# Local Quantum Uncertainty and Quantum Interferometric Power in an Anisotropic Two-Qubit System

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Local Quantum Uncertainty and Quantum Interferometric Power

## 3. Model and Its Solution

## 4. Main Results: Key Discussions

## 5. Analysis of Quantum Correlations with the Bell-Nonlocality Violation Parameter

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

LQU | Local quantum uncertainty |

MIN | measurement-induced non-locality |

QFI | quantum Fisher information |

QIP | Quantum interferometric power |

## References

- Adesso, G.; Bromley, T.R.; Cianciaruso, M. Measures and applications of quantum correlations. J. Phys. A Math. Theor.
**2016**, 49, 473001. [Google Scholar] [CrossRef] [Green Version] - Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys.
**2009**, 81, 865. [Google Scholar] [CrossRef] [Green Version] - Czerwinski, A. Entanglement characterization by single-photon counting with random noise. Quantum Inf. Comput.
**2022**, 22, 1–16. [Google Scholar] [CrossRef] - Marletto, C.; Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett.
**2017**, 119, 240402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Martín-Martínez, E.; Brown, E.G.; Donnelly, W.; Kempf, A. Sustainable entanglement production from a quantum field. Phys. Rev. A
**2013**, 88, 052310. [Google Scholar] [CrossRef] [Green Version] - Roch, N.; Schwartz, M.E.; Motzoi, F.; Macklin, C.; Vijay, R.; Eddins, A.W.; Korotkov, A.N.; Whaley, K.B.; Sarovar, M.; Siddiqi, I. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett.
**2014**, 112, 170501. [Google Scholar] [CrossRef] [Green Version] - Bloch, I. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature
**2008**, 453, 1016. [Google Scholar] [CrossRef] - Cheng, W.W.; Gong, L.Y.; Shan, C.J.; Sheng, Y.B.; Zhao, S.M. Geometric discord characterize localization transition in the one-dimensional systems. Eur. Phys. J. D
**2013**, 67, 121. [Google Scholar] [CrossRef] - Qiang, W.C.; Zhang, H.P.; Zhang, L. Geometric global quantum discord of two-qubit X states. Int. J. Theor. Phys.
**2016**, 55, 1833. [Google Scholar] [CrossRef] [Green Version] - Mohamed, A.B.A.; Khedr, A.N.; Haddadi, S.; Rahman, A.U.; Tammam, M.; Pourkarimi, M.R. Intrinsic decoherence effects on nonclassical correlations in a symmetric spin–orbit model. Results Phys.
**2022**, 39, 105693. [Google Scholar] [CrossRef] - Luo, S. Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A
**2008**, 77, 022301. [Google Scholar] [CrossRef] - Mohamed, A.B.A.; Khalil, E.M. Atomic non-locality dynamics of two moving atoms in a hybrid nonlinear system: Concurrence, uncertainty-induced non-locality and Bell inequality. Opt. Quant. Electron.
**2021**, 53, 612. [Google Scholar] [CrossRef] - Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett.
**2013**, 110, 240402. [Google Scholar] [CrossRef] [Green Version] - Gibilisco, P.; Girolami, D.; Hansen, F. A unified approach to local quantum uncertainty and interferometric power by metric adjusted skew information. Entropy
**2021**, 23, 263. [Google Scholar] [CrossRef] - Sbiri, A.; Mansour, M.; Oulouda, Y. Local quantum uncertainty versus negativity through Gisin states. Int. J. Quantum Inf.
**2021**, 19, 2150023. [Google Scholar] [CrossRef] - Khalid, U.; Jeong, Y.; Shin, H. Measurement-based quantum correlation in mixed-state quantum metrology. Quantum Inf. Process.
**2018**, 17, 343. [Google Scholar] [CrossRef] - Wu, S.X.; Zhang, Y.; Yu, C.S. Local quantum uncertainty guarantees the measurement precision for two coupled two-level systems in non-Markovian environment. Ann. Phys.
**2018**, 390, 71. [Google Scholar] [CrossRef] [Green Version] - Lu, X.M.; Yu, S.; Oh, C.H. Robust quantum metrological schemes based on protection of quantum Fisher information. Nat. Commun.
**2015**, 6, 7282. [Google Scholar] [CrossRef] [Green Version] - Dhar, H.S.; Bera, M.N.; Adesso, G. Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A
**2015**, 91, 032115. [Google Scholar] [CrossRef] [Green Version] - Girolami, D.; Souza, A.M.; Giovannetti, V.; Tufarelli, T.; Filgueiras, J.G.; Sarthour, R.S.; Adesso, G. Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett.
**2014**, 112, 210401. [Google Scholar] [CrossRef] - Laghmach, R.; El Hadfi, H.; Kaydi, W.; Daoud, M. Dynamic of quantum Fisher information and quantum interferometric power in multipartite coherent states. Eur. Phys. J. D
**2019**, 73, 194. [Google Scholar] [CrossRef] - Guo, Y.N.; Yang, C.; Tian, Q.L.; Wang, G.Y.; Zeng, K. Local quantum uncertainty and interferometric power for a two-qubit system under decoherence channels with memory. Quantum Inf. Process.
**2019**, 18, 375. [Google Scholar] [CrossRef] - Gessner, M.; Smerzi, A. Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed. Phys. Rev. A
**2018**, 97, 022109. [Google Scholar] [CrossRef] [Green Version] - Liu, J.; Yuan, H.; Lu, X.M.; Wang, X. Quantum Fisher information matrix and multiparameter estimation. J. Phys. A Math. Theor.
**2019**, 53, 023001. [Google Scholar] [CrossRef] - Petz, D.; Ghinea, C. Introduction to quantum Fisher information. In Quantum Probability and Related Topics; World Scientific Publishing: Singapore, 2011; pp. 261–281. [Google Scholar]
- Frahm, H.; Yu, N.C.; Fowler, M. The integrable XXZ Heisenberg model with arbitrary spin: Construction of the Hamiltonian, the ground-state configuration and conformal properties. Nucl. Phys. B
**1990**, 336, 396. [Google Scholar] [CrossRef] - Santos, L.F. Integrability of a disordered Heisenberg spin-1/2 chain. J. Phys. A Math. Gen.
**2004**, 37, 4723. [Google Scholar] [CrossRef] - Essler, F.H.; Piroli, L. Integrability of one-dimensional Lindbladians from operator-space fragmentation. Phys. Rev. E
**2020**, 102, 062210. [Google Scholar] [CrossRef] - Heisenberg, W. Zur theorie des ferromagnetismus. Z. Physik
**1928**, 49, 619. [Google Scholar] [CrossRef] - Serban, D.; Staudacher, M. Planar $\mathcal{N}$ = 4 gauge theory and the Inozemtsev long range spin chain. JHEP06
**2004**, 2004, 001. [Google Scholar] [CrossRef] [Green Version] - Hernandez, R.; Lopez, E. The SU(3) spin chain sigma model and string theory. JHEP04
**2004**, 2004, 052. [Google Scholar] [CrossRef] - Lovesey, S.W.; Balcar, E. A theory of the time-dependent properties of Heisenberg spin chains at infinite temperature. J. Phys. Condens. Matter.
**1994**, 6, 1253. [Google Scholar] [CrossRef] - Arian Zad, H.; Ananikian, N. Phase transitions and thermal entanglement of the distorted Ising–Heisenberg spin chain: Topology of multiple-spin exchange interactions in spin ladders. J. Phys. Condens. Matter.
**2017**, 29, 455402. [Google Scholar] [CrossRef] [Green Version] - Haddadi, S.; Pourkarimi, M.R.; Akhound, A.; Ghominejad, M. Thermal quantum correlations in a two-dimensional spin star model. Mod. Phys. Lett. A
**2019**, 34, 1950175. [Google Scholar] [CrossRef] - Hu, M.L.; Gao, Y.Y.; Fan, H. Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A
**2020**, 101, 032305. [Google Scholar] [CrossRef] [Green Version] - Khedif, Y.; Daoud, M. Thermal quantum correlations in the two-qubit Heisenberg XYZ spin chain with Dzyaloshinskii–Moriya interaction. Mod. Phys. Lett. A
**2021**, 36, 2150074. [Google Scholar] [CrossRef] - Khedif, Y.; Haddadi, S.; Pourkarimi, M.R.; Daoud, M. Thermal correlations and entropic uncertainty in a two-spin system under DM and KSEA interactions. Mod. Phys. Lett. A
**2021**, 36, 2150209. [Google Scholar] [CrossRef] - Ait Chlih, A.; Habiballah, N.; Nassik, M. Dynamics of quantum correlations under intrinsic decoherence in a Heisenberg spin chain model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process.
