Next Article in Journal
Dynamically Implementing the μ¯-Scheme in Cosmological and Spherically Symmetric Models in an Extended Phase Space Model
Previous Article in Journal
Recent Quarkonia Measurements in Small Systems at RHIC and LHC Energies
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Estimate of SMBH Spin for Narrow-Line Seyfert 1 Galaxies

by
Mikhail Piotrovich
*,
Stanislava Buliga
and
Tinatin Natsvlishvili
Central Astronomical Observatory at Pulkovo RAS, 196140 Saint-Petersburg, Russia
*
Author to whom correspondence should be addressed.
Universe 2023, 9(4), 175; https://doi.org/10.3390/universe9040175
Submission received: 17 March 2023 / Revised: 31 March 2023 / Accepted: 2 April 2023 / Published: 3 April 2023
(This article belongs to the Section Galaxies and Clusters)

Abstract

:
We estimated the spin values of the supermassive black holes (SMBHs) of the active galactic nuclei (AGN) for a large set of Narrow Line Seyfert 1 (NLS1) galaxies assuming the inclination angle between the line of sight and the axis of the accretion disk to be approximately 45 degrees. We found that for these objects the spin values are on average less than for the Seyfert 1 galaxies that we studied previously. In addition, we found that the dependencies of the spin on the bolometric luminosity and the SMBH mass are two to three times stronger that for Seyfert 1 galaxies, which could mean that at early stages of evolution NLS1 galaxies either have a low accretion rate or chaotic accretion, while at later stages they have standard disk accretion, which very effectively increases the spin value.

1. Introduction

There are many types of active galaxies with Active Galactic Nuclei (AGNs), such as Seyfert galaxies, quasars, BL Lac objects, and radio galaxies. Among these types of galaxy, there are two types that are determined by the properties of their emission lines, namely, Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies [1]. Sy1 galaxies exhibit both broad allowed emission lines from the broad line region (BLR) with a width of several thousand km/s, and narrow forbidden emission lines from the narrow line region (NLR) with a width of several hundreds of km/s. Sy2 galaxies are characterized by narrow allowed and forbidden lines in their emission spectra [2]. According to the Antonucci [3] model, both types of galaxies, Sy1 and Sy2, have a similar internal structure, and the differences in their spectra are mainly due to orientation effects. Although the differences between Sy1 and Sy2 galaxies are well defined, galaxies with narrow resolved emission lines, similar to Sy2 galaxies but having all the spectral properties of Sy1 sources, have been found as well. These galaxies have been classified as narrow-line Sy1 (NLS1) galaxies [4]. Galaxies of this type are characterized by the following: (1) full width at half maximum (FWHM) of the broad line H β < 2000 km/s [5]; (2) weak [OIII] emission lines relative to H β with [OIII] λ 5007 /H β < 3 [4,6]; (3) strong emission lines of FeII relative to H β in the ultraviolet and optical regions of the spectrum [7]; (4) a strong excess of soft X-rays and high amplitude of rapid X-ray variability [6,8]; (5) strong infrared emissions, indicating active star formation [9].
The SMBHs in AGNs are characterized by two main parameters, namely, the mass and the spin (dimensionless angular momentum). The spin is very important because, according to modern concepts, the radiative efficiency of the accretion disk (among other things) strongly depends on the value of the spin [10,11,12,13].
In our previous works, we mainly explored AGNs in Seyfert 1-type galaxies; thus, in this work, we decided to study AGNs in NLS1 and to compare these two types of AGNs.

2. Examination of Initial Data

We took initial data from Zhou et al. [14]. This catalogue consists of 2011 NLS1 type objects; of these, 2005 have all the necessary data for our calculations. These include L 5100 —luminosity at 5100 Å F W H M (H β )—full width at half maximum of the H β spectral line (which determines the rotation speed of an accretion disk of AGN), and z—the cosmological redshift.
First, we examine the data from the catalogue. Figure 1, Figure 2 and Figure 3 show the histograms with the distributions of L 5100 , F W H M (H β ) and the cosmological redshift z. We can see that the 5100 Å that is, the luminosity, has a log-normal distribution with its peak at log ( L 5100 [ erg / s ] ) 44 . Concerning F W H M (H β ), it can be seen that the right-hand side of the distribution ends quite abruptly at log( F W H M (H β )[km/s]) 3.4 . This can be explained by the fact that AGNs in NLS1-type objects are characterized by a lower rotation speed of the accretion disk compared to, for example, Seyfert 1 galaxies, as well as by the method used to process the data during the creation of the catalogue [15]. The cosmological redshift distribution may be caused by the spatial distribution of objects (for close objects) and the selection effect (for distant objects). Figure 4 shows the dependence of the luminosity at 5100 Å L 5100 on F W H M (H β ). The Spearman correlation coefficient for this parameter is 0.28, and the correlation is significant at the 0.05 level. Thus, we can only note a weak correlation between the parameters, which is as expected.

3. Estimation of Spin Values

The spin (dimensionless angular momentum) of an SMBH is defined as a = c J / G M BH 2 , where J is the angular momentum, M BH is the mass of the black hole, and c is the speed of light. We can obtain the spin via the radiative efficiency ε = L bol / M ˙ c 2 (where L bol is the bolometric luminosity of AGN and M ˙ is the accretion rate), which depends strongly on the spin of the SMBH [10,11,12,13].
There are several models [16,17,18,19,20] connecting the radiative efficiency with the physical parameters of AGNs, which can be obtained from observations. In our previous work [21], we concluded that the model from Du et al. [18] provides the most consistent results; therefore, we decided to use it in this work.
According to Du et al. [18]:
ε a = 0.105 L bol 10 46 erg / s L 5100 10 45 erg / s 1.5 M 8 μ 1.5 ,
where M 8 = M BH / ( 10 8 M ) , μ = cos i , and i is the angle between the line of sight and the axis of the accretion disk. Because the angles for most objects are unknown, and because we have no reason to assume the presence of any preferred direction in the orientation of galaxies, the generally accepted method is to assume some average angle. As there is insufficient statistical data on the preferred angle for NLS1, we assume i = 45 , μ = 0.7 . Although this method is not perfect, there are a number of arguments in its favor; for example, existing angle measurements (including those made with the participation of the authors of the present work [22]) show that for most objects of the Seyfert 1 type (including NLS1) they usually range from 20 to 60 degrees, and for a noticeable number of objects the angle is close to 45 degrees (see, for example, Afanasiev et al. [22], Marin [23]), which reduces the possible size of errors. Furthermore, in our calculations we use the Eddington ratio l E = L bol / L Edd , where L Edd = 1.3 × 10 38 M BH / M is the Eddington luminosity.
In order to obtain the bolometric luminosity L bol from L 5100 , we need to use bolometric correction. Various authors provide different bolometric corrections that can differ by up to two to three times [24,25,26,27,28]. We tested several different methods of bolometric correction, and for consistency decided to use the same method we used in Piotrovich et al. [21], namely, the approach from Richards et al. [24]: L bol = L 5100 × 10.3 .
We obtained the masses of the SMBHs using the method from Vestergaard and Peterson [29]:
log ( M BH ) log F W H M ( H β ) 1000 km / s 2 L 5100 10 44 erg / s 0.5 + 6.91 .
The radiative efficiency for this type of object must satisfy the condition 0.039 < ε ( a ) < 0.324 [30]. In addition, because the method from [18] uses the Shakura–Sunyaev accretion disk model [31], the Eddington ratio must be in the range 0.01 l E 0.3 [32]. Thus, from 2005 initial objects, we obtained 474 objects satisfying these conditions. The spin a was determined numerically using the expression from Bardeen et al. [10]:
ε ( a ) = 1 R ISCO 3 / 2 2 R ISCO 1 / 2 + | a | R ISCO 3 / 4 ( R ISCO 3 / 2 3 R ISCO 1 / 2 + 2 | a | ) 1 / 2 ,
where R ISCO is the radius of the innermost stable circular orbit of the SMBH and
R ISCO ( a ) = 3 + Z 2 ± ( ( 3 Z 1 ) ( 3 + Z 1 + 2 Z 2 ) ) 1 / 2 , Z 1 = 1 + ( 1 a 2 ) 1 / 3 ( ( 1 + a ) 1 / 3 + ( 1 a ) 1 / 3 ) , Z 2 = ( 3 a 2 + Z 1 2 ) 1 / 2 .
In the expression for R ISCO ( a ) , the sign ”−” is used to indicate the prograde ( a 0 ), while the sign ”+” indicates the retrograde rotation ( a < 0 ).
The results of our calculations are presented in Tables Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7 and Table A8. We must emphasize that the obtained spin values are of course not exact, and can only be considered as estimates intended for statistical analysis. Nevertheless, in the absence of other spin data, they can be used as a first approximation.

