The Swift Optical/Ultraviolet Supernova Archive. Astrophys. Space Sci. 2014, 354, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Fryer, C.L.; Fontes, C.J.; Warsa, J.S.; Roming, P.W.A.; Coffing, S.X.; Wood, S.R. The Role of Inhomogeneities in Supernova Shock Breakout Emission. Astrophys. J. 2020, 898, 123. [Google Scholar] [CrossRef]
- Bayless, A.J.; Fryer, C.; Brown, P.J.; Young, P.A.; Roming, P.W.A.; Davis, M.; Lechner, T.; Slocum, S.; Echon, J.D.; Froning, C.S. Supernova Shock Breakout/Emergence Detection Predictions for a Wide-field X-Ray Survey. Astrophys. J. 2022, 931, 15. [Google Scholar] [CrossRef]
- Fan, Z.H.; Liu, S.; Wang, J.M.; Fryer, C.L.; Li, H. Stochastic Acceleration in the Western Hot Spot of Pictor A. Astrophys. J. Lett. 2008, 673, L139. [Google Scholar] [CrossRef] [Green Version]
- Ruffini, R.; Bianco, C.L.; Xue, S.S.; Chardonnet, P.; Fraschetti, F.; Gurzadyan, V. On the Instantaneous Spectrum of Gamma-Ray Bursts. Int. J. Mod. Phys. D 2004, 13, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Ruffini, R.; Bianco, C.L.; Xue, S.S.; Chardonnet, P.; Fraschetti, F.; Gurzadyan, V. Emergence of a Filamentary Structure in the Fireball from GRB Spectra. Int. J. Mod. Phys. D 2005, 14, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, M.G.; Bianco, C.L.; Chardonnet, P.; Fraschetti, F.; Ruffini, R.; Xue, S.S. Theoretical Interpretation of the Luminosity and Spectral Properties of GRB 031203. Astrophys. J. Lett. 2005, 634, L29–L32. [Google Scholar] [CrossRef] [Green Version]
- Guiriec, S.; Connaughton, V.; Briggs, M.S.; Burgess, M.; Ryde, F.; Daigne, F.; Mészáros, P.; Goldstein, A.; McEnery, J.; Omodei, N.; et al. Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B. Astrophys. J. Lett. 2011, 727, L33. [Google Scholar] [CrossRef]
- Guiriec, S.; Mochkovitch, R.; Piran, T.; Daigne, F.; Kouveliotou, C.; Racusin, J.; Gehrels, N.; McEnery, J. GRB 131014A: A Laboratory for Studying the Thermal-like and Non-thermal Emissions in Gamma-Ray Bursts, and the New LnThi-EnTh,restpeak,i Relation. Astrophys. J. 2015, 814, 10. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.Z. Evidence of Photosphere Emission Origin for Gamma-Ray Burst Prompt Emission. Astrophys. J. Suppl. 2022, 263, 39. [Google Scholar] [CrossRef]
- Lesage, S.; Veres, P.; Briggs, M.S.; Goldstein, A.; Kocevski, D.; Burns, E.; Wilson-Hodge, C.A.; Bhat, P.N.; Huppenkothen, D.; Fryer, C.L.; et al. Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow. arXiv 2023, arXiv:2303.14172. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Woosley, S.E. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae”. Astrophys. J. 1999, 524, 262–289. [Google Scholar] [CrossRef] [Green Version]
- Fryer, C.L.; Lloyd-Ronning, N.; Wollaeger, R.; Wiggins, B.; Miller, J.; Dolence, J.; Ryan, B.; Fields, C.E. Understanding the engines and progenitors of gamma-ray bursts. Eur. Phys. J. A 2019, 55, 132. [Google Scholar] [CrossRef] [Green Version]
- Rowlinson, A.; O’Brien, P.T.; Metzger, B.D.; Tanvir, N.R.; Levan, A.J. Signatures of magnetar central engines in short GRB light curves. Mon. Not. R. Astron. Soc. 2013, 430, 1061–1087. [Google Scholar] [CrossRef] [Green Version]
- Troja, E.; Fryer, C.L.; O’Connor, B.; Ryan, G.; Dichiara, S.; Kumar, A.; Ito, N.; Gupta, R.; Wollaeger, R.T.; Norris, J.P.; et al. A nearby long gamma-ray burst from a merger of compact objects. Nature 2022, 612, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Rastinejad, J.C.; Gompertz, B.P.; Levan, A.J.; Fong, W.F.; Nicholl, M.; Lamb, G.P.; Malesani, D.B.; Nugent, A.E.; Oates, S.R.; Tanvir, N.R.; et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 2022, 612, 223–227. [Google Scholar] [CrossRef]
- Suvorov, A.G.; Melatos, A. Recycled pulsars with multipolar magnetospheres from accretion-induced magnetic burial. Mon. Not. R. Astron. Soc. 2020, 499, 3243–3254. [Google Scholar] [CrossRef]
