Lorentz Symmetry Violation Effects Caused by the Coupling between the Field fμγ5 and the Derivative of the Fermionic Field on One-Dimensional Potentials
Abstract
:1. Introduction
2. Non-Relativistic Wave Equation in a Background of the Lorentz Symmetry Violation
3. Quantum Bouncer
4. Attractive Inverse-Square Potential
5. Modified Attractive Inverse-Square Potential
6. Scalar Exponential Potential
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salam, A.; Ali, A.; Isham, C.; Kibble, T. Selected Papers of Abdus Salam: (Series on 20th Century Physics); World Scientific: Singapore, 1994. [Google Scholar]
- Lizzi, F.; Manfredonia, M.; Mercati, F. The momentum spaces of κ -Minkowski noncommutative spacetime. Nucl. Phys. B 2020, 958, 115117. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed]
- Belich, H.; Costa-Soares, T.; Santos, M.A.; Orlando, M.T.D. Violação da simetria de Lorentz. Rev. Bras. Ens. Fis. 2007, 29, 1. [Google Scholar]
- Carroll, S.M.; Field, G.B.; Jackiw, R. Limits on a Lorentz- and parity-violating modification of electrodynamics. Phys. Rev. D 1990, 41, 1231. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Lane, C.D. Nonrelativistic quantum Hamiltonian for Lorentz violation. J. Math. Phys. 1999, 40, 6245. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Belich, H.; Costa-Soares, T.; Ferreira, M.M., Jr.; Helayël-Neto, J.A. Non-minimal coupling to a Lorentz-violating background and topological implications. Phys. J. C 2005, 41, 421. [Google Scholar] [CrossRef]
- Belich, H.; Costa-Soares, T.; Ferreira, M.M., Jr.; Helayël-Neto, J.A.; Orlando, M.T.D. A comment on the topological phase for anti-particles in a Lorentz-violating environment. Phys. Lett. B 2006, 639, 675. [Google Scholar] [CrossRef]
- Belich, H.; Costa-Soares, T.; Ferreira, M.M., Jr.; Helayël-Neto, J.A.; Moucherek, F.M.O. Lorentz-violating corrections on the hydrogen spectrum induced by a nonminimal coupling. Phys. Rev. D 2006, 74, 065009. [Google Scholar] [CrossRef]
- Belich, H.; Costa-Soares, T.; Ferreira, M.M., Jr.; Helayël-Neto, J.A.; Orlando, M.T.D. Lorentz-symmetry violation and electrically charged vortices in the planar regime. Int. J. Theor. Phys. 2006, 21, 2415. [Google Scholar] [CrossRef]
- Belich, H.; Costa-Soares, T.; Helayel-Neto, J.A.; Orlando, M.T.D.; Paschoal, R.C. N = 1-supersymmetric quantum mechanics in a scenario with Lorentz-symmetry violation. Phys. Lett. A 2007, 370, 126. [Google Scholar] [CrossRef]
- Belich, H.; Colatto, L.P.; Costa-Soares, T.; Helayël-Neto, J.A.; Orlando, M.T.D. Magnetic moment generation from non-minimal couplings in a scenario with Lorentz-symmetry violation. Eur. Phys. J. C 2009, 62, 425. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 096006. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Ding, Y. Lorentz-violating spinor electrodynamics and Penning traps. Phys. Rev. D 2016, 94, 056008. [Google Scholar]
- Kostelecký, V.A.; Li, Z. Gauge field theories with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2019, 99, 056016. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Li, Z. Backgrounds in gravitational effective field theory. Phys. Rev. D 2021, 103, 024059. [Google Scholar] [CrossRef]
- Gaete, P.; Helayël-Neto, J.A. Remarks on the static potential in theories with Lorentz violation terms. EPL 2018, 124, 11001. [Google Scholar] [CrossRef]
- Ahmed, F. Effects of Lorentz symmetry violation on a relativistic scalar particle in quantum systems. EPL 2021, 136, 41002. [Google Scholar] [CrossRef]
- Ahmed, F. Klein-Gordon oscillator under a linear central potential induced by Lorentz symmetry violation. EPL 2021, 136, 61001. [Google Scholar] [CrossRef]
- Ahmed, F. Generalized quantum oscillator under harmonic-type central potential effects induced by Lorentz symmetry violation environment(a). EPL 2022, 139, 30001. [Google Scholar] [CrossRef]
- Zare, S. Topological effects produced by point-like global monopole with Hulthen plus screened Kratzer potential on Eigenvalue solutions and NU-method. Gen. Relativ. Gravit. 2022, 54, 69. [Google Scholar] [CrossRef]