4. Analysis of Objects Using Estimated Spin Values

First, we consider the statistical properties of the objects using the estimated spin values (the new set) as compared to the initial set.
Figure 5 shows the distribution of the bolometric luminosity for both sets. It can be seen that both the new set and the initial one have normal distributions; however, in the new set the peak is shifted to the left by an order of magnitude. This can be explained by the fact that we estimated spins only for those objects with Eddington ratios l E < 0.3 .
Figure 6 demonstrates the distribution of the SMBH mass for both sets. In general, the distributions have a similar form.
Figure 7 shows the distribution of cosmological redshift for both sets. While this distribution again has similar form, its peak is shifted towards closer objects. This occurs because the new set consists of predominantly fainter objects that we are usually only able to detect at closer distances (selection effect).
Figure 8 shows the distribution of the estimated spin values for the 474 objects. The distribution has a pronounced peak at 0.25 < a < 0.5 and terminates at a > 0.75 . This is very different from the typical distribution for Seyfert 1-type objects (see Figure 9), for which the distribution usually has its peak at 0.75 < a < 1.0 and up to 50% of objects have spin values a > 0.75 [19,21,22]. This result is generally consistent with the results of Liu et al. [33] obtained via X-ray observations.
It is interesting to compare our results with the distribution of spins estimated in Chen et al. [34] (see Figure 6 in their work) for various types of active galaxies. It can be observed that our distribution of spin values for NLS1 looks very similar to their distribution for radio galaxies, which may indicate that these two types of objects are closely related [35,36]. In addition, it can be seen that our spin distribution for Seyfert 1-type galaxies resembles their distribution for flat-spectrum radio quasars (FSRQ), which in turn could mean that Seyfert 1 galaxies and FSRQs are related (for example, it may mean that these are objects of the same type observed from different directions).
Figure 10 shows the dependence of the estimated spin values a on the bolometric luminosity L bol . The linear fitting provides us with the following expression:
a = ( 0.54 ± 0.05 ) log ( L bol [ erg / s ] ) ( 23.90 ± 2.05 ) .
In our previous work in Piotrovich et al. [21], the following was obtained for Seyfert 1 galaxies: a = ( 0.25 ± 0.07 ) log L bol [ erg / s ] ( 10.59 ± 3.21 ) . Thus, we can conclude that the dependence of the spin on the bolometric luminosity for the NLS1 type is stronger than for Seyfert 1 galaxies.
Figure 11 shows the dependence of the estimated spin values a on the mass of the SMBH M BH . The linear fitting provides us with the following expression:
a = ( 1.25 ± 0.05 ) log ( M BH / M ) ( 8.95 ± 0.35 ) .
In Piotrovich et al. [21], we obtained the following for Seyfert 1 galaxies: a = ( 0.46 ± 0.09 ) log M BH / M ( 3.00 ± 0.71 ) . Thus, we can conclude that the dependence of the spin on the SMBH mass is stronger for the NLS1 type than for Seyfert 1 galaxies.
Together with the low average spin, this could mean that at early stages of evolution NLS1 either have low accretion rates or chaotic accretion, while at later stages (which we are studying in this work) they have standard disk accretion, which very effectively increases the spin value.

5. Conclusions

In this work, we have estimated spin values of the SMBHs in AGNs for 474 NLS1-type galaxies, assuming the inclination angle between the line of sight and the axis of the accretion disk i 45 . The distribution of the estimated spin values differs significantly from the distribution of the spins for Seyfert 1-type galaxies. On average, the spin values are smaller. The distribution has a peak at 0.25 < a < 0.5 , and there are no objects with spins a > 0.75 . This is generally consistent with the results of Liu et al. [33]. Our distribution of spin values for NLS1 looks very similar to the distribution for radio galaxies from Chen et al. [34], which may indicate that these two types of objects are closely related [35,36]. In addition, it can be seen that our spin distribution for Seyfert 1-type galaxies in our previous works resembles the distribution from Chen et al. [34] for flat-spectrum radio quasars (FSRQ), which in turn could mean that Seyfert 1 galaxies and FSRQs are related (for example, it may mean that these are objects of the same type observed from different directions). The dependencies of spin on the bolometric luminosity (Equation (5)) and SMBH mass (Equation (6)) are quite different from the Seyfert 1 case. Specifically, the dependencies of the spin on these parameters is two to three times stronger, which could mean that in the early stages of evolution the NLS1 type either have a low accretion rate or chaotic accretion, while at later stages they have standard disk accretion, which very effectively increases the spin value.

