# On the Causality and K-Causality between Measures

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

**Definition**

**1.**

**Theorem 1**(Minguzzi).

## 2. Results

**Definition**

**2.**

**Proposition**

**1.**

**Proof.**

**Theorem**

**2.**

- 1
^{●} - $\mu {\u2aaf}_{K}\nu $.
- 2
^{●} - For any compact subset $\phantom{\rule{4pt}{0ex}}C\subseteq \mathcal{M}$,$$\begin{array}{c}\hfill \mu \left({K}^{+}\left(C\right)\right)\le \nu \left({K}^{+}\left(C\right)\right).\end{array}$$
- 3
^{●} - For any Borel subset $\mathcal{X}\subseteq \mathcal{M}$ such that ${K}^{+}\left(\mathcal{X}\right)\subseteq \mathcal{X}$,$$\begin{array}{c}\hfill \mu \left(\mathcal{X}\right)\le \nu \left(\mathcal{X}\right).\end{array}$$
- 4
^{●} - For any time function $\mathcal{T}$ and any $\alpha \in \mathbb{R}$,$$\begin{array}{c}\hfill \mu \left({\mathcal{T}}^{-1}\left((\alpha ,+\infty )\right)\right)\le \nu \left({\mathcal{T}}^{-1}\left((\alpha ,+\infty )\right)\right).\end{array}$$
- 5
^{●} - For any bounded time function $\mathcal{T}$,$$\begin{array}{c}\hfill {\int}_{\mathcal{M}}\mathcal{T}d\mu \le {\int}_{\mathcal{M}}\mathcal{T}d\nu .\end{array}$$

**Theorem 3**(Suhr).

- (i)
- $\mu {\u2aaf}_{K}\nu $.
- (ii)
- For any Borel $\mathcal{B}\subseteq \mathcal{M}$,$$\begin{array}{c}\hfill \mu \left(\mathcal{B}\right)\le \nu \left({K}^{+}\left(\mathcal{B}\right)\right)\phantom{\rule{1.em}{0ex}}\mathrm{and}\phantom{\rule{1.em}{0ex}}\mu \left({K}^{-}\left(\mathcal{B}\right)\right)\ge \nu \left(\mathcal{B}\right).\end{array}$$

**Lemma**

**1.**

**Proof of Theorem**

**2.**

- 3
^{′•} - For any Borel subset $\mathcal{Y}\subseteq \mathcal{M}$ such that ${K}^{-}\left(\mathcal{Y}\right)\subseteq \mathcal{Y}$,$$\begin{array}{c}\hfill \mu \left(\mathcal{Y}\right)\ge \nu \left(\mathcal{Y}\right).\end{array}$$

**Remark**

**1.**

**Proof.**

**Remark**

**2.**

- 4
^{′•} - For any time function $\mathcal{T}$ and any $\alpha \in \mathbb{R}$,$$\begin{array}{c}\hfill \mu \left({\mathcal{T}}^{-1}\left([\alpha ,+\infty )\right)\right)\le \nu \left({\mathcal{T}}^{-1}\left([\alpha ,+\infty )\right)\right).\end{array}$$

**Proof.**

## 3. Conclusions

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- Minguzzi, E.; Sánchez, M. The causal hierarchy of spacetimes. In Recent Developments in Pseudo-Riemannian Geometry (ESI Lectures in Mathematics and Physics); Alekseevsky, D.V., Baum, H., Eds.; European Mathematical Society Publishing House: Scheuchzerstrasse, Switzerland, 2008; pp. 299–358. [Google Scholar]
- Beem, J.; Ehrlich, P.; Easley, K. Global Lorentzian Geometry; Monographs and Textbooks in Pure and Applied Mathematics; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Penrose, R. Techniques of Differential Topology in Relativity; CBMS–NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1972. [Google Scholar]
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge Books Online; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Franco, N.; Eckstein, M. An algebraic formulation of causality for noncommutative geometry. Class. Quantum Gravity
**2013**, 30, 135007. [Google Scholar] [CrossRef] - Franco, N. Lorentzian Approach to Noncommutative Geometry. arXiv
**2011**. [Google Scholar] - Franco, N.; Eckstein, M. Exploring the causal structures of almost commutative geometries. Symmetry Integr. Geom. Meth. Appl.
**2014**, 10, 010. [Google Scholar] [CrossRef] - Eckstein, M.; Franco, N. Causal structure for noncommutative geometry. In Proceedings of the 2014 Frontiers of Fundamental Physics, Marseille, France, 15–18 July 2014.
- Franco, N.; Eckstein, M. Causality in noncommutative two-sheeted space-times. J. Geom. Phys.
**2015**, 96, 42–58. [Google Scholar] [CrossRef] - Eckstein, M.; Miller, T. Causality for nonlocal phenomena. arXiv
**2015**. [Google Scholar] - Ambrosio, L.; Gigli, N. A User’s Guide to Optimal Transport. In Modelling and Optimisation of Flows on Networks; Piccoli, B., Rascle, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Villani, C. Optimal Transport: Old and New; Volume 338, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Suhr, S. Theory of optimal transport for Lorentzian cost functions. arXiv
**2016**. [Google Scholar] - Miller, T. Polish spaces of causal curves. J. Geom. Phys.
**2017**, 116, 295–315. [Google Scholar] [CrossRef] - Eckstein, M.; Miller, T. Causal evolution of wave packets. Phys. Rev. A
**2017**, 95, 032106. [Google Scholar] [CrossRef] - Gerlach, B.; Gromes, D.; Petzold, J.; Rosenthal, P. Über kausales Verhalten nichtlokaler Größen und Teilchenstruktur in der Feldtheorie. Z. Phys.
**1968**, 208, 381–389. [Google Scholar] [CrossRef] - Gerlach, B.; Gromes, D.; Petzold, J. Energie und Kausalität. Z. Phys.
**1969**, 221, 141–157. [Google Scholar] [CrossRef] - Gromes, D. On the problem of macrocausality in field theory. Z. Phys.
**1970**, 236, 276–287. [Google Scholar] [CrossRef] - Hegerfeldt, G.C. Remark on causality and particle localization. Phys. Rev. D
**1974**, 10, 3320–3321. [Google Scholar] [CrossRef] - Hegerfeldt, G.C. Violation of causality in relativistic quantum theory? Phys. Rev. Lett.
**1985**, 54, 2395–2398. [Google Scholar] [CrossRef] [PubMed] - Hegerfeldt, G.C. Causality problems for Fermi’s two-atom system. Phys. Rev. Lett.
**1994**, 72, 596–599. [Google Scholar] [CrossRef] [PubMed] - Hegerfeldt, G.C. Particle localization and the notion of Einstein causality. In Extensions of Quantum Theory; Horzela, A., Kapuścik, E., Eds.; Apeiron: Montreal, QC, Canada, 2001; pp. 9–16. [Google Scholar]
- Hegerfeldt, G.C.; Ruijsenaars, S.N.M. Remarks on causality, localization, and spreading of wave packets. Phys. Rev. D
**1980**, 22, 377–384. [Google Scholar] [CrossRef] - Sorkin, R.D.; Woolgar, E. A causal order for spacetimes with C
^{0}Lorentzian metrics: Proof of compactness of the space of causal curves. Class. Quantum Gravity**1996**, 13, 1971–1994. [Google Scholar] [CrossRef] - Minguzzi, E. K-Causality Coincides with Stable Causality. Commun. Math. Phys.
**2009**, 290, 239–248. [Google Scholar] [CrossRef] - Minguzzi, E. Time functions as utilities. Commun. Math. Phys.
**2010**, 298, 855–868. [Google Scholar] [CrossRef] - Aliprantis, C.D.; Border, K. Infinite Dimensional Analysis: A Hitchhiker’s Guide; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chruściel, P.T.; Grant, J.D.E.; Minguzzi, E. On Differentiability of Volume Time Functions. Annales Henri Poincaré
**2016**, 17, 2801–2824. [Google Scholar] [CrossRef] [Green Version] - Seifert, H.J. The causal boundary of space-times. Gen. Relativ. Gravitat.
**1971**, 1, 247–259. [Google Scholar] [CrossRef] - Kerr, D.; Li, H. Ergodic Theory: Independence and Dichotomies; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Fristedt, B.E.; Gray, L.F. A Modern Approach to Probability Theory; Probability and Its Applications; Birkhäuser: Basel, Switzerland, 1997. [Google Scholar]
- Ambrosio, L.; Gigli, N.; Savaré, G. Gradient Flows: In Metric Spaces and in the Space of Probability Measures; Birkhäuser: Basel, Switzerland, 2008. [Google Scholar]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Miller, T.
On the Causality and *K*-Causality between Measures. *Universe* **2017**, *3*, 27.
https://doi.org/10.3390/universe3010027

**AMA Style**

Miller T.
On the Causality and *K*-Causality between Measures. *Universe*. 2017; 3(1):27.
https://doi.org/10.3390/universe3010027

**Chicago/Turabian Style**

Miller, Tomasz.
2017. "On the Causality and *K*-Causality between Measures" *Universe* 3, no. 1: 27.
https://doi.org/10.3390/universe3010027