- Murguia-Berthier, A.; Montes, G.; Ramirez-Ruiz, E.; De Colle, F.; Lee, W.H. Necessary Conditions for Short Gamma-Ray Burst Production in Binary Neutron Star Mergers. Astrophys. J. Lett. 2014, 788, L8. [Google Scholar] [CrossRef]
- Ruffini, R.; Bernardini, M.G.; Bianco, C.L.; Caito, L.; Chardonnet, P.; Dainotti, M.G.; Fraschetti, R.; Guida, R.; Vereshchagin, G.; Xue, S.S. The Role of GRB 031203 in Clarifying the Astrophysical GRB Scenario. In Proceedings of the The 6th INTEGRAL Workshop—The Obscured Universe, Moscow, Russia, 2–8 July 2006; ESA Special Publication: Paris, France, 2007; Volume 622, p. 561. [Google Scholar] [CrossRef]
- Ruffini, R.; Bernardini, M.G.; Bianco, C.L.; Caito, L.; Chardonnet, P.; Cherubini, C.; Dainotti, M.G.; Fraschetti, F.; Geralico, A.; Guida, R.; et al. On Gamma-Ray Bursts. In Proceedings of the The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Berlin, Germany, 23–29 July 2006; pp. 368–505. [Google Scholar] [CrossRef] [Green Version]
- Rueda, J.A.; Ruffini, R. On the Induced Gravitational Collapse of a Neutron Star to a Black Hole by a Type Ib/c Supernova. Astrophys. J. Lett. 2012, 758, L7. [Google Scholar] [CrossRef] [Green Version]
- Izzo, L.; Ruffini, R.; Penacchioni, A.V.; Bianco, C.L.; Caito, L.; Chakrabarti, S.K.; Rueda, J.A.; Nandi, A.; Patricelli, B. A double component in GRB 090618: A proto-black hole and a genuinely long gamma-ray burst. Astron. Astrophys. 2012, 543, A10. [Google Scholar] [CrossRef]
- Fryer, C.L.; Woosley, S.E.; Hartmann, D.H. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts. Astrophys. J. 1999, 526, 152–177. [Google Scholar] [CrossRef] [Green Version]
- Popham, R.; Woosley, S.E.; Fryer, C. Hyperaccreting Black Holes and Gamma-Ray Bursts. Astrophys. J. 1999, 518, 356–374. [Google Scholar] [CrossRef] [Green Version]
- Bloom, J.S.; Sigurdsson, S.; Pols, O.R. The spatial distribution of coalescing neutron star binaries: Implications for gamma-ray bursts. Mon. Not. R. Astron. Soc. 1999, 305, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Fryer, C.L.; Mazzali, P.A.; Prochaska, J.; Cappellaro, E.; Panaitescu, A.; Berger, E.; van Putten, M.; van den Heuvel, E.P.J.; Young, P.; Hungerford, A.; et al. Constraints on Type Ib/c Supernovae and Gamma-Ray Burst Progenitors. Publ. Astron. Soc. Pac. 2007, 119, 1211–1232. [Google Scholar] [CrossRef] [Green Version]
- Fryer, C.L.; Rueda, J.A.; Ruffini, R. Hypercritical Accretion, Induced Gravitational Collapse, and Binary-Driven Hypernovae. Astrophys. J. Lett. 2014, 793, L36. [Google Scholar] [CrossRef] [Green Version]
- Fryer, C.L.; Lien, A.Y.; Fruchter, A.; Ghirlanda, G.; Hartmann, D.; Salvaterra, R.; Upton Sanderbeck, P.R.; Johnson, J.L. Properties of High-redshift Gamma-Ray Bursts. Astrophys. J. 2022, 929, 111. [Google Scholar] [CrossRef]
- Livio, M. The Progenitors of Type Ia Supernovae. In Type Ia Supernovae, Theory and Cosmology; Niemeyer, J.C., Truran, J.W., Eds.; Cambridge University Press: Cambridge, UK, 2000; p. 33. [Google Scholar] [CrossRef]
- Seitenzahl, I.R.; Townsley, D.M. Nucleosynthesis in Thermonuclear Supernovae. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 1955. [Google Scholar] [CrossRef] [Green Version]
- Hoeflich, P.; Mueller, E.; Khokhlov, A. Light curve models for type IA supernovae - Physical assumptions, their influence and validity. Astron. Astrophys. 1993, 268, 570–590. [Google Scholar]
- Khokhlov, A.; Mueller, E.; Hoeflich, P. Light curves of type IA supernova models with different explosion mechanisms. Astron. Astrophys. 1993, 270, 223–248. [Google Scholar]
- Plewa, T.; Calder, A.C.; Lamb, D.Q. Type Ia Supernova Explosion: Gravitationally Confined Detonation. Astrophys. J. Lett. 2004, 612, L37–L40. [Google Scholar] [CrossRef] [Green Version]
