Curved Momentum Space, Locality, and Generalized Space-Time
Abstract
:1. Introduction
2. Deformed Relativistic Invariance
- a representation of the Lorentz transformations (J) in momentum space
- another representation of the Lorentz group of transformations () in the system of two particles such that, when the total momentum is ,
3. Derivation of an RDK from the Momentum Space Geometry
3.1. Construction of a Relativistic Kinematics at the Two-Particle Level
3.2. Isotropic Relativistic Deformed Kinematics: The -Poincaré Example
4. Generalized Space-Time and Locality of Interactions with an RDK
4.1. Generalized Space-Time Coordinates
4.2. Propagation of a Massless Particle in Space-Time
5. Complementarity of the Algebraic, Geometric, and Locality Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Born, M. A Suggestion for Unifying Quantum Theory and Relativity. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1938, 165, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38–41. [Google Scholar] [CrossRef]
- Mukhi, S. String theory: A perspective over the last 25 years. Class. Quantum Gravity 2011, 28, 153001. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O. A Brief review of ’little string theories’. Class. Quantum Gravity 2000, 17, 929–938. [Google Scholar] [CrossRef]
- Dienes, K.R. String theory and the path to unification: A Review of recent developments. Phys. Rep. 1997, 287, 447–525. [Google Scholar] [CrossRef] [Green Version]
- Sahlmann, H. Loop Quantum Gravity—A Short Review. In Proceedings of the Foundations of Space and Time: Reflections on Quantum Gravity, Cape Town, South Africa, 10–14 August 2009. [Google Scholar]
- Dupuis, M.; Ryan, J.P.; Speziale, S. Discrete gravity models and Loop Quantum Gravity: A short review. SIGMA 2012, 8, 052. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhuizen, P. Supergravity. Phys. Rep. 1981, 68, 189–398. [Google Scholar] [CrossRef]
- Taylor, J.G. A Review of Supersymmetry and Supergravity. Prog. Part. Nucl. Phys. 1984, 12, 1–101. [Google Scholar] [CrossRef]
- Wallden, P. Causal Sets: Quantum Gravity from a Fundamentally Discrete Spacetime. J. Phys. Conf. Ser. 2010, 222, 012053. [Google Scholar] [CrossRef] [Green Version]
- Wallden, P. Causal Sets Dynamics: Review & Outlook. J. Phys. Conf. Ser. 2013, 453, 012023. [Google Scholar] [CrossRef] [Green Version]
- Henson, J. The Causal set approach to quantum gravity. In Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter; Oriti, D., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 393–413. [Google Scholar]
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majid, S. Foundations of Quantum Group Theory; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Majid, S.; Ruegg, H. Bicrossproduct structure of kappa Poincare group and noncommutative geometry. Phys. Lett. 1994, B334, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Ruegg, H.; Zakrzewski, W.J. Classical quantum mechanics of free kappa relativistic systems. Ann. Phys. 1995, 243, 90–116. [Google Scholar] [CrossRef] [Green Version]
- Kowalski-Glikman, J. De sitter space as an arena for doubly special relativity. Phys. Lett. 2002, B547, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. The principle of relative locality. Phys. Rev. 2011, D84, 084010. [Google Scholar] [CrossRef] [Green Version]
- Lobo, I.P.; Palmisano, G. Geometric interpretation of Planck-scale-deformed co-products. Int. J. Mod. Phys. Conf. Ser. 2016, 41, 1660126. [Google Scholar] [CrossRef] [Green Version]
- Kowalski-Glikman, J.; Nowak, S. Noncommutative space-time of doubly special relativity theories. Int. J. Mod. Phys. 2003, D12, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from momentum space geometry. Phys. Rev. 2019, D100, 104031. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortes, J.L.; Relancio, J.J. Spacetime from locality of interactions in deformations of special relativity: The example of κ-Poincaré Hopf algebra. Phys. Rev. 2018, D97, 064025. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from locality conditions in a generalized spacetime. Phys. Rev. 2020, D101, 044057. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.; Cortes, J.; Mercati, F. Relativistic kinematics beyond Special Relativity. Phys. Rev. D 2012, 86, 084032. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.; Cortes, J.; Relancio, J. Beyond Special Relativity at second order. Phys. Rev. D 2016, 94, 084008. [Google Scholar] [CrossRef] [Green Version]
- Kowalski-Glikman, J.; Nowak, S. Doubly special relativity theories as different bases of kappa Poincare algebra. Phys. Lett. 2002, B539, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Battisti, M.V.; Meljanac, S. Scalar Field Theory on Non-commutative Snyder Space-Time. Phys. Rev. 2010, D82, 024028. [Google Scholar] [CrossRef] [Green Version]
- Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojic, M. Lie algebraic deformations of Minkowski space with Poincare algebra. arXiv 2009, arXiv:0909.1706. [Google Scholar]
- Chern, S.S.; Chen, W.H.; Lam, K.S. Lectures on Differential Geometry; World Scientific: Singapore, 1999; see Eqs. (1.30) and (1.31) of Chapter 6. [Google Scholar]
- Gubitosi, G.; Mercati, F. Relative Locality in κ-Poincaré. Class. Quantum Gravity 2013, 30, 145002. [Google Scholar] [CrossRef] [Green Version]
- Relancio, J.J.; Liberati, S. Phenomenological consequences of a geometry in the cotangent bundle. Phys. Rev. 2020, D101, 064062. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Curved Momentum Space, Locality, and Generalized Space-Time. Universe 2021, 7, 99. https://doi.org/10.3390/universe7040099
Carmona JM, Cortés JL, Relancio JJ. Curved Momentum Space, Locality, and Generalized Space-Time. Universe. 2021; 7(4):99. https://doi.org/10.3390/universe7040099
Chicago/Turabian StyleCarmona, José Manuel, José Luis Cortés, and José Javier Relancio. 2021. "Curved Momentum Space, Locality, and Generalized Space-Time" Universe 7, no. 4: 99. https://doi.org/10.3390/universe7040099
APA StyleCarmona, J. M., Cortés, J. L., & Relancio, J. J. (2021). Curved Momentum Space, Locality, and Generalized Space-Time. Universe, 7(4), 99. https://doi.org/10.3390/universe7040099