- Ahmed, F. Klein–Gordon oscillator under the effects of violation of Lorentz symmetry. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250059. [Google Scholar] [CrossRef]
- Ahmed, F. Exact solution of generalized KG-oscillator under Lorentz-violating effects by a fixed vector field subject to interaction potential. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250162. [Google Scholar] [CrossRef]
- Ferreira, M.M., Jr.; Mouchereky, F.M.O. Influence of Lorentz-and CPT-violating terms on the Dirac equation. Int. J. Mod. Phys. A 2006, 21, 6211. [Google Scholar] [CrossRef]
- Ahmed, F. Effects of linear central potential induced by Lorentz symmetry breaking on a generalized Klein–Gordon-Oscillator. Int. J. Mod. Phys. A 2021, 36, 2150128. [Google Scholar] [CrossRef]
- Zare, S.; Hassanabadi, H.; de Montigny, M. Relativistic Landau–Aharonov–Casher quantization of a Duffin–Kemmer–Petiau spinless boson with Lorentz violation. Int. J. Mod. Phys. A 2022, 37, 2250099. [Google Scholar] [CrossRef]
- Zare, S.; Hassanabadi, H.; Junker, G. Influences of the Lorentz symmetry violation on the interaction of the relativistic spin-zero particle with the Cornell-type non-minimal coupling. Mod. Phys. A 2022, 37, 2250113. [Google Scholar] [CrossRef]
- Ahmed, F. Central potential effects induced by Lorentz symmetry violation on modified quantum oscillator field. Mod. Phys. Lett. A 2021, 36, 2150274. [Google Scholar] [CrossRef]
- Ahmed, F. Effects of Lorentz symmetry violation by a constant vector field subject to Cornell-type potential on relativistic quantum oscillator. Mod. Phys. Lett. A 2022, 37, 2250093. [Google Scholar] [CrossRef]
- Casana, R.; Ferreira, M.M., Jr.; Maluf, R.V.; dos Santos, F.E.P. Effects of a C P T-even and Lorentz-violating nonminimal coupling on electron-positron scattering. Phys. Rev. D 2012, 86, 125033. [Google Scholar] [CrossRef]
- Silva, E.O.; Andrade, F.M. Remarks on the Aharonov-Casher dynamics in a CPT-odd Lorentz-violating background. EPL 2013, 101, 51005. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Passos, E.; Furtado, C.; Nascimento, J.R. Geometric phases modified by a Lorentz-symmetry violation background. Int. J. Mod. Phys. A 2015, 30, 1550072. [Google Scholar] [CrossRef]
- Ferreira, M.M., Jr.; Mouchereky, F.M.O. Influence of Lorentz violation on the hydrogen spectrum. Nucl. Phys. A 2007, 790, 635. [Google Scholar]
- Oliveira, A.S.; Bakke, K.; Belich, H. Effects of a Coulomb-type potential induced by Lorentz symmetry breaking effects around a long non-conductor cylinder. EPL 2021, 134, 11002. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. Attractive inverse-square interaction from Lorentz symmetry breaking effects at a low energy scenario. Int. J. Mod. Phys. A 2021, 36, 2150067. [Google Scholar] [CrossRef]
- Gibbs, R.L. The quantum bouncer. Am. J. Phys 1975, 43, 25. [Google Scholar] [CrossRef]
- Flügge, S. Practical Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Auletta, G.; Fortunato, M.; Parisi, G. Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Essin, A.M.; Griffths, D.J. Quantum Mechanics of the 1/x2 Potential. Am. J. Phys. 2006, 74, 109. [Google Scholar] [CrossRef]
- de Castro, A.S.; Hott, M. Exact closed-form solutions of the Dirac equation with a scalar exponential potential. Phys. Lett. A 2005, 342, 53. [Google Scholar] [CrossRef]
- Greiner, W. Relativistic Quantum Mechanics: Wave Equations, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- de Castro, A.S.; Pereira, W.G. Confinement of neutral fermions by a pseudoscalar double-step potential in 1 + 1 dimensions. Phys. Lett. A 2003, 308, 131. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. Hulthén potential under the Lorentz symmetry violation effects due to the coupling between the vector field fμ γ5 and the derivative of the fermionic field. EPL 2023, 141, 40004. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. Nonrelativistic quantum effects of the Lorentz symmetry violation on the Morse potential. Commun. Theor. Phys. 2023, 75, 055202. [Google Scholar] [CrossRef]