- Herant, M.; Benz, W.; Hix, W.R.; Fryer, C.L.; Colgate, S.A. Inside the Supernova: A Powerful Convective Engine. Astrophys. J. 1994, 435, 339. [Google Scholar] [CrossRef] [Green Version]
- Mösta, P.; Richers, S.; Ott, C.D.; Haas, R.; Piro, A.L.; Boydstun, K.; Abdikamalov, E.; Reisswig, C.; Schnetter, E. Magnetorotational Core-collapse Supernovae in Three Dimensions. Astrophys. J. Lett. 2014, 785, L29. [Google Scholar] [CrossRef]
- Waxman, E.; Katz, B. Shock Breakout Theory. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 967. [Google Scholar] [CrossRef] [Green Version]
- Irwin, C.M.; Linial, I.; Nakar, E.; Piran, T.; Sari, R. Bolometric light curves of aspherical shock breakout. Mon. Not. R. Astron. Soc. 2021, 508, 5766–5785. [Google Scholar] [CrossRef]
- Goldberg, J.A.; Jiang, Y.F.; Bildsten, L. Shock Breakout in Three-dimensional Red Supergiant Envelopes. Astrophys. J. 2022, 933, 164. [Google Scholar] [CrossRef]
- Alp, D.; Larsson, J. Blasts from the Past: Supernova Shock Breakouts among X-Ray Transients in the XMM-Newton Archive. Astrophys. J. 2020, 896, 39. [Google Scholar] [CrossRef]
- Hamuy, M. Observed and Physical Properties of Core-Collapse Supernovae. Astrophys. J. 2003, 582, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Fryer, C.L. Mass Limits For Black Hole Formation. Astrophys. J. 1999, 522, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef] [Green Version]
Engine | Power | Lorentz Factor | Duration | Formation |
---|---|---|---|---|
BHAD | Yes (depending on beaming) | Yes (disk wind is off-axis) | Duration limited to accretion timescale and black hole size | |
Magnetar | Yes (depending on beaming and rotation) | ??? (must overcome neutron-star wind) | Duration can extend beyond accretion | Needs high rotation rates; Why does accretion not bury magnetic fields? |
NSAD | Yes (simiar to BHAD) | ??? (must overcome neutron-star wind) | Duration limited to accretion timescale (NS collapse features?) | Needs high rotation rates |
Scenario | Duration | Location | Angular Momentum | Associated Transient | Circumstellar Medium |
---|---|---|---|---|---|
Massive Star | |||||
Wind Mass-Loss | Long bursts | Star-forming regions | Difficult/impossible | Type Ib/Ic | Wind profile |
Common Envelope | Long bursts | Star-forming regions | Tidal spin-up | Type Ib/Ic (Tidal Spins could limit to Ic) | Wind plus shell |
He–He Merger | Long bursts | Star-forming regions | Difficult | Type Ib/Ic | Wind plus shell |
Helium Merger | Long and ultra-long bursts | Star-forming regions and slightly beyond | Can have too much angular momentum | Type Ib/Ic | Wind plus shell |
Binaries | |||||
NS/NS | Short bursts | Off-set | ∼10 km disk | Disk ejecta only (Kilonova) | Interstellar or intergalactic medium |
NS/BH | Short bursts | Off-set | Disk forms for subset | Disk ejecta only (Kilonova) | Interstellar or intergalactic medium |
WD/(BH/NS) | Long bursts | Mild off-set | ∼10,000 km disk | Fast supernova from disk wind | Mostly interstellar medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fryer, C. Finding My Drumbeat: Applying Lessons Learned from Remo Ruffini to Understanding Astrophysical Transients. Universe 2023, 9, 268. https://doi.org/10.3390/universe9060268
Fryer C. Finding My Drumbeat: Applying Lessons Learned from Remo Ruffini to Understanding Astrophysical Transients. Universe. 2023; 9(6):268. https://doi.org/10.3390/universe9060268
Chicago/Turabian StyleFryer, Chris. 2023. "Finding My Drumbeat: Applying Lessons Learned from Remo Ruffini to Understanding Astrophysical Transients" Universe 9, no. 6: 268. https://doi.org/10.3390/universe9060268
APA StyleFryer, C. (2023). Finding My Drumbeat: Applying Lessons Learned from Remo Ruffini to Understanding Astrophysical Transients. Universe, 9(6), 268. https://doi.org/10.3390/universe9060268