Author Contributions

Conceptualization, M.P.; methodology, M.P.; software, M.P.; validation, S.B. and T.N.; formal analysis, M.P.; investigation, M.P., S.B. and T.N.; resources, M.P., S.B. and T.N.; data curation, S.B. and T.N.; writing—original draft preparation, M.P.; writing—review and editing, M.P.; visualization, M.P.; supervision, M.P.; project administration, M.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data underlying this article are available in the article.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. All objects with their estimated spin values. Part 1 of 8. Columns indicate: (1) object name, (2) cosmological redshift, (3) bolometric luminosity, (4) mass of SMBH, and (5) estimated spin value.
Table A1. All objects with their estimated spin values. Part 1 of 8. Columns indicate: (1) object name, (2) cosmological redshift, (3) bolometric luminosity, (4) mass of SMBH, and (5) estimated spin value.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J000154.27+000732.40.13959544.320.1267.110.254
SDSS J001010.03+005126.60.38700045.180.2937.600.430
SDSS J001137.24+144201.40.13183444.740.1657.410.512
SDSS J001630.43-093853.50.23993545.090.2697.550.416
SDSS J002053.31+003812.70.14437144.330.1357.090.162
SDSS J002213.00-004832.50.21394144.540.1957.14−0.038
SDSS J002527.35+160226.80.11066244.260.1317.030.084
SDSS J002752.39+002615.70.20530944.890.2457.390.232
SDSS J002830.95-002402.40.16734544.560.1477.280.416
SDSS J002947.82-002258.50.22887344.810.2287.340.210
SDSS J003238.20-010035.20.09186144.380.1477.100.136
SDSS J003542.67+004735.10.14888644.420.1837.05−0.180
SDSS J003644.72+160830.70.46512845.130.2597.610.512
SDSS J003646.45+145936.90.08921044.050.1256.84−0.262
SDSS J003711.00+002127.80.23510144.960.2357.480.400
SDSS J003803.51+145057.30.13884444.600.2827.04−0.686
SDSS J003846.90+150708.10.43835345.190.2957.610.446
SDSS J004241.90+150926.10.10127844.360.1517.070.056
SDSS J004742.58-004249.70.14729844.630.2297.16−0.142
SDSS J004809.94+151454.50.11458344.240.1277.030.110
SDSS J010009.31+010115.10.31245144.940.1937.540.580
SDSS J010044.84+144535.90.29146444.900.2957.32−0.038
SDSS J010407.00+011412.90.31188045.260.2757.710.590
SDSS J010546.50+000704.90.26373844.760.1887.380.384
SDSS J010950.84+152730.80.17901444.600.2777.05−0.686
SDSS J011009.01-100843.50.05811644.000.1186.82−0.262
SDSS J012801.99+135551.00.40906044.820.2427.330.136
SDSS J013521.68-004402.10.09850044.550.1847.170.084
SDSS J013556.98+003056.90.13789244.420.2156.98−0.564
SDSS J014019.06-092110.40.13527944.730.2857.17−0.354
SDSS J014105.88-100948.10.12642044.640.2627.11−0.402
SDSS J014153.62+125726.90.19890144.730.1627.410.512
SDSS J014248.31-100840.10.09039044.510.1547.210.274
SDSS J014248.86+142125.90.13387944.640.2867.07−0.624
SDSS J014559.44+003524.70.16533544.450.1407.190.314
SDSS J014951.65+002536.40.25243744.920.1977.520.536
SDSS J015046.68+132359.90.09412644.060.1226.87−0.180
SDSS J015219.33+141206.50.24823845.120.2647.590.474
SDSS J015313.07-091418.70.29827344.880.2877.31−0.038
SDSS J020132.56+002353.20.07800244.100.0897.040.384
SDSS J020844.09+140332.90.36103245.250.3077.650.474
SDSS J021529.30-001448.00.18098044.660.1537.370.486
SDSS J022008.96-090410.00.23167544.970.2297.500.446
SDSS J022226.12-085701.30.16673244.740.2527.23−0.070
SDSS J022347.48-083655.70.26077545.020.2757.470.294
SDSS J022821.38-082106.20.17137444.560.2637.03−0.624
SDSS J023038.88-000114.50.13368844.600.2117.16−0.070
SDSS J023315.91-081633.40.26555344.880.2857.31−0.004
SDSS J023414.57+005708.00.26922244.810.3077.21−0.306
SDSS J024225.87-004142.60.38274244.590.1867.210.136
SDSS J024546.10-085842.20.14829944.870.2107.440.400
SDSS J024621.02+001919.00.18289244.660.1987.250.162
SDSS J024727.54-001041.50.33917945.040.2327.570.512
SDSS J024934.59-082742.60.52068445.230.2847.670.536
SDSS J025416.89-084544.00.30206045.010.2497.500.400
SDSS J030639.57+000343.10.10734444.870.2297.400.294
SDSS J031532.27+005503.50.48739945.130.2657.600.486
SDSS J031722.16-065343.00.15620444.340.1487.060.026
SDSS J032801.70+002100.10.32207844.930.2147.490.460
SDSS J033502.22-005637.90.19328144.690.2427.20−0.106
SDSS J034131.94-000933.00.22337044.660.2527.15−0.262
SDSS J035827.45-050535.10.19973344.530.1457.260.384
SDSS J073606.62+375038.80.26215544.810.2767.26−0.106
Table A2. All objects with their estimated spin values. Part 2 of 8.
Table A2. All objects with their estimated spin values. Part 2 of 8.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J073642.77+320915.40.18481744.910.2247.450.384
SDSS J074035.86+402234.60.17727544.510.2347.03−0.506
SDSS J074255.78+234252.40.33650244.920.2667.390.162
SDSS J074548.27+284838.00.15839644.890.2837.330.026
SDSS J074615.57+302400.40.20619244.500.1697.160.136
SDSS J074906.25+354133.70.22599544.630.2207.18−0.070
SDSS J074940.91+375508.20.11653244.410.1807.04−0.180
SDSS J075141.57+353914.80.30620345.080.2957.500.294
SDSS J075209.09+414235.50.25835745.100.2957.520.314
SDSS J075347.92+240429.70.32021345.030.2727.490.314
SDSS J075433.59+401209.20.51906144.800.2667.26−0.070
SDSS J075525.29+391109.80.03351344.220.1726.87−0.564
SDSS J075606.59+292501.90.16057844.300.1596.99−0.180
SDSS J075613.68+391513.40.29879445.050.2757.500.332
SDSS J075616.70+252410.90.28496245.030.2097.600.598
SDSS J075659.43+240846.00.37647144.950.3087.35−0.004
SDSS J075838.13+414512.40.09353144.440.1777.08−0.070
SDSS J075922.36+332709.00.13788844.320.0977.220.548
