Spacetime as a Complex Network and the Cosmological Constant Problem
Abstract
:1. Introduction
2. Statistical Description of Complex Networks
Fermionic Graphs
3. Building Discrete Spacetime
- Vertices or nodes of the network are “atoms” of spacetime.
- The distance between two neighboring atoms cannot be less than the fundamental length, .
- Spacetime geometry is encoded in the nonassociative structure of the network.
- The interaction between atoms of spacetime, being nonlocal, defines the spacetime geometry.
- Time is quantized and the evolution of spacetime geometry is governed by a random/stochastic process.
- The spacetime dimension is a dynamical variable.
4. Spacetime as a Complex Network
4.1. Toy Homogeneous Model
4.2. Spacetime Evolution
5. The Cosmological Constant Problem
6. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zel’dovich, Y.B. The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi 1968, 11, 381. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. The Cosmological Constant and Elementary Particles. JETP Lett. 1967, 6, 316. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problems (Talk given at Dark Matter 2000, February, 2000). arXiv 2000. [Google Scholar] [CrossRef]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The Cosmological Constant. Annu. Rev. Astron. Astrophys. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Dolgov, A.D. The Problem of Vacuum Energy and Cosmology (A lecture presented at the 4th Colloque Cosmologie, Paris, June, 1997). arXiv 1997. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological Constant. Living Rev. Relativ. 2001, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Cosmological constant–the weight of the vacuum. Phys. Rep. 2003, 380, 235–320. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef] [Green Version]
- Rugh, S.; Zinkernagel, H. The quantum vacuum and the cosmological constant problem. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Mod. Phys. 2002, 33, 663–705. [Google Scholar] [CrossRef] [Green Version]
- O’Raifeartaigh, C.; O’Keeffe, M.; Nahm, W.; Mitton, S. One hundred years of the cosmological constant: From “superfluous stunt” to dark energy. Eur. Phys. J. H 2018, 43, 73–117. [Google Scholar] [CrossRef] [Green Version]
- Sahni, V.; Starobinsky, A. The Case for a Positive Cosmological Λ-term. Int. J. Mod. Phys. D 2000, 09, 373–443. [Google Scholar] [CrossRef]
- Pauli, W. Pauli Lectures on Physics, Volume VI: Selected Topics in Field Quantization; Pauli Lectures on Physics Delivered in 1950–1951 at the Swiss Federal Institute of Technology; Dover Publications: North Hempstead, NY, USA, 2000. [Google Scholar]
- Kamenshchik, A.Y.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G. Pauli–Zeldovich cancellation of the vacuum energy divergences, auxiliary fields and supersymmetry. Eur. Phys. J. C 2018, 78, 200. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Tronconi, A.; Vacca, G.P.; Venturi, G. Vacuum energy and spectral function sum rules. Phys. Rev. D 2007, 75, 083514. [Google Scholar] [CrossRef] [Green Version]
- Berkov, A.; Narozhny, N.; Okun, L. I Ya Pomeranchuk and Physics at the Turn of the Century; World Scientific: Singapore, 2004. [Google Scholar] [CrossRef]
- DeWitt, C.M.; Wheeler, J.A. Superspace and the Nature of Quantum Geometrodynamics. In Battelle Rencontres: 1967 Lectures in Mathematics and Physics; Benjamin: Tokyo, Japan, 1968. [Google Scholar]
- Hawking, S. Spacetime foam. Nucl. Phys. B 1978, 144, 349–362. [Google Scholar] [CrossRef]
- Hawking, S.W. The Cosmological Constant [and Discussion]. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 1983, 310, 303–310. [Google Scholar] [CrossRef]
- Strominger, A. Vacuum Topology and Incoherence in Quantum Gravity. Phys. Rev. Lett. 1984, 52, 1733–1736. [Google Scholar] [CrossRef]
- Carlip, S. Spacetime Foam and the Cosmological Constant. Phys. Rev. Lett. 1997, 79, 4071–4074. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Spacetime foam: A review. Rep. Prog. Phys. 2023, 86, 066001. [Google Scholar] [CrossRef]
- Loll, R.; Silva, A. Measuring the homogeneity of the quantum universe. Phys. Rev. D 2023, 107, 086013. [Google Scholar] [CrossRef]
- Ashtekar, A.; Stachel, J. (Eds.) Conceptual Problems of Quantum Gravity; Einstein Studies 2; Birkhüser: Boston, MA, USA, 1991. [Google Scholar]
- Gross, D. (Ed.) The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference on Physics Brussels, Brussels, Belgium, 1–3 December 2005; World Scientific: Singapore, 2007. [Google Scholar]