- Bakke, K.; Ramos, J.G.G.S. On the attractive inverse-square potential in the induced electric dipole system under the influence of the harmonic oscillator. EPL 2022, 137, 54002. [Google Scholar] [CrossRef]
- Ciurla, M.; Adamowski, J.; Szafran, B.; Bednarek, S. Modelling of confinement potentials in quantum dots. Phys. E 2002, 15, 261. [Google Scholar] [CrossRef]
- Bakke, K. Topological effects of a global monopole on a spherical quantum dot. Proc. R. Soc. A 2023, 479, 20220664. [Google Scholar] [CrossRef]
- Bakke, K. On a Point Charge in a Uniform Radial Electric Field Around a Cylindrical Cavity. Few-Body Syst. 2023, 64, 36. [Google Scholar] [CrossRef]
- Desko, R.D.; Bord, D.J. The quantum bouncer revisited. Am. J. Phys. 1983, 51, 82. [Google Scholar] [CrossRef]
- Gea-Banacloche, J. A quantum bouncing ball. Am. J. Phys. 1999, 67, 776. [Google Scholar] [CrossRef]
- Goodings, D.A.; Szeredi, T. The quantum bouncer by the path integral method. Am. J. Phys. 1991, 59, 925. [Google Scholar] [CrossRef]
- Moshinsky, M.; Moreno, A.S. The spectra of a Hamiltonian with a linear radial potential derived by a variational calculation based on a set of harmonic oscillator states. Rev. Mex. Fis. 2002, 48, 39. [Google Scholar]
- Sakurai, J.J. Modern Quantum Mechanics; Addison-Wesley Publishing Company: Boston, MA, USA, 1994. [Google Scholar]
- Bakke, K. A semiclassical treatment of the interaction of non-uniform electric fields with the electric quadrupole moment of a neutral particle. Eur. Phys. J. Plus 2019, 134, 76. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. Semiclassical Approach of Lorentz Symmetry Breaking Effects at a Low Energy Scenario. Int. J. Theor. Phys. 2020, 59, 2901. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegum, I.A. Handbook of Mathematical Functions; Dover Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
- Hairui, Z.; Yong, S. Properties of polaron in a triangular quantum well induced by the Rashba effect. J. Semicond. 2014, 35, 102001. [Google Scholar]
- Lee, S.J.; Park, M.J.; Ihm, G.; Falk, M.L.; Noh, S.K.; Kim, T.W.; Choe, B.D. Electronic structure of the triangular quantum well in a tilted magnetic field. Phys. B 1993, 184, 318. [Google Scholar] [CrossRef]
- Zhang, H.R.; Xiao, J.-L. The effective mass of strong-coupling polaron in a triangular quantum well induced by the Rashba effect. Phys. B 2008, 403, 1933. [Google Scholar] [CrossRef]
- Bilekkaya, A. The electronic properties of coaxial triangular quantum well wires. Phys. Lett. A 2022, 450, 128389. [Google Scholar] [CrossRef]
- Shan, S.-P.; Chen, S.-H. Influence of magnetic field and Coulomb field on the Rashba effect in a triangular quantum well. Pramana—J. Phys. 2020, 94, 15. [Google Scholar] [CrossRef]
- Mahajan, A.; Ganguly, S. An analytical model for electron tunneling in triangular quantum wells. Semicond. Sci. Technol. 2021, 36, 055012. [Google Scholar] [CrossRef]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Phisicists, 6th ed.; Elsevier Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Gil, A.; Segura, J.; Temme, N.M. Evaluation of the modified Bessel function of the third kind for imaginary orders. J. Comput. Phys. 2002, 175, 398. [Google Scholar] [CrossRef]
- Coon, S.A.; Holstein, B.R. Physics Department Faculty Publication Series. Am. J. Phys. 2002, 70, 513. [Google Scholar] [CrossRef]
- Gupta, K.S.; Rajeev, S.G. Renormalization in quantum mechanics. Phys. Rev. D 1993, 48, 5940. [Google Scholar] [CrossRef] [PubMed]
- Audretsch, J.; Skarzhinsky, V.D.; Voronov, B.L. Elastic scattering and bound states in the Aharonov-Bohm potential superimposed by an attractive ρ-2 potential. J. Phys. A Math. Gen. 2001, 34, 235. [Google Scholar] [CrossRef]
- de Lima Ribeiro, C.A.; Furtado, C.; Moraes, F. Bound states in the dynamics of a dipole in the presence of a conical defect. Mod. Phys. Lett. A 2005, 20, 1991. [Google Scholar] [CrossRef]