SDSS J080135.10+270214.10.19147444.660.2927.08−0.624
SDSS J080203.03+435940.10.07439844.010.0737.040.486
SDSS J080252.91+314226.10.48367545.140.2657.610.500
SDSS J080416.30+292721.60.44399344.940.2887.370.084
SDSS J080439.54+315809.40.37400045.130.2467.630.558
SDSS J080515.99+334548.60.24706944.600.2297.13−0.220
SDSS J080538.22+244214.80.09883744.240.1866.86−0.686
SDSS J080710.87+245105.90.32863445.080.2517.570.474
SDSS J080742.46+375332.10.22994145.010.2727.470.294
SDSS J080807.15+251545.60.23395544.700.2007.290.232
SDSS J081231.43+441620.80.29688345.330.2997.740.590
SDSS J081252.45+402348.80.18844744.820.1707.480.568
SDSS J081321.36+393109.00.20498944.770.2767.22−0.180
SDSS J081345.89+381049.70.07996044.210.0907.150.512
SDSS J081422.67+293419.00.22497044.710.1897.320.314
SDSS J081427.49+031031.30.43649945.150.2977.570.384
SDSS J081427.69+433705.10.22418345.120.2577.600.500
SDSS J081503.09+293649.50.26445844.960.1917.570.608
SDSS J081516.87+460430.80.04118444.290.1966.89−0.686
SDSS J081823.29+304637.90.17044244.730.3067.13−0.506
SDSS J081835.73+285022.40.07724044.340.1786.98−0.306
SDSS J081836.56+364334.90.10605144.410.1197.220.446
SDSS J082050.48+472047.50.12906744.380.1197.190.416
SDSS J082405.19+445246.00.21963245.140.2807.580.430
SDSS J082432.99+514123.30.11110644.060.0907.000.294
SDSS J082447.43+302554.20.36509245.180.2597.660.558
SDSS J082921.18+375227.50.27590244.880.1987.470.486
SDSS J083013.45+520541.70.30257745.030.2277.560.524
SDSS J083052.73+481959.40.22341944.690.2257.230.026
SDSS J083105.42+484231.60.16970744.770.1777.410.474
SDSS J083202.15+461425.70.04590644.120.1106.970.110
SDSS J083225.22+304608.30.08973844.160.1186.980.084
SDSS J083237.43+365613.90.26576445.210.2627.680.580
SDSS J083352.82+394333.90.24486444.990.2517.480.368
SDSS J083454.08+542644.50.10111844.300.1077.160.430
SDSS J083651.68+465333.90.24863744.830.3057.24−0.262
SDSS J083810.01+350642.00.26321744.840.2287.370.254
SDSS J084000.14+443737.90.12539144.700.1877.320.314
SDSS J084314.95+384250.40.12109544.460.1247.260.474
SDSS J084818.23+045643.20.43767345.050.2477.550.460
SDSS J084855.35+422247.30.20208044.710.1787.350.384
SDSS J085026.98+324651.80.21987744.600.2947.02−0.824
SDSS J085039.70+333843.50.17486244.450.1697.110.026
SDSS J085256.69+391734.40.25005944.900.2717.360.110
SDSS J085315.22+340432.60.18994944.640.2377.16−0.180
Table A3. All objects with their estimated spin values. Part 3 of 8.
Table A3. All objects with their estimated spin values. Part 3 of 8.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J085457.23+544820.50.25590745.090.2687.550.416
SDSS J085613.17+363144.80.17110244.580.2077.15−0.070
SDSS J085655.29+442653.30.17908144.660.1447.390.558
SDSS J085738.56+452513.90.24230544.740.1767.390.446
SDSS J085858.79+533917.80.24248944.940.2327.460.384
SDSS J090005.80+005835.50.25056444.760.2337.280.084
SDSS J090015.28+510800.10.12603544.720.2027.300.232
SDSS J090102.33+424957.40.21386844.710.2627.18−0.220
SDSS J090117.82+043656.10.31972445.170.3067.570.368
SDSS J090210.16+444625.50.26622045.010.2477.510.400
SDSS J090354.72+350959.80.24140144.790.2627.26−0.038
SDSS J090523.95+413107.30.49486844.900.2077.470.460
SDSS J090611.61+510928.80.09785444.260.1267.050.136
SDSS J090720.90+053833.20.38335145.000.2787.450.232
SDSS J090734.53+491911.70.14186044.520.1227.320.558
SDSS J090741.40+500814.10.20867544.950.2557.430.274
SDSS J090927.69+393229.90.15210344.210.1776.85−0.686
SDSS J091034.21+533725.90.18730444.610.1827.240.210
SDSS J091113.39+400111.10.20049944.840.2917.27−0.142
SDSS J091245.77+450046.50.31883244.910.1997.500.512
SDSS J091313.72+365817.20.10732144.540.1857.160.056
SDSS J091400.03+462937.30.13673344.240.1896.85−0.754
SDSS J091508.55+530310.20.24860245.120.2347.640.590
SDSS J091512.23+013412.10.45593044.720.1997.310.254
SDSS J091513.89+571233.20.19509544.350.1986.94−0.564
SDSS J091953.24+595128.80.21565944.770.1897.380.400
SDSS J092019.52+463608.90.15586344.510.2537.00−0.686
SDSS J092050.41+422408.00.17445244.550.2547.04−0.564
SDSS J092057.50+510700.30.20045844.800.1777.440.512
SDSS J092351.17+032231.60.17975144.850.2927.27−0.142
SDSS J092506.70+390708.00.24747744.970.2837.410.162
SDSS J092704.38+563351.40.21955344.690.1417.430.598
SDSS J092810.50+411129.10.15262344.690.1457.420.580
SDSS J093147.74+433119.20.13204644.390.1327.160.294
SDSS J093312.47+611936.30.12270544.040.0866.990.332
SDSS J093607.86+051034.40.20745644.820.2597.300.026
SDSS J093919.90+072755.00.40969745.140.3087.540.314
SDSS J094109.86+081404.50.12542944.220.1486.94−0.220
SDSS J094456.07+054642.90.21286544.900.2907.33−0.004
SDSS J094529.36+093610.40.01327743.120.0556.27−0.898
SDSS J094616.90+025459.40.11776444.600.1927.210.110
SDSS J094621.26+471131.30.23049445.130.2897.560.384
SDSS J094842.67+502931.40.05646444.470.1627.150.136
SDSS J094903.55+474653.90.21495844.750.2527.24−0.070
SDSS J095017.60+070317.90.10870744.300.1756.95−0.402
SDSS J095221.96+632438.90.11971644.330.1157.160.384
SDSS J095310.69+032725.50.18436244.530.1257.320.548
SDSS J095553.14+633742.70.35641545.030.2387.540.474
SDSS J095730.15+413301.60.31870145.020.2557.500.384
SDSS J095931.67+504449.00.14322645.080.3007.490.254
SDSS J100201.77+620816.30.13379144.560.2267.10−0.262
SDSS J100706.25+084228.40.37334345.190.3007.600.416
SDSS J100723.15+014546.80.35511144.730.2667.19−0.220
SDSS J100954.65+481514.60.17880544.650.1697.310.368
SDSS J101341.90-000925.70.27710544.980.2677.440.254
