Curved Momentum Space, Locality, and Generalized Space-Time
Abstract
1. Introduction
2. Deformed Relativistic Invariance
- a representation of the Lorentz transformations (J) in momentum spacewhere is the six parameters of a general Lorentz transformation and is nonlinear functions of the momentum coordinates , which define a nonlinear representation of the Lorentz group in momentum space.
- another representation of the Lorentz group of transformations () in the system of two particles such that, when the total momentum is ,withwhere is determined by the condition
3. Derivation of an RDK from the Momentum Space Geometry
3.1. Construction of a Relativistic Kinematics at the Two-Particle Level
3.2. Isotropic Relativistic Deformed Kinematics: The -Poincaré Example
4. Generalized Space-Time and Locality of Interactions with an RDK
4.1. Generalized Space-Time Coordinates
4.2. Propagation of a Massless Particle in Space-Time
5. Complementarity of the Algebraic, Geometric, and Locality Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Born, M. A Suggestion for Unifying Quantum Theory and Relativity. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1938, 165, 291–303. [Google Scholar] [CrossRef]
- Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38–41. [Google Scholar] [CrossRef]
- Mukhi, S. String theory: A perspective over the last 25 years. Class. Quantum Gravity 2011, 28, 153001. [Google Scholar] [CrossRef]
- Aharony, O. A Brief review of ’little string theories’. Class. Quantum Gravity 2000, 17, 929–938. [Google Scholar] [CrossRef]
- Dienes, K.R. String theory and the path to unification: A Review of recent developments. Phys. Rep. 1997, 287, 447–525. [Google Scholar] [CrossRef]
- Sahlmann, H. Loop Quantum Gravity—A Short Review. In Proceedings of the Foundations of Space and Time: Reflections on Quantum Gravity, Cape Town, South Africa, 10–14 August 2009. [Google Scholar]
- Dupuis, M.; Ryan, J.P.; Speziale, S. Discrete gravity models and Loop Quantum Gravity: A short review. SIGMA 2012, 8, 052. [Google Scholar] [CrossRef]
- Van Nieuwenhuizen, P. Supergravity. Phys. Rep. 1981, 68, 189–398. [Google Scholar] [CrossRef]
- Taylor, J.G. A Review of Supersymmetry and Supergravity. Prog. Part. Nucl. Phys. 1984, 12, 1–101. [Google Scholar] [CrossRef]
- Wallden, P. Causal Sets: Quantum Gravity from a Fundamentally Discrete Spacetime. J. Phys. Conf. Ser. 2010, 222, 012053. [Google Scholar] [CrossRef]
- Wallden, P. Causal Sets Dynamics: Review & Outlook. J. Phys. Conf. Ser. 2013, 453, 012023. [Google Scholar] [CrossRef]
- Henson, J. The Causal set approach to quantum gravity. In Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter; Oriti, D., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 393–413. [Google Scholar]
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Majid, S. Foundations of Quantum Group Theory; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Majid, S.; Ruegg, H. Bicrossproduct structure of kappa Poincare group and noncommutative geometry. Phys. Lett. 1994, B334, 348–354. [Google Scholar] [CrossRef]
- Lukierski, J.; Ruegg, H.; Zakrzewski, W.J. Classical quantum mechanics of free kappa relativistic systems. Ann. Phys. 1995, 243, 90–116. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J. De sitter space as an arena for doubly special relativity. Phys. Lett. 2002, B547, 291–296. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. The principle of relative locality. Phys. Rev. 2011, D84, 084010. [Google Scholar] [CrossRef]
- Lobo, I.P.; Palmisano, G. Geometric interpretation of Planck-scale-deformed co-products. Int. J. Mod. Phys. Conf. Ser. 2016, 41, 1660126. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J.; Nowak, S. Noncommutative space-time of doubly special relativity theories. Int. J. Mod. Phys. 2003, D12, 299–316. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from momentum space geometry. Phys. Rev. 2019, D100, 104031. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortes, J.L.; Relancio, J.J. Spacetime from locality of interactions in deformations of special relativity: The example of κ-Poincaré Hopf algebra. Phys. Rev. 2018, D97, 064025. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from locality conditions in a generalized spacetime. Phys. Rev. 2020, D101, 044057. [Google Scholar] [CrossRef]
- Carmona, J.; Cortes, J.; Mercati, F. Relativistic kinematics beyond Special Relativity. Phys. Rev. D 2012, 86, 084032. [Google Scholar] [CrossRef]
- Carmona, J.; Cortes, J.; Relancio, J. Beyond Special Relativity at second order. Phys. Rev. D 2016, 94, 084008. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J.; Nowak, S. Doubly special relativity theories as different bases of kappa Poincare algebra. Phys. Lett. 2002, B539, 126–132. [Google Scholar] [CrossRef]
- Battisti, M.V.; Meljanac, S. Scalar Field Theory on Non-commutative Snyder Space-Time. Phys. Rev. 2010, D82, 024028. [Google Scholar] [CrossRef]
- Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojic, M. Lie algebraic deformations of Minkowski space with Poincare algebra. arXiv 2009, arXiv:0909.1706. [Google Scholar]
- Chern, S.S.; Chen, W.H.; Lam, K.S. Lectures on Differential Geometry; World Scientific: Singapore, 1999; see Eqs. (1.30) and (1.31) of Chapter 6. [Google Scholar]
- Gubitosi, G.; Mercati, F. Relative Locality in κ-Poincaré. Class. Quantum Gravity 2013, 30, 145002. [Google Scholar] [CrossRef]
- Relancio, J.J.; Liberati, S. Phenomenological consequences of a geometry in the cotangent bundle. Phys. Rev. 2020, D101, 064062. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Curved Momentum Space, Locality, and Generalized Space-Time. Universe 2021, 7, 99. https://doi.org/10.3390/universe7040099
Carmona JM, Cortés JL, Relancio JJ. Curved Momentum Space, Locality, and Generalized Space-Time. Universe. 2021; 7(4):99. https://doi.org/10.3390/universe7040099
Chicago/Turabian StyleCarmona, José Manuel, José Luis Cortés, and José Javier Relancio. 2021. "Curved Momentum Space, Locality, and Generalized Space-Time" Universe 7, no. 4: 99. https://doi.org/10.3390/universe7040099
APA StyleCarmona, J. M., Cortés, J. L., & Relancio, J. J. (2021). Curved Momentum Space, Locality, and Generalized Space-Time. Universe, 7(4), 99. https://doi.org/10.3390/universe7040099