- Case, K.M. Singular potentials. Phys. Rev. 1950, 80, 797. [Google Scholar] [CrossRef]
- Camblong, H.E.; Epele, L.N.; Fanchiotti, H.; Canal, C.A.G. Renormalization of the inverse square potential. Phys. Rev. Lett. 2000, 85, 1590. [Google Scholar] [CrossRef] [PubMed]
- Szmytkowski, R.; Bielski, S. An orthogonality relation for the Whittaker functions of the second kind of imaginary order. Integral Transform. Spec. Funct. 2010, 21, 739. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics, the Nonrelativistic Theory, 3rd ed.; Pergamon: Oxford, UK, 1977. [Google Scholar]
- Tan, W.C.; Inkson, J.C. Magnetization, persistent currents, and their relation in quantum rings and dots. Phys. Rev. B 1999, 60, 5626. [Google Scholar] [CrossRef]
- Ikot, A.N.; Edet, C.O.; Amadi, P.O.; Okorie, U.S.; Rampho, G.J.; Abdullah, H.Y. Thermodynamic properties of Aharanov–Bohm (AB) and magnetic fields with screened Kratzer potential. Eur. Phys. J. D 2020, 74, 159. [Google Scholar] [CrossRef]
- Dantas, L.; Furtado, C.; Netto, A.S. Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A 2015, 379, 11. [Google Scholar] [CrossRef]
- Bueno, M.J.; Lemos de Melo, J.; Furtado, C.; de M. Carvalho, A.M. Quantum dot in a graphene layer with topological defects. Eur. Phys. J. Plus 2014, 129, 201. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Belich, H. Harmonic oscillator in an environment with a pointlike defect. Phys. Scr. 2019, 94, 125301. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Moy, T.; Belich, H. Thermodynamics Properties of a Quantum Particle Confined into Two Elastic Concentric Spheres. Few-Body Syst. 2022, 63, 51. [Google Scholar] [CrossRef]
- Beneventano, C.G.; Santangelo, E.M.J. Relativistic Landau problem at finite temperature. Phys. A Math. Gen. 2006, 39, 6137. [Google Scholar] [CrossRef]
- Ikot, A.N.; Okorie, U.S.; Sever, R.; Rampho, G.J. Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential. Eur. Phys. J. Plus 2019, 134, 386. [Google Scholar] [CrossRef]
- Pacheco, M.H.; Landim, R.R.; Almeida, C.A.S. One-dimensional Dirac oscillator in a thermal bath. Phys. Lett. A 2003, 311, 93. [Google Scholar] [CrossRef]
- Hassanabadi, H.; Sargolzaeipor, S.; Yazarloo, B.H. Thermodynamic properties of the three-dimensional Dirac oscillator with Aharonov–Bohm field and magnetic monopole potential. Few-Body Syst. 2015, 56, 115. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Furtado, C.; Passos, E. An analogy of the quantum hall conductivity in a Lorentz-symmetry violation setup. J. Phys. G Nucl. Part Phys. 2012, 39, 105004. [Google Scholar] [CrossRef]
- Gao, Z.F.; Song, D.L.; Li, X.D.; Shan, H.; Wang, N. The equilibrium equations of Boson-Fermi systems in the Newtonian approximation. Astron. Nachrichten 2019, 340, 241–246. [Google Scholar] [CrossRef]
- Fu, G.Z.; Xing, C.C.; Na, W. The scattering of Dirac spinors in rotating spheroids. Eur. Phys. J. C 2020, 80, 582. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakke, K.; Belich, H. Lorentz Symmetry Violation Effects Caused by the Coupling between the Field fμγ5 and the Derivative of the Fermionic Field on One-Dimensional Potentials. Universe 2023, 9, 462. https://doi.org/10.3390/universe9110462
Bakke K, Belich H. Lorentz Symmetry Violation Effects Caused by the Coupling between the Field fμγ5 and the Derivative of the Fermionic Field on One-Dimensional Potentials. Universe. 2023; 9(11):462. https://doi.org/10.3390/universe9110462
Chicago/Turabian StyleBakke, K., and H. Belich. 2023. "Lorentz Symmetry Violation Effects Caused by the Coupling between the Field fμγ5 and the Derivative of the Fermionic Field on One-Dimensional Potentials" Universe 9, no. 11: 462. https://doi.org/10.3390/universe9110462
APA StyleBakke, K., & Belich, H. (2023). Lorentz Symmetry Violation Effects Caused by the Coupling between the Field fμγ5 and the Derivative of the Fermionic Field on One-Dimensional Potentials. Universe, 9(11), 462. https://doi.org/10.3390/universe9110462