SDSS J101437.45+440639.10.20013545.160.2707.620.500
SDSS J101549.33+424243.00.49880045.330.2967.750.598
SDSS J101645.11+421025.50.05532244.580.2807.02−0.754
SDSS J101852.45+495800.40.15481144.630.2087.200.026
SDSS J101936.27+002029.70.14787844.610.2507.10−0.402
SDSS J102000.45+623944.60.13602044.440.2117.01−0.452
SDSS J102049.68+060446.90.11095444.410.1547.110.110
SDSS J102148.89+030732.20.06183844.250.1436.98−0.070
Table A4. All objects with their estimated spin values. Part 4 of 8.
Table A4. All objects with their estimated spin values. Part 4 of 8.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J102307.02+454500.10.25639644.730.1667.400.486
SDSS J102402.59+062943.90.04401443.940.1176.76−0.402
SDSS J102448.57+003538.00.09547544.330.1547.03−0.038
SDSS J102531.28+514034.80.04488444.470.2426.98−0.686
SDSS J102712.37+050320.90.33847044.980.2807.420.186
SDSS J102748.92+651337.40.44491044.980.2797.420.210
SDSS J102754.27+063107.40.15905144.500.2177.05−0.354
SDSS J102905.51+052555.30.12277044.410.1327.180.332
SDSS J102955.38+471346.60.17543644.780.2187.330.232
SDSS J103103.52+462616.80.09324444.480.1717.140.056
SDSS J104153.59+031500.60.09344244.270.0997.160.474
SDSS J104241.08+520012.80.13624944.630.2427.14−0.262
SDSS J104331.50-010732.80.36190645.150.2747.600.474
SDSS J104413.32-000324.70.27981445.130.2917.560.384
SDSS J104840.49+541302.30.10414144.280.1946.88−0.686
SDSS J105237.41+503042.10.24573045.080.2597.560.446
SDSS J110501.99-004454.70.33240445.080.2387.590.536
SDSS J110522.54+510727.10.30707445.050.2887.480.274
SDSS J110608.03+582609.10.11801844.450.2177.00−0.506
SDSS J110711.32+080538.40.28104545.080.2337.600.558
SDSS J110735.68+060758.60.38003545.190.2907.620.460
SDSS J111012.07+011327.80.09493645.100.3027.510.294
SDSS J111233.81+034007.00.32176844.860.2237.400.314
SDSS J111407.35-000031.10.07264944.140.1366.90−0.220
SDSS J111528.48-003454.70.23251644.690.1997.280.210
SDSS J111928.85+042655.50.15347744.560.1677.230.254
SDSS J111949.75+020256.50.20782244.600.2217.15−0.142
SDSS J112016.16+491428.80.14958144.400.2086.97−0.506
SDSS J112108.58+535121.00.10290745.270.2987.690.524
SDSS J112114.22+032546.70.15203345.070.2677.530.400
SDSS J112209.40+011719.30.05829244.080.1646.76−0.898
SDSS J112328.12+052823.20.10133644.420.1457.150.232
SDSS J112606.43+002349.90.16953644.850.1697.510.608
SDSS J112747.17+632542.70.34166544.540.2097.11−0.180
SDSS J112805.72-005850.90.28473945.040.2267.580.536
SDSS J112836.17+024550.60.23857644.650.1687.310.368
SDSS J113001.88+494434.70.24433845.290.3017.700.536
SDSS J113003.11+655629.10.13268744.620.2767.07−0.564
SDSS J113102.27-010122.00.24213744.520.2567.00−0.686
SDSS J113110.64+043856.00.14459444.660.1847.290.274
SDSS J113111.94+100231.30.07440144.050.1126.89−0.070
SDSS J113151.04+100915.50.11948144.310.2136.87−0.824
SDSS J113223.43+641958.40.20986745.170.2617.640.548
SDSS J113229.54+092042.00.30515745.040.2147.600.590
SDSS J113320.91+043255.10.24805845.150.2417.660.598
SDSS J113842.84-031403.30.21233944.920.2107.490.474
SDSS J113900.50+591347.20.11505244.680.1877.300.274
SDSS J114203.66+054850.40.27403344.860.1987.450.460
SDSS J114208.48+531526.00.06796544.200.0977.100.416
SDSS J114341.97-014434.40.10522344.930.2757.380.136
SDSS J114514.00+494523.40.19233644.560.2617.03−0.624
SDSS J114632.86+030506.90.19129444.450.1797.09−0.070
SDSS J114928.27-000442.50.17596744.670.1497.390.536
SDSS J114958.08+575107.70.10055644.440.2446.94−0.824
SDSS J115050.20+004505.70.13947444.520.1287.300.512
SDSS J115215.83+042456.20.13267444.300.1367.060.110
SDSS J115655.88+084850.20.49609245.260.2757.710.590
SDSS J115713.04+535312.80.27288244.840.2547.320.084
SDSS J115715.19+093456.70.27183544.790.1607.480.590
SDSS J115723.17+045201.00.17608344.430.2117.00−0.452
SDSS J115741.75+041250.60.09481244.290.1487.01−0.070
SDSS J115755.47+001704.00.26077044.930.2277.460.400
SDSS J115852.57+563152.50.23434544.600.2707.06−0.624
Table A5. All objects with their estimated spin values. Part 5 of 8.
Table A5. All objects with their estimated spin values. Part 5 of 8.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J115905.80+024802.60.16856044.650.2167.21−0.004
SDSS J120014.08-004638.70.17938944.930.2367.450.350
SDSS J120322.36+621505.70.27041744.820.3037.23−0.262
SDSS J120517.71+520109.10.18954144.720.2107.290.186
SDSS J120628.97+503001.50.17197144.580.2727.03−0.686
SDSS J121117.80-000212.40.18131744.720.1777.360.416
SDSS J121157.48+055801.10.06782044.180.1366.94−0.142
SDSS J121255.27+512221.10.28282344.850.2417.360.210
SDSS J121333.20-013220.70.19774344.630.2047.210.056
SDSS J121343.76-010002.50.32806544.900.2397.410.294
SDSS J121407.35+655228.60.23555245.100.2387.610.558
SDSS J121513.83+023334.40.22443544.720.1577.410.536
SDSS J121544.73+592639.10.09581544.210.1227.010.110
SDSS J121948.93+054531.70.11386644.480.1667.150.110
SDSS J122342.82+581446.20.01452742.960.0426.22−0.686
SDSS J122450.55+100545.40.16790044.910.2447.410.274
SDSS J122506.20-030100.40.23996644.700.2977.12−0.564
SDSS J122624.42+014020.70.21988444.830.1767.470.548
SDSS J122801.33+623948.10.27129044.990.2517.480.368
SDSS J122908.95+561109.10.26547544.780.1807.410.460
SDSS J122950.61+024652.70.33608345.150.2847.590.430
SDSS J123003.50+611904.70.14837444.730.2767.18−0.306
SDSS J123012.17+544719.80.27680044.820.2017.410.400
SDSS J123132.52+574624.80.25991044.850.2187.400.332
SDSS J123339.58+052034.70.21564944.640.2267.18−0.106
SDSS J123340.07+680022.40.34337244.960.2447.460.350