**2021**, 20, 92. [Google Scholar] [CrossRef] - Oumennana, M.; Rahman, A.U.; Mansour, M. Quantum coherence versus non-classical correlations in XXZ spin-chain under Dzyaloshinsky–Moriya (DM) and KSEA interactions. Appl. Phys. B
**2022**, 128, 162. [Google Scholar] [CrossRef] - Benabdallah, F.; Anouz, K.E.; Daoud, M. Toward the relationship between local quantum Fisher information and local quantum uncertainty in the presence of intrinsic decoherence. Eur. Phys. J. Plus
**2022**, 137, 548. [Google Scholar] [CrossRef] - Benabdallah, F.; Anouz, K.E.; Strecka, J.; Daoud, M. Thermal non-classical correlation via skew information, quantum Fisher information, and quantum teleportation of a spin-1/2 Heisenberg trimer system. Eur. Phys. J. Plus
**2022**, 137, 1096. [Google Scholar] [CrossRef] - Haseli, S. Local quantum Fisher information and local quantum uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions. Laser Phys.
**2020**, 30, 105203. [Google Scholar] [CrossRef] - Khedif, Y.; Haddadi, S.; Daoud, M.; Dolatkhah, H.; Pourkarimi, M.R. Non-classical correlations in a Heisenberg spin model with Heitler–London approach. Quantum Inf. Process.
**2022**, 21, 235. [Google Scholar] [CrossRef] - Malvezzi, A.L.; Karpat, G.; Çakmak, B.; Fanchini, F.F.; Debarba, T.; Vianna, R.O. Quantum correlations and coherence in spin-1 Heisenberg chains. Phys. Rev. B
**2016**, 93, 184428. [Google Scholar] [CrossRef] [Green Version] - Shi, W.N.; Ming, F.; Wang, D.; Ye, L. Entropic uncertainty relations in the spin-1 Heisenberg model. Quantum Inf. Process.
**2019**, 18, 70. [Google Scholar] [CrossRef] - Werlang, T.; Trippe, C.; Ribeiro, G.A.P.; Rigolin, G. Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett.
**2010**, 105, 095702. [Google Scholar] [CrossRef] [Green Version] - Zheng, Y.; Mao, Z.; Zhou, B. Thermal quantum correlations of a spin-1/2 Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction. Chinese Phys. B
**2018**, 27, 090306. [Google Scholar] [CrossRef] - Yurischev, M.A. On the quantum correlations in two-qubit XYZ spin chains with Dzyaloshinsky–Moriya and Kaplan–Shekhtman– Entin-Wohlman–Aharony interactions. Quantum Inf. Process.
**2020**, 19, 336. [Google Scholar] [CrossRef] - Benabdallah, F.; Rahman, A.U.; Haddadi, S.; Daoud, M. Long-time protection of thermal correlations in a hybrid-spin system under random telegraph noise. Phys. Rev. E
**2022**, 106, 034122. [Google Scholar] [CrossRef] - Alenezi, M.; Zidan, N.; Alhashash, A.; Rahman, A.U. Quantum Fisher Information Dynamics in the Presence of Intrinsic Decoherence. Int. J. Theor. Phys.
**2022**, 61, 153. [Google Scholar] [CrossRef] - Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett.
**1994**, 72, 3439. [Google Scholar] [CrossRef] - Elghaayda, S.; Dahbi, Z.; Mansour, M. Local quantum uncertainty and local quantum Fisher information in two-coupled double quantum dots. Opt. Quant. Electron.
**2022**, 54, 419. [Google Scholar] [CrossRef] - Luo, S. Wigner–Yanase skew information versus quantum Fisher information. Proc. Am. Math. Soc.
**2003**, 132, 885. [Google Scholar] [CrossRef] - Horodecki, R.; Horodecki, P.; Horodecki, M. Violating Bell inequality by mixed spin-1/2 states: Necessary and sufficient condition. Phys. Lett. A
**1995**, 200, 340. [Google Scholar] [CrossRef] - Hu, M.L. Relations between entanglement, bell-inequality violation and teleportation fidelity for the two-qubit X states. Quant. Inf. Process.
**2013**, 12, 229. [Google Scholar] [CrossRef] [Green Version] - Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.
**1969**, 23, 880. [Google Scholar] [CrossRef] [Green Version] - Haseli, S.; Haddadi, S.; Pourkarimi, M.R. Entropic uncertainty lower bound for a two-qubit system coupled to a spin chain with Dzyaloshinskii–Moriya interaction. Opt. Quant. Electron.
**2020**, 52, 465. [Google Scholar] [CrossRef] - Hashem, M.; Mohamed, A.B.A.; Haddadi, S.; Khedif, Y.; Pourkarimi, M.R.; Daoud, M. Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Appl. Phys. B
**2022**, 128, 87. [Google Scholar] [CrossRef] - Benabdallah, F.; Haddadi, S.; Arian Zad, H.; Pourkarimi, M.R.; Daoud, M.; Ananikian, N. Pairwise quantum criteria and teleportation in a spin square complex. Sci. Rep.
**2022**, 12, 6406. [Google Scholar] [CrossRef] - Haddadi, S.; Pourkarimi, M.R.; Khedif, Y.; Daoud, M. Tripartite measurement uncertainty in a Heisenberg XXZ model. Eur. Phys. J. Plus
**2022**, 137, 66. [Google Scholar] [CrossRef]