- Murugan, J.; Weltman, A.; Ellis, G.F.R. (Eds.) Foundations of Space and Time: Reflections on Quantum Gravity; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Oriti, D. (Ed.) Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Butterfield, J.; Isham, C. Spacetime and the Philosophical Challenge of Quantum Gravity. In Physics Meets Philosophy at the Planck Scale; Callender, C., Huggett, N., Eds.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Majid, S.; Polkinghorne, J.; Penrose, R.; Taylor, A.; Connes, A.; Heller, M. On Space and Time; Canto Classics, Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Ambjørn, J. Discrete Quantum Gravity. In Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter; Oriti, D., Ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Loll, R. Discrete Approaches to Quantum Gravity in Four Dimensions. Living Rev. Relativ. 1998, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ’t Hooft, G. Quantum mechanics, statistics, standard model and gravity. Gen. Relativ. Gravit. 2022, 54, 56. [Google Scholar] [CrossRef]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 2010, 42, 2323–2329. [Google Scholar] [CrossRef]
- Swingle, B. Spacetime from Entanglement. Annu. Rev. Condens. Matter Phys. 2018, 9, 345–358. [Google Scholar] [CrossRef]
- Padmanabhan, T. Atoms of Spacetime and the Nature of Gravity. J. Phys. Conf. Ser. 2016, 701, 012018. [Google Scholar] [CrossRef] [Green Version]
- Dowker, F. The birth of spacetime atoms as the passage of time. Ann. N. Y. Acad. Sci. 2014, 1326, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Distribution Function of the Atoms of Spacetime and the Nature of Gravity. Entropy 2015, 17, 7420–7452. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, G.; Rahmede, C. Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free. Sci. Rep. 2015, 5, 13979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabinin, L.V. Smooth Quasigroups and Loops; Kluwer Academic Publishers: Dordrecht, The Netherland, 1999. [Google Scholar]
- Nesterov, A.I.; Sabinin, L.V. Non-associative geometry and discrete structure of spacetime. Comment. Math. Univ. Carolin. 2000, 41, 347–358. [Google Scholar]
- Nesterov, A.I.; Sabinin, L.V. Nonassociative geometry: Towards discrete structure of spacetime. Phys. Rev. D 2000, 62, 081501. [Google Scholar] [CrossRef] [Green Version]
- Sabinin, L. Nonassociative Geometry and Discrete Space-Time. Int. J. Theor. Phys. 2001, 40, 351–358. [Google Scholar] [CrossRef]
- Nesterov, A.I.; Sabinin, L.V. Nonassociative Geometry: Friedmann-Robertson-Walker Spacetime. IJGMMP 2006, 3, 1481–1491. [Google Scholar] [CrossRef] [Green Version]
- Nesterov, A. Gravity within the Framework of Nonassociative Geometry. In Non-Associative Algebra and Its Applications; Sabinin, L., Sbitneva, L., Shestakov, I., Eds.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006; pp. 299–311. [Google Scholar]
- Nesterov, A.I.; Mata, H. How Nonassociative Geometry Describes a Discrete Spacetime. Front. Phys. 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Dowker, F. Causal Sets and Discrete Spacetime. AIP Conf. Proc. 2006, 861, 79–88. [Google Scholar] [CrossRef]
- Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521–524. [Google Scholar] [CrossRef]
- Dowker, F.; Zalel, S. Evolution of universes in causal set cosmology. Comptes Rendus Phys. 2017, 18, 246–253. [Google Scholar] [CrossRef]
- Ambjørn, J.; Carfora, M.; Marzuoli, A. The Geometry of Dynamical Triangulations; Springer: Heidelberg/Berlin, Germany, 1997. [Google Scholar]
- Ambjørn, J.; Loll, R. Non-perturbative Lorentzian quantum gravity, causality and topology change. Nucl. Phys. B 1998, 536, 407–434. [Google Scholar] [CrossRef] [Green Version]
- Loll, R. The emergence of spacetime or quantum gravity on your desktop. Class. Quantum Gravity 2008, 25, 114006. [Google Scholar] [CrossRef]
- Ambjørn, J.; Jurkiewicz, J.; Loll, R. Reconstructing the Universe. Phys. Rev. D 2005, 72, 064014. [Google Scholar] [CrossRef] [Green Version]
- Ambjørn, J.; Jordan, S.; Jurkiewicz, J.; Loll, R. Quantum spacetime, from a practitioner’s point of view. AIP Conf. Proc. 2013, 1514, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Glaser, L.; Loll, R. CDT and cosmology. Comptes Rendus Phys. 2017, 18, 265–274. [Google Scholar] [CrossRef]
- Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R. Nonperturbative quantum gravity. Phys. Rep. 2012, 519, 127–210. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, G.; Rahmede, C.; Wu, Z. Complex quantum network geometries: Evolution and phase transitions. Phys. Rev. E 2015, 92, 022815. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Menichetti, G.; Rahmede, C.; Bianconi, G. Emergent Complex Network Geometry. Sci. Rep. 2015, 5, 10073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Newman, M.E.J. Statistical mechanics of networks. Phys. Rev. E 2004, 70, 066117. [Google Scholar] [CrossRef] [Green Version]
- Squartini, T.; Garlaschelli, D. Maximum-Entropy Networks: Pattern Detection, Network Reconstruction and Graph Combinatorics; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- van der Hoorn, P.; Lippner, G.; Krioukov, D. Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution. J. Stat. Phys. 2018, 173, 806–844. [Google Scholar] [CrossRef] [Green Version]
- Garlaschelli, D.; Loffredo, M.I. Maximum likelihood: Extracting unbiased information from complex networks. Phys. Rev. E 2008, 78, 015101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garlaschelli, D.; Ahnert, S.E.; Fink, T.M.A.; Caldarelli, G. Low-Temperature Behaviour of Social and Economic Networks. Entropy 2013, 15, 3148–3169. [Google Scholar] [CrossRef] [Green Version]
- Cimini, G.; Squartini, T.; Saracco, F.; Garlaschelli, D.; Gabrielli, A.; Caldarelli, G. The statistical physics of real-world networks. Nat. Rev. Phys. 2019, 1, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.J.; Strogatz, S.H.; Watts, D.J. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 2001, 64, 026118. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Nesterov, A.I.; Mata Villafuerte, P.H. Complex networks in the framework of nonassociative geometry. Phys. Rev. E 2020, 101, 032302. [Google Scholar] [CrossRef] [Green Version]
- Regge, T. General relativity without coordinates. Il Nuovo Cimento (1955–1965) 1961, 19, 558–571. [Google Scholar] [CrossRef]
- Williams, R.M.; Tuckey, P.A. Regge calculus: A brief review and bibliography. Class. Quantum Gravity 1992, 9, 1409–1422. [Google Scholar] [CrossRef]
- Regge, T.; Williams, R.M. Discrete structures in gravity. J. Math. Phys. 2000, 41, 3964–3984. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q. Reformulation of the Cosmological Constant Problem. Phys. Rev. Lett. 2020, 125, 051301. [Google Scholar] [CrossRef] [PubMed]
- Ossola, G.; Sirlin, A. Considerations concerning the contributionsof fundamental particles to the vacuum energy density. Eur. Phys. J.-Part. Fields 2003, 31, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, E.K. Vacuum energy and relativistic invariance. arXiv 2002. [Google Scholar] [CrossRef]
- Volovik, G.E. On Contributions of Fundamental Particles to the Vacuum Energy. In I Ya Pomeranchuk and Physics at the Turn of the Century; World Scientific: Singapore, 2004; pp. 234–244. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhu, Z.; Unruh, W.G. How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe. Phys. Rev. D 2017, 95, 103504. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Hiding the Cosmological Constant. Phys. Rev. Lett. 2019, 123, 131302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaus, S. On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes. Front. Math. China 2016, 11, 1345. [Google Scholar] [CrossRef]
- Guth, A.H. Inflation and eternal inflation. Phys. Rep. 2000, 333–334, 555–574. [Google Scholar] [CrossRef] [Green Version]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Kolb, E.W. First-order inflation. Phys. Scr. 1991, T36, 199–217. [Google Scholar] [CrossRef]
- Linde, A. A brief history of the multiverse. Rep. Prog. Phys. 2017, 80, 022001. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesterov, A. Spacetime as a Complex Network and the Cosmological Constant Problem. Universe 2023, 9, 266. https://doi.org/10.3390/universe9060266
Nesterov A. Spacetime as a Complex Network and the Cosmological Constant Problem. Universe. 2023; 9(6):266. https://doi.org/10.3390/universe9060266
Chicago/Turabian StyleNesterov, Alexander. 2023. "Spacetime as a Complex Network and the Cosmological Constant Problem" Universe 9, no. 6: 266. https://doi.org/10.3390/universe9060266
APA StyleNesterov, A. (2023). Spacetime as a Complex Network and the Cosmological Constant Problem. Universe, 9(6), 266. https://doi.org/10.3390/universe9060266