SDSS J123450.50+040845.40.12125244.630.2447.13−0.262
SDSS J123831.33+643456.50.10158444.730.2217.280.110
SDSS J124110.10+104143.70.15623244.240.1686.91−0.452
SDSS J124129.34+681533.90.15097244.240.1287.020.084
SDSS J124328.04+565237.90.10661644.290.1656.96−0.262
SDSS J124504.57+650122.70.20659144.660.2957.08−0.624
SDSS J124504.93+504446.20.12968444.590.2097.16−0.070
SDSS J124519.73-005230.50.22102044.610.2347.13−0.220
SDSS J125051.04+060910.00.18204745.140.3087.540.314
SDSS J125156.50+015249.60.32941645.310.2927.730.590
SDSS J125224.22+645901.40.22072944.660.2457.16−0.220
SDSS J125227.32+032353.60.13268744.810.2337.330.186
SDSS J125248.49+015236.30.28798844.840.1787.480.548
SDSS J125357.41+640534.80.26745544.710.2587.19−0.220
SDSS J125635.87+500852.30.24533744.670.2037.250.136
SDSS J130030.67+485042.50.25172544.900.1907.510.548
SDSS J130052.10+564105.90.07183844.410.1267.200.384
SDSS J130421.89+014915.90.15359744.530.2177.08−0.262
SDSS J130547.00+504034.00.05512443.920.1096.77−0.306
SDSS J130717.75+033447.50.16134644.300.1437.030.026
SDSS J131136.37+580801.50.07108844.160.0877.110.486
SDSS J131234.32+655240.10.21735144.450.2366.97−0.686
SDSS J131305.81+012755.90.02936143.710.0886.65−0.354
SDSS J132026.49+051113.50.09839144.510.2387.02−0.506
SDSS J132231.12-001124.60.17293044.670.1477.390.536
SDSS J132428.34+590423.80.23962344.810.2477.310.084
SDSS J132447.09+530257.60.29200544.900.2347.420.314
SDSS J132640.04+650427.40.40086745.070.2907.500.294
SDSS J132704.54-003627.50.30171744.900.2687.360.110
SDSS J132705.88-012415.50.16780844.810.2727.26−0.070
SDSS J132731.98+654848.30.21976944.720.1877.340.350
SDSS J133059.07+602128.40.29174745.040.2237.580.548
SDSS J133138.03+013151.70.08047344.420.1597.110.084
SDSS J133248.59+442452.70.07743844.130.1017.020.254
SDSS J133315.25+560859.80.34310545.210.2637.680.580
SDSS J133328.96+613513.30.15151644.670.1417.410.580
SDSS J133627.97+442917.70.13780944.560.2437.06−0.452
Table A6. All objects with their estimated spin values. Part 6 of 8.
Table A6. All objects with their estimated spin values. Part 6 of 8.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J133729.04+563907.60.14350144.610.2137.17−0.070
SDSS J134313.40+654110.40.24072644.900.2317.430.332
SDSS J134351.06+000434.70.07369344.360.1047.230.536
SDSS J134452.91+000520.20.08709944.420.1247.220.416
SDSS J134524.69-025939.80.08540244.590.1567.290.384
SDSS J134730.70+603742.80.14355144.560.1467.280.416
SDSS J135343.63-011801.30.14519344.530.1687.190.186
SDSS J135350.63+571725.80.23445844.810.2747.26−0.106
SDSS J135622.94+574150.90.30969844.960.2927.380.110
SDSS J135643.69+664128.40.17259944.590.2577.07−0.506
SDSS J135756.53+655902.90.19703144.830.2847.27−0.106
SDSS J135842.27+024925.10.14801644.560.1707.220.232
SDSS J135848.54+430435.60.25243644.810.2427.320.110
SDSS J135944.07+045649.50.08562344.250.1696.91−0.452
SDSS J140046.05+531920.20.38844245.170.2857.610.460
SDSS J140219.69+521059.40.27917544.880.2717.340.056
SDSS J140322.10+022232.90.25015944.660.3087.06−0.754
SDSS J140527.68+505546.50.10656144.530.1537.240.314
SDSS J140926.77+473127.30.14340344.410.2206.96−0.624
SDSS J141108.51+424428.90.17331544.580.1707.240.254
SDSS J141419.84+533815.30.16445544.980.2697.440.254
SDSS J141424.90+465348.50.14973144.790.2207.340.232
SDSS J141820.32-005953.80.25363844.940.2697.400.186
SDSS J141838.27+620718.50.13879244.590.1347.350.548
SDSS J142103.52+515819.40.26354344.590.1307.370.568
SDSS J142214.89+431357.40.32326745.090.2637.560.446
SDSS J142509.12+011911.40.19981444.500.1927.11−0.106
SDSS J142542.55+652716.90.24147644.770.2597.25−0.070
SDSS J142830.16+555931.30.35143145.140.2527.630.548
SDSS J143030.21-001115.00.10328444.120.1007.010.254
SDSS J143223.67+400533.80.14065144.470.1587.160.162
SDSS J143249.68+451338.20.30687245.070.3087.470.210
SDSS J143407.20+452732.20.25495244.670.2697.13−0.402
SDSS J143601.55+044807.70.19412544.900.2727.360.110
SDSS J143704.11+000705.10.14036344.800.2297.330.186
SDSS J143715.12+545243.80.25215445.000.2707.460.274
SDSS J143952.91+392358.90.11199944.360.1986.95−0.506
SDSS J144013.89-015708.30.46358144.830.1977.430.430
SDSS J144205.04+545904.70.10462844.170.1127.010.162
SDSS J144237.72+542851.40.15518844.670.2597.15−0.306
SDSS J144249.70+611137.80.04785843.420.0566.56−0.106
SDSS J144328.40+542933.10.22694244.790.2167.350.254
SDSS J144507.31+593649.80.12803043.880.1046.75−0.306
SDSS J144705.46+003653.20.09549343.840.0886.78−0.070
SDSS J144920.25+553429.40.46829545.170.2787.620.474
SDSS J144945.69+422243.20.26276045.080.2457.580.512
SDSS J145123.01-000625.80.13861344.530.1317.300.500
SDSS J145201.55+025335.10.43370245.120.2867.550.384
SDSS J145235.27+495142.10.14492144.530.1207.340.580
SDSS J145624.00+421800.20.18983444.880.1877.500.548
SDSS J145643.88+503756.40.13148644.560.2447.06−0.452
SDSS J145801.49+544056.10.14485844.400.1297.180.332
SDSS J145921.17+521749.60.16701944.720.1537.430.558
SDSS J150034.45+465234.10.29802245.040.2537.530.416
SDSS J150238.69+501524.00.17226844.610.1957.210.084
SDSS J150346.94+420323.10.16831644.740.2127.300.210
SDSS J150816.95+520541.70.19339544.760.2587.24−0.106
SDSS J150832.91+583422.40.50217245.070.2497.560.474
SDSS J151020.05+554722.00.14969344.530.2597.01−0.686
SDSS J151024.93+005844.00.07226244.410.1537.110.110
SDSS J151101.89+520350.00.21134045.070.2577.550.446
SDSS J151131.33+502219.00.21984545.020.2227.560.536
SDSS J151616.18+463515.30.20827144.540.2427.05−0.506