**Figure 1.**LQU and QIP as a function of time versus different values of $\omega $. LQU (

**a**) and QIP (

**b**). Graph (

**c**): $\omega =\pi $ (solid lines) and $\omega =\pi /10$ (dashed lines). For all plots $r=0.9$, $b=0.5$, and $\Delta =0.5$.

**Figure 2.**LQU and QIP as a function of time versus different values of b. LQU (

**a**) and QIP (

**b**). Graph (

**c**): $b=0.1$ (solid lines) and $b=0.9$ (dashed lines). For all plots $r=0.9$, $\omega =\pi /6$, and $\Delta =0.5$.

**Figure 3.**LQU and QIP as a function of time versus different values of $\Delta $. LQU (

**a**) and QIP (

**b**). Graph (

**c**): $\Delta =0.1$ (solid lines) and $\Delta =2.0$ (dashed lines). For all plots $r=0.9$, $\omega =\pi /6$, and $b=0.5$.

**Figure 4.**LQU and QIP as a function of time versus different values of r. LQU (

**a**) and QIP (

**b**). Graph (

**c**): $r=0.8$ (solid lines) and $r=0.4$ (dashed lines). For all plots $\Delta =0.5$, $\omega =\pi /6$, and $b=0.5$.

**Figure 5.**$\mathcal{B}\left[\rho \right(t\left)\right]$ for three values of $\omega $. The other parameters are $r=0.9$, $b=0.5$, and $\Delta =0.5$.

**Figure 6.**$\mathcal{B}\left[\rho \right(t\left)\right]$ for three values of b. The other parameters are $r=0.9$, $\omega =\pi /6$, and $\Delta =0.5$.

**Figure 7.**$\mathcal{B}\left[\rho \right(t\left)\right]$ for three values of $\Delta $. The other parameters are $r=0.9$, $\omega =\pi /6$, and $b=0.5$.

**Figure 8.**$\mathcal{B}\left[\rho \right(t\left)\right]$ for three values of r. The other parameters are $\Delta =0.5$, $\omega =\pi /6$, and $b=0.5$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zidan, N.; Rahman, A.U.; Haddadi, S.; Czerwinski, A.; Haseli, S.
Local Quantum Uncertainty and Quantum Interferometric Power in an Anisotropic Two-Qubit System. *Universe* **2023**, *9*, 5.
https://doi.org/10.3390/universe9010005

**AMA Style**

Zidan N, Rahman AU, Haddadi S, Czerwinski A, Haseli S.
Local Quantum Uncertainty and Quantum Interferometric Power in an Anisotropic Two-Qubit System. *Universe*. 2023; 9(1):5.
https://doi.org/10.3390/universe9010005

**Chicago/Turabian Style**

Zidan, Nour, Atta Ur Rahman, Saeed Haddadi, Artur Czerwinski, and Soroush Haseli.
2023. "Local Quantum Uncertainty and Quantum Interferometric Power in an Anisotropic Two-Qubit System" *Universe* 9, no. 1: 5.
https://doi.org/10.3390/universe9010005