Table A7. All objects with their estimated spin values. Part 7 of 8.
Table A7. All objects with their estimated spin values. Part 7 of 8.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J151617.16+472805.00.19785144.620.2277.15−0.142
SDSS J151956.57+001614.60.11439844.690.2577.17−0.220
SDSS J152209.56+451124.00.06573244.020.0986.920.110
SDSS J152224.45-010838.40.32122145.210.2577.690.598
SDSS J152342.49+033147.90.22142344.530.2357.05−0.452
SDSS J152447.13+520759.10.16084044.490.2147.05−0.354
SDSS J152526.40+400914.30.35581745.130.2567.610.512
SDSS J152621.69+432349.50.15561544.920.2707.380.136
SDSS J152628.19-003809.40.12333444.770.1627.450.558
SDSS J152840.26+383525.90.15259844.300.1207.110.294
SDSS J152843.94+000740.60.09444044.250.1576.94−0.262
SDSS J152912.14+031815.40.16995644.350.0957.260.608
SDSS J153006.30+010626.00.23933944.560.1747.210.186
SDSS J153252.95+384330.50.13400344.630.2467.13−0.306
SDSS J153458.50+024214.00.38945845.100.2947.520.314
SDSS J153607.72+364806.80.27757845.120.2667.590.474
SDSS J153651.27+541442.60.36670645.080.3067.480.232
SDSS J153705.95+005522.80.13641945.090.2897.520.332
SDSS J153937.82+374340.40.16504844.540.1557.240.314
SDSS J154113.94+492034.50.30808744.870.2227.410.350
SDSS J154623.61+475122.30.10328744.210.1456.94−0.180
SDSS J154656.62+005719.60.21101944.920.3017.33−0.038
SDSS J154814.75+450027.70.03726843.350.0536.52−0.142
SDSS J155427.26+404441.30.11680544.430.1397.180.294
SDSS J155451.13+461917.30.11688144.440.2137.00−0.452
SDSS J155637.99+540308.30.20333144.860.2407.370.232
SDSS J155755.23+331625.80.27769345.030.2947.450.210
SDSS J155851.33+280719.60.28255745.020.2627.490.350
SDSS J155904.06+382422.20.13706544.250.0967.160.486
SDSS J160344.44+264651.30.08567344.600.1667.270.314
SDSS J160404.51+493820.50.14858244.000.0926.930.186
SDSS J160426.88+525130.30.10703144.350.2126.91−0.686
SDSS J160558.12+440319.50.04443844.030.0707.070.548
SDSS J160806.68+424057.80.08473744.440.2077.01−0.402
SDSS J161527.68+403153.60.08335544.200.1906.81−0.898
SDSS J161713.51+515618.80.19879944.520.1497.240.332
SDSS J161951.31+405847.30.03785843.770.0626.870.350
SDSS J162755.24+470453.00.27182044.880.2347.400.294
SDSS J163128.59+404535.90.18122744.760.2117.320.232
SDSS J163152.22+345328.60.07223444.280.1077.140.400
SDSS J163214.84+333412.80.17411844.850.1867.470.512
SDSS J163247.87+383239.60.13924744.620.2707.08−0.506
SDSS J163417.81+474453.10.17730644.860.2587.340.110
SDSS J163625.42+421346.90.14125044.700.3087.10−0.624
SDSS J163737.38+341205.50.23565844.560.1507.270.384
SDSS J163927.71+354343.30.31792944.880.2127.440.416
SDSS J164100.10+345452.60.16407844.820.1837.450.500
SDSS J164207.32+344834.20.20753344.600.1447.330.486
SDSS J164225.29+391742.20.18435344.570.1357.330.512
SDSS J164416.85+423158.40.16089344.630.2187.18−0.038
SDSS J164626.09+392932.10.10036544.500.2556.98−0.754
SDSS J164907.63+642422.20.18352444.600.2597.08−0.506
SDSS J165437.25+301653.90.18569844.660.2507.15−0.262
SDSS J165636.98+371439.50.06275743.730.0746.750.026
SDSS J165658.36+630051.10.16896944.550.2537.04−0.564
SDSS J165757.51+382327.70.18149644.740.1917.350.350
SDSS J165914.68+313423.40.26452544.890.2607.370.162
SDSS J170002.15+383258.10.16657344.530.1597.220.274
SDSS J170546.91+631059.10.11918244.490.1417.230.368
SDSS J171033.21+584456.80.28070145.040.3007.450.186
SDSS J171526.52+291923.50.20827344.910.2537.400.232
SDSS J171540.93+560654.80.29713945.120.2467.620.548
SDSS J171943.77+581112.30.35075244.860.2647.330.084
Table A8. All objects with their estimated spin values. Part 8 of 8.
Table A8. All objects with their estimated spin values. Part 8 of 8.
Objectz log ( L bol [ erg / s ] ) l E M BH / M a
SDSS J204404.53-011214.60.17245144.520.2237.06−0.354
SDSS J204731.68+002056.30.18167944.420.1267.210.400
SDSS J205418.80+004915.90.22750945.160.2437.660.598
SDSS J210533.44+002829.30.05431243.990.1246.79−0.402
SDSS J210629.86+110109.00.30446045.050.2877.480.274
SDSS J211436.68-004938.40.14536444.490.1487.210.294
SDSS J212210.99+104200.10.29901644.950.2327.480.400
SDSS J212327.26+001439.90.18225844.780.2777.23−0.180
SDSS J213059.76+004438.00.13007044.660.2927.08−0.624
SDSS J213245.28+121256.80.12556644.730.1497.450.590
SDSS J214054.55+002538.10.08384144.880.3087.28−0.180
SDSS J214249.64-085434.40.13529244.500.1627.180.186
SDSS J214733.86+004021.00.12419244.640.2777.09−0.564
SDSS J215147.60-080922.40.12057244.680.2047.260.162
SDSS J220042.72-073056.40.11062444.490.2436.99−0.624
SDSS J220735.12-082457.70.21322744.790.2777.24−0.142
SDSS J221953.18-083258.70.30578544.870.2827.31−0.004
SDSS J222115.58-004030.40.17192644.560.1377.310.486
SDSS J222255.55+005033.70.11250344.250.1996.84−0.898
SDSS J224605.44-091925.10.11846644.350.1547.05−0.004
SDSS J225452.22+004631.30.09073544.720.3087.12−0.564
SDSS J230108.39-084848.80.17187044.810.1997.400.384
SDSS J230323.47-100235.30.18061344.900.2857.340.026
SDSS J230723.24+001708.10.11268544.360.2096.93−0.624
SDSS J231309.71+002633.70.28527344.960.2617.430.254
SDSS J233811.52+002045.70.27885544.810.1987.400.400
SDSS J234114.22-102828.80.27783944.960.2197.510.474
SDSS J234150.81-004329.00.25059544.810.2607.29−0.004
SDSS J234208.30-094747.50.19123444.610.2107.18−0.038
SDSS J234229.45-004731.40.31565544.840.2697.30−0.004
SDSS J234601.30-101549.00.19121044.420.1137.260.524
SDSS J234725.29-010643.70.18200244.880.2367.400.274
SDSS J235340.46-093709.00.31175344.860.2277.390.294

References

  1. Netzer, H. Revisiting the Unified Model of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 365–408. [Google Scholar] [CrossRef] [Green Version]
  2. Robson, I. Active Galactic Nuclei; Wiley: New York, NY, USA, 1996. [Google Scholar]
  3. Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
  4. Osterbrock, D.E.; Pogge, R.W. The spectra of narrow-line Seyfert 1 galaxies. Astrophys. J. 1985, 297, 166–176. [Google Scholar] [CrossRef]
  5. Goodrich, R.W. Spectropolarimetry of “Narrow-Line” Seyfert 1 Galaxies. Astrophys. J. 1989, 342, 224. [Google Scholar] [CrossRef]
  6. Leighly, K.M. A Comprehensive Spectral and Variability Study of Narrow-Line Seyfert 1 Galaxies Observed by ASCA. II. Spectral Analysis and Correlations. Astrophys. J. Suppl. 1999, 125, 317–348. [Google Scholar] [CrossRef] [Green Version]
  7. Mathur, S. Narrow-line Seyfert 1 galaxies and the evolution of galaxies and active galaxies. Mon. Not. R. Astron. Soc. 2000, 314, L17–L20. [Google Scholar] [CrossRef] [Green Version]
  8. Boller, T.; Brandt, W.N.; Fink, H. Soft X-ray properties of narrow-line Seyfert 1 galaxies. Astron. Astrophys. 1996, 305, 53. [Google Scholar] [CrossRef]
  9. Moran, E.C.; Halpern, J.P.; Helfand, D.J. Classification of IRAS-selected X-ray Galaxies in the ROSAT All-Sky Survey. Astrophys. J. Suppl. 1996, 106, 341. [Google Scholar] [CrossRef]
  10. Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J. 1972, 178, 347–370. [Google Scholar] [CrossRef]
  11. Novikov, I.D.; Thorne, K.S. Astrophysics of black holes. In Black Holes (Les Astres Occlus); Dewitt, C., Dewitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 343–450. [Google Scholar]
  12. Krolik, J.H. Making black holes visible: Accretion, radiation, and jets. In Proceedings of the 2007 STScI Spring Symposium on Black Holes, Baltimore, MD, USA, 23–26 April 2007; pp. 309–321. [Google Scholar]
  13. Krolik, J.H.; Hawley, J.F.; Hirose, S. The Relationship between Accretion Disks and Jets. In Revista Mexicana de Astronomia y Astrofisica; Revista Mexicana de Astronomia y Astrofisica Conference Series; Instituto de Astronomía Distrito Federal: Ciudad de México, Mexico, 2007; Volume 27, pp. 1–7. [Google Scholar]
  14. Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y. VizieR Online Data Catalog: Narrow line Seyfert 1 galaxies from SDSS-DR3 (Zhou+, 2006). VizieR Online Data Cat. 2017. [Google Scholar] [CrossRef]
  15. Zhou, H.; Wang, T.; Yuan, W.; Lu, H.; Dong, X.; Wang, J.; Lu, Y. A Comprehensive Study of 2000 Narrow Line Seyfert 1 Galaxies from the Sloan Digital Sky Survey. I. The Sample. Astrophys. J. Suppl. 2006, 166, 128–153. [Google Scholar] [CrossRef] [Green Version]
  16. Davis, S.W.; Laor, A. The Radiative Efficiency of Accretion Flows in Individual Active Galactic Nuclei. Astrophys. J. 2011, 728, 98. [Google Scholar] [CrossRef]
  17. Raimundo, S.I.; Fabian, A.C.; Vasudevan, R.V.; Gandhi, P.; Wu, J. Can we measure the accretion efficiency of active galactic nuclei? Mon. Not. R. Astron. Soc. 2012, 419, 2529–2544. [Google Scholar] [CrossRef] [Green Version]
  18. Du, P.; Hu, C.; Lu, K.X.; Wang, F.; Qiu, J.; Li, Y.R.; Bai, J.M.; Kaspi, S.; Netzer, H.; Wang, J.M.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign. Astrophys. J. 2014, 782, 45. [Google Scholar] [CrossRef] [Green Version]
  19. Trakhtenbrot, B. The Most Massive Active Black Holes at z ∼ 1.5–3.5 have High Spins and Radiative Efficiencies. Astrophys. J. Lett. 2014, 789, L9. [Google Scholar] [CrossRef] [Green Version]
  20. Lawther, D.; Vestergaard, M.; Raimundo, S.; Grupe, D. A catalogue of optical to X-ray spectral energy distributions of z ≈ 2 quasars observed with Swift—I. First results. Mon. Not. R. Astron. Soc. 2017, 467, 4674–4710. [Google Scholar] [CrossRef] [Green Version]
  21. Piotrovich, M.Y.; Buliga, S.D.; Natsvlishvili, T.M. Determination of supermassive black hole spins in local active galactic nuclei. Astron. Nachr. 2022, 343, e10020. [Google Scholar] [CrossRef]
  22. Afanasiev, V.L.; Gnedin, Y.N.; Piotrovich, M.Y.; Natsvlishvili, T.M.; Buliga, S.D. Determination of Supermassive Black Hole Spins Based on the Standard Shakura-Sunyaev Accretion Disk Model and Polarimetric Observations. Astron. Lett. 2018, 44, 362–369. [Google Scholar] [CrossRef]
  23. Marin, F. Are there reliable methods to estimate the nuclear orientation of Seyfert galaxies? Mon. Not. R. Astron. Soc. 2016, 460, 3679–3705. [Google Scholar] [CrossRef] [Green Version]
  24. Richards, G.T.; Lacy, M.; Storrie-Lombardi, L.J.; Hall, P.B.; Gallagher, S.C.; Hines, D.C.; Fan, X.; Papovich, C.; Vanden Berk, D.E.; Trammell, G.B.; et al. Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars. Astrophys. J. Suppl. 2006, 166, 470–497. [Google Scholar] [CrossRef]
  25. Hopkins, P.F.; Richards, G.T.; Hernquist, L. An Observational Determination of the Bolometric Quasar Luminosity Function. Astrophys. J. 2007, 654, 731–753. [Google Scholar] [CrossRef]
  26. Cheng, H.; Yuan, W.; Liu, H.Y.; Breeveld, A.A.; Jin, C.; Liu, B. Modelling accretion disc emission with generalized temperature profile and its effect on AGN spectral energy distribution. Mon. Not. R. Astron. Soc. 2019, 487, 3884–3903. [Google Scholar] [CrossRef] [Green Version]
  27. Netzer, H. Bolometric correction factors for active galactic nuclei. Mon. Not. R. Astron. Soc. 2019, 488, 5185–5191. [Google Scholar] [CrossRef] [Green Version]
  28. Duras, F.; Bongiorno, A.; Ricci, F.; Piconcelli, E.; Shankar, F.; Lusso, E.; Bianchi, S.; Fiore, F.; Maiolino, R.; Marconi, A.; et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 2020, 636, A73. [Google Scholar] [CrossRef] [Green Version]
  29. Vestergaard, M.; Peterson, B.M. Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships. Astrophys. J. 2006, 641, 689–709. [Google Scholar] [CrossRef]
  30. Thorne, K.S. Disk-Accretion onto a Black Hole. II. Evolution of the Hole. Astrophys. J. 1974, 191, 507–520. [Google Scholar] [CrossRef]
  31. Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
  32. Netzer, H.; Trakhtenbrot, B. Bolometric luminosity black hole growth time and slim accretion discs in active galactic nuclei. Mon. Not. R. Astron. Soc. 2014, 438, 672–679. [Google Scholar] [CrossRef] [Green Version]
  33. Liu, Z.; Yuan, W.; Lu, Y.; Zhou, X. Relativistic Fe Kα line revealed in the composite X-ray spectrum of narrow-line Seyfert 1 galaxies—Do their black holes have averagely low or intermediate spins? Mon. Not. R. Astron. Soc. 2015, 447, 517–529. [Google Scholar] [CrossRef] [Green Version]
  34. Chen, Y.; Gu, Q.; Fan, J.; Yu, X.; Ding, N.; Xiong, D.; Guo, X. Curvature of the Spectral Energy Distribution, Compton Dominance, and Synchrotron Peak Frequency in Jetted Active Galactic Nuclei. Astrophys. J. 2023, 944, 157. [Google Scholar] [CrossRef]
  35. Yuan, W.; Zhou, H.Y.; Komossa, S.; Dong, X.B.; Wang, T.G.; Lu, H.L.; Bai, J.M. A Population of Radio-Loud Narrow-Line Seyfert 1 Galaxies with Blazar-Like Properties? Astrophys. J. 2008, 685, 801–827. [Google Scholar] [CrossRef] [Green Version]
  36. Berton, M.; Congiu, E.; Järvelä, E.; Antonucci, R.; Kharb, P.; Lister, M.L.; Tarchi, A.; Caccianiga, A.; Chen, S.; Foschini, L.; et al. Radio-emitting narrow-line Seyfert 1 galaxies in the JVLA perspective. Astron. Astrophys. 2018, 614, A87. [Google Scholar] [CrossRef]
Figure 1. The distribution of the luminosity at 5100 Å L 5100 (with a fitted log-normal distribution curve) from the initial set.
Figure 1. The distribution of the luminosity at 5100 Å L 5100 (with a fitted log-normal distribution curve) from the initial set.
Universe 09 00175 g001
Figure 2. The distribution of F W H M (H β ) from the initial set.
Figure 2. The distribution of F W H M (H β ) from the initial set.
Universe 09 00175 g002
Figure 3. The distribution of the cosmological redshift z from the initial set.
Figure 3. The distribution of the cosmological redshift z from the initial set.
Universe 09 00175 g003
Figure 4. The dependence of F W H M (H β ) on the luminosity at 5100 Å L 5100 from the initial set.
Figure 4. The dependence of F W H M (H β ) on the luminosity at 5100 Å L 5100 from the initial set.
Universe 09 00175 g004
Figure 5. The distribution of the bolometric luminosity for the initial and new sets.
Figure 5. The distribution of the bolometric luminosity for the initial and new sets.
Universe 09 00175 g005
Figure 6. The distribution of the SMBH mass for the initial and new sets.
Figure 6. The distribution of the SMBH mass for the initial and new sets.
Universe 09 00175 g006
Figure 7. The distribution of the cosmological redshift for the initial and new sets.
Figure 7. The distribution of the cosmological redshift for the initial and new sets.
Universe 09 00175 g007
Figure 8. The distribution of the estimated spin values a.
Figure 8. The distribution of the estimated spin values a.
Universe 09 00175 g008
Figure 9. The normalized distributions of the estimated spins for Seyfert 1 [21] and NLS1 (this work).
Figure 9. The normalized distributions of the estimated spins for Seyfert 1 [21] and NLS1 (this work).
Universe 09 00175 g009
Figure 10. The dependence of the estimated spin values a on the bolometric luminosity L bol .
Figure 10. The dependence of the estimated spin values a on the bolometric luminosity L bol .
Universe 09 00175 g010
Figure 11. The dependence of the estimated spin values a on the SMBHs masses M BH .
Figure 11. The dependence of the estimated spin values a on the SMBHs masses M BH .
Universe 09 00175 g011
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Piotrovich, M.; Buliga, S.; Natsvlishvili, T. Estimate of SMBH Spin for Narrow-Line Seyfert 1 Galaxies. Universe 2023, 9, 175. https://doi.org/10.3390/universe9040175

AMA Style

Piotrovich M, Buliga S, Natsvlishvili T. Estimate of SMBH Spin for Narrow-Line Seyfert 1 Galaxies. Universe. 2023; 9(4):175. https://doi.org/10.3390/universe9040175

Chicago/Turabian Style

Piotrovich, Mikhail, Stanislava Buliga, and Tinatin Natsvlishvili. 2023. "Estimate of SMBH Spin for Narrow-Line Seyfert 1 Galaxies" Universe 9, no. 4: 175. https://doi.org/10.3390/universe9040175

APA Style

Piotrovich, M., Buliga, S., & Natsvlishvili, T. (2023). Estimate of SMBH Spin for Narrow-Line Seyfert 1 Galaxies. Universe, 9(4), 175. https://doi.org/10.3390/universe9040175

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop