Radio Observations as a Probe of Cosmic Web Magnetism
Abstract
:1. Introduction
2. Current Constraints from Observations
2.1. Synchrotron Emission
2.2. Faraday Rotation Measure
3. Cosmological Simulations of Large-Scale Magnetic Fields
Latest Simulations of Cosmic Magnetism
4. Analysis
4.1. Best Fitting of B Properties in Filaments and Expected RRM Versus z from Simulations
4.2. Synchrotron Emission Stacking in Filaments
4.3. Rotation Measure Profiles in Galaxy Groups
5. Discussion
- A primordial magnetic field, while the astrophysical model cannot match the observations at high redshift;
- A filament magnetic field of strength at of nG and an evolution with redshift with slope ;
- An astrophysical term whose RRM quickly decreases with the redshift.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The magnetogenesis is the generation of the seed fields of large-scale magnetic fields in the Universe. |
2 | https://enzo-project.org (accessed on 15 May 2025) |
References
- Subramanian, K. The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 2016, 79, 076901. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, D.; Finelli, F. Constraints on primordial magnetic fields from magnetically-induced perturbations: Current status and future perspectives with LiteBIRD and future ground based experiments. J. Cosmol. Astropart. Phys. 2019, 2019, 028. [Google Scholar] [CrossRef]
- Jedamzik, K.; Saveliev, A. Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation. Phys. Rev. Lett. 2019, 123, 021301. [Google Scholar] [CrossRef]
- Alves Batista, R.; Saveliev, A. The Gamma-Ray Window to Intergalactic Magnetism. Universe 2021, 7, 223. [Google Scholar] [CrossRef]
- Vachaspati, T. Progress on cosmological magnetic fields. Rep. Prog. Phys. 2021, 84, 074901. [Google Scholar] [CrossRef]
- Arámburo-García, A.; Bondarenko, K.; Boyarsky, A.; Nelson, D.; Pillepich, A.; Sokolenko, A. Magnetization of the intergalactic medium in the IllustrisTNG simulations: The importance of extended, outflow-driven bubbles. Mon. Not. R. Astron. Soc. 2021, 505, 5038–5057. [Google Scholar] [CrossRef]
- Vazza, F.; Paoletti, D.; Banfi, S.; Finelli, F.; Gheller, C.; O’Sullivan, S.P.; Brüggen, M. Simulations and observational tests of primordial magnetic fields from Cosmic Microwave Background constraintsok. Mon. Not. R. Astron. Soc. 2021, 500, 5350–5368. [Google Scholar] [CrossRef]
- Vovk, I.; Korochkin, A.; Neronov, A.; Semikoz, D. Constraints on the intergalactic magnetic field from Fermi/LAT observations of the ‘pair echo’ of GRB 221009A. Astron. Astrophys. 2024, 683, A25. [Google Scholar] [CrossRef]
- Turner, M.S.; Widrow, L.M. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 1988, 37, 2743–2754. [Google Scholar] [CrossRef]
- Kronberg, P.P. Extragalactic magnetic fields. Rep. Prog. Phys. 1994, 57, 325–382. [Google Scholar] [CrossRef]
- Bertone, S.; Vogt, C.; Enßlin, T. Magnetic field seeding by galactic winds. Mon. Not. R. Astron. Soc. 2006, 370, 319–330. [Google Scholar] [CrossRef]
- Donnert, J.; Dolag, K.; Lesch, H.; Müller, E. Cluster magnetic fields from galactic outflows. Mon. Not. R. Astron. Soc. 2009, 392, 1008–1021. [Google Scholar] [CrossRef]
- Vazza, F.; Gheller, C.; Zanetti, F.; Tsizh, M.; Carretti, E.; Mtchedlidze, S.; Brueggen, M. The evolution of cosmic ray electrons in the cosmic web: Seeding by AGN, star formation and shocks. arXiv 2025, arXiv:2501.19041. [Google Scholar]
- Cho, J. Origin of Magnetic Field in the Intracluster Medium: Primordial or Astrophysical? Astrophys. J. 2014, 797, 133. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P.M. Simulations of extragalactic magnetic fields and of their observables. Class. Quantum Gravity 2017, 34, 234001. [Google Scholar] [CrossRef]
- Vernstrom, T.; Heald, G.; Vazza, F.; Galvin, T.J.; West, J.L.; Locatelli, N.; Fornengo, N.; Pinetti, E. Discovery of magnetic fields along stacked cosmic filaments as revealed by radio and X-ray emission. Mon. Not. R. Astron. Soc. 2021, 505, 4178–4196. [Google Scholar] [CrossRef]
- Carretti, E.; O’Sullivan, S.P.; Vacca, V.; Vazza, F.; Gheller, C.; Vernstrom, T.; Bonafede, A. Magnetic field evolution in cosmic filaments with LOFAR data. Mon. Not. R. Astron. Soc. 2023, 518, 2273–2286. [Google Scholar] [CrossRef]
- Carretti, E.; Vazza, F.; O’Sullivan, S.P.; Vacca, V.; Bonafede, A.; Heald, G.; Horellou, C.; Mtchedlidze, S.; Vernstrom, T. The nature of LOFAR rotation measures and new constraints on magnetic fields in cosmic filaments and on magnetogenesis scenarios. Astron. Astrophys. 2025, 693, A208. [Google Scholar] [CrossRef]
- Neronov, A.; Vovk, I. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science 2010, 328, 73–75. [Google Scholar] [CrossRef]
- Mtchedlidze, S.; Domínguez-Fernández, P.; Du, X.; Brandenburg, A.; Kahniashvili, T.; O’Sullivan, S.; Schmidt, W.; Brüggen, M. Evolution of Primordial Magnetic Fields during Large-scale Structure Formation. Astrophys. J. 2022, 929, 127. [Google Scholar] [CrossRef]
- Neronov, A.; Vazza, F.; Mtchedlidze, S.; Carretti, E. Revision of upper bound on volume-filling intergalactic magnetic fields with LOFAR. arXiv 2024, arXiv:2412.14825. [Google Scholar]
- Hoeft, M.; Brüggen, M. Radio signature of cosmological structure formation shocks. Mon. Not. R. Astron. Soc. 2007, 375, 77–91. [Google Scholar] [CrossRef]
- Bell, A.R. The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef]
- Drury, L.O.; Voelk, J.H. Hydromagnetic shock structure in the presence of cosmic rays. Astrophys. J. 1981, 248, 344–351. [Google Scholar] [CrossRef]
- Kang, H.; Jones, T.W. Self-similar evolution of cosmic-ray-modified quasi-parallel plane shocks. Astropart. Phys. 2007, 28, 232–246. [Google Scholar] [CrossRef]
- Kang, H.; Ryu, D.; Cen, R.; Ostriker, J.P. Cosmological Shock Waves in the Large-Scale Structure of the Universe: Nongravitational Effects. Astrophys. J. 2007, 669, 729–740. [Google Scholar] [CrossRef]
- Guo, X.; Sironi, L.; Narayan, R. Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy SpectrAAcceleration Mechanism. Astrophys. J. 2014, 794, 153. [Google Scholar] [CrossRef]
- Bykov, A.M.; Vazza, F.; Kropotina, J.A.; Levenfish, K.P.; Paerels, F.B.S. Shocks and Non-thermal Particles in Clusters of Galaxies. Space Sci. Rev. 2019, 215, 14. [Google Scholar] [CrossRef]
- Gupta, S.; Caprioli, D.; Spitkovsky, A. Electron Acceleration at Quasi-parallel Nonrelativistic Shocks: A 1D Kinetic Survey. Astrophys. J. 2024, 976, 10. [Google Scholar] [CrossRef]
- Caprioli, D.; Spitkovsky, A. Simulations of Ion Acceleration at Non-relativistic Shocks. I. Acceleration Efficiency. Astrophys. J. 2014, 783, 91. [Google Scholar] [CrossRef]
- Vernstrom, T.; West, J.; Vazza, F.; Wittor, D.; Riseley, C.J.; Heald, G. Polarized accretion shocks from the cosmic web. Sci. Adv. 2023, 9, eade7233. [Google Scholar] [CrossRef]
- Vernstrom, T.; Gaensler, B.M.; Brown, S.; Lenc, E.; Norris, R.P. Low-frequency radio constraints on the synchrotron cosmic web. Mon. Not. R. Astron. Soc. 2017, 467, 4914–4936. [Google Scholar] [CrossRef]
- Tingay, S.J.; Goeke, R.; Bowman, J.D.; Emrich, D.; Ord, S.M.; Mitchell, D.A.; Morales, M.F.; Booler, T.; Crosse, B.; Wayth, R.B.; et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies. Publ. Astron. Soc. Aust. 2013, 30, 7. [Google Scholar] [CrossRef]
- Brown, S.; Vernstrom, T.; Carretti, E.; Dolag, K.; Gaensler, B.M.; Staveley-Smith, L.; Bernardi, G.; Haverkorn, M.; Kesteven, M.; Poppi, S. Limiting magnetic fields in the cosmic web with diffuse radio emission. Mon. Not. R. Astron. Soc. 2017, 468, 4246–4253. [Google Scholar] [CrossRef]
- Carretti, E.; Haverkorn, M.; Staveley-Smith, L.; Bernardi, G.; Gaensler, B.M.; Kesteven, M.J.; Poppi, S.; Brown, S.; Crocker, R.M.; Purcell, C.; et al. S-band Polarization All-Sky Survey (S-PASS): Survey description and maps. Mon. Not. R. Astron. Soc. 2019, 489, 2330–2354. [Google Scholar] [CrossRef]
- Locatelli, N.; Vazza, F.; Bonafede, A.; Banfi, S.; Bernardi, G.; Gheller, C.; Botteon, A.; Shimwell, T. New constraints on the magnetic field in cosmic web filaments. Astron. Astrophys. 2021, 652, A80. [Google Scholar] [CrossRef]
- Hoang, D.N.; Brüggen, M.; Zhang, X.; Bonafede, A.; Liu, A.; Liu, T.; Shimwell, T.W.; Botteon, A.; Brunetti, G.; Bulbul, E.; et al. A search for intercluster filaments with LOFAR and eROSITA. Mon. Not. R. Astron. Soc. 2023, 523, 6320–6335. [Google Scholar] [CrossRef]
- Eastwood, M.W.; Anderson, M.M.; Monroe, R.M.; Hallinan, G.; Barsdell, B.R.; Bourke, S.A.; Clark, M.A.; Ellingson, S.W.; Dowell, J.; Garsden, H.; et al. The Radio Sky at Meter Wavelengths: M-mode Analysis Imaging with the OVRO-LWA. Astron. J 2018, 156, 32. [Google Scholar] [CrossRef]
- Hurley-Walker, N.; Callingham, J.R.; Hancock, P.J.; Franzen, T.M.O.; Hindson, L.; Kapińska, A.D.; Morgan, J.; Offringa, A.R.; Wayth, R.B.; Wu, C.; et al. GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey—I. A low-frequency extragalactic catalogue. Mon. Not. R. Astron. Soc. 2017, 464, 1146–1167. [Google Scholar] [CrossRef]
- Truemper, J. ROSAT: A New Look at the X-ray Sky. QJRAS 1992, 33, 165. [Google Scholar] [CrossRef]
- Wolleben, M.; Landecker, T.L.; Douglas, K.A.; Gray, A.D.; Ordog, A.; Dickey, J.M.; Hill, A.S.; Carretti, E.; Brown, J.C.; Gaensler, B.M.; et al. The Global Magneto-ionic Medium Survey: A Faraday Depth Survey of the Northern Sky Covering 1280–1750 MHz. Astron. J 2021, 162, 35. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef]
- Burn, B.J. On the depolarization of discrete radio sources by Faraday dispersion. Mon. Not. R. Astron. Soc. 1966, 133, 67. [Google Scholar] [CrossRef]
- Planck Collaboration; Adam, R.; Ade, P.A.R.; Alves, M.I.R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck intermediate results. XLII. Large-scale Galactic magnetic fields. Astron. Astrophys. 2016, 596, A103. [Google Scholar] [CrossRef]
- Dickey, J.M.; West, J.; Thomson, A.J.M.; Landecker, T.L.; Bracco, A.; Carretti, E.; Han, J.L.; Hill, A.S.; Ma, Y.K.; Mao, S.A.; et al. Structure in the Magnetic Field of the Milky Way Disk and Halo Traced by Faraday Rotation. Astrophys. J. 2022, 940, 75. [Google Scholar] [CrossRef]
- Heesen, V.; O’Sullivan, S.P.; Brüggen, M.; Basu, A.; Beck, R.; Seta, A.; Carretti, E.; Krause, M.G.H.; Haverkorn, M.; Hutschenreuter, S.; et al. Detection of magnetic fields in the circumgalactic medium of nearby galaxies using Faraday rotation. Astron. Astrophys. 2023, 670, L23. [Google Scholar] [CrossRef]
- Böckmann, K.; Brüggen, M.; Heesen, V.; Basu, A.; O’Sullivan, S.P.; Heywood, I.; Jarvis, M.; Scaife, A.; Stil, J.; Taylor, R.; et al. Probing magnetic fields in the circumgalactic medium using polarization data from MIGHTEE. Astron. Astrophys. 2023, 678, A56. [Google Scholar] [CrossRef]
- Laing, R.A.; Bridle, A.H.; Parma, P.; Murgia, M. Structures of the magnetoionic media around the Fanaroff-Riley Class I radio galaxies 3C31 and Hydra A. Mon. Not. R. Astron. Soc. 2008, 391, 521–549. [Google Scholar] [CrossRef]
- Pomakov, V.P.; O’Sullivan, S.P.; Brüggen, M.; Vazza, F.; Carretti, E.; Heald, G.H.; Horellou, C.; Shimwell, T.; Shulevski, A.; Vernstrom, T. The redshift evolution of extragalactic magnetic fields. Mon. Not. R. Astron. Soc. 2022, 515, 256–270. [Google Scholar] [CrossRef]
- Chan, J.Y.H.; Wu, K.; On, A.Y.L.; Barnes, D.J.; McEwen, J.D.; Kitching, T.D. Covariant polarized radiative transfer on cosmological scales for investigating large-scale magnetic field structures. Mon. Not. R. Astron. Soc. 2019, 484, 1427–1455. [Google Scholar] [CrossRef]
- On, A.Y.L.; Chan, J.Y.H.; Wu, K.; Saxton, C.J.; van Driel-Gesztelyi, L. Polarized radiative transfer, rotation measure fluctuations, and large-scale magnetic fields. Mon. Not. R. Astron. Soc. 2019, 490, 1697–1713. [Google Scholar] [CrossRef]
- Pfrommer, C.; Enßlin, T.A.; Springel, V.; Jubelgas, M.; Dolag, K. Simulating cosmic rays in clusters of galaxies—I. Effects on the Sunyaev–Zel’dovich effect and the X-ray emission. Mon. Not. R. Astron. Soc. 2007, 378, 385–408. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C.; Brunetti, G. Modelling injection and feedback of cosmic rays in grid-based cosmological simulations: Effects on cluster outskirts. Mon. Not. R. Astron. Soc. 2012, 2518, 3375–3398. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Wittor, D.; Gheller, C.; Eckert, D.; Stubbe, M. Constraining the efficiency of cosmic ray acceleration by cluster shocks. Mon. Not. R. Astron. Soc. 2016, 459, 70–83. [Google Scholar] [CrossRef]
- Wu, K.; Owen, E.R.; Han, Q.; Inoue, Y.; Luo, L. Energetic Particles and High-Energy Processes in Cosmological Filaments and Their Astronomical Implications. Universe 2024, 10, 287. [Google Scholar] [CrossRef]
- Böss, L.M.; Dolag, K.; Steinwandel, U.P.; Hernández-Martínez, E.; Khabibullin, I.; Seidel, B.; Sorce, J.G. Simulating the LOcal Web (SLOW): III. Synchrotron emission from the local cosmic web. Astron. Astrophys. 2024, 692, A232. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Quataert, E.; Ponnada, S.B.; Silich, E. Cosmic Rays Masquerading as Hot CGM Gas: An Inverse-Compton Origin for Diffuse X-ray Emission in the Circumgalactic Medium. arXiv 2025, arXiv:2501.18696. [Google Scholar]
- Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; et al. Search for Cosmic-Ray-induced Gamma-Ray Emission in Galaxy Clusters. Astrophys. J. 2014, 787, 18. [Google Scholar] [CrossRef]
- Griffin, R.D.; Dai, X.; Kochanek, C.S. New Limits on Gamma-Ray Emission from Galaxy Clusters. Astrophys. J. 2014, 795, L21. [Google Scholar] [CrossRef]
- Kim, J.; Ryu, D.; Kang, H.; Kim, S.; Rey, S.C. Filaments of galaxies as a clue to the origin of ultrahigh-energy cosmic rays. Sci. Adv. 2019, 5, eaau8227. [Google Scholar] [CrossRef]
- Carretti, E.; Vacca, V.; O’Sullivan, S.P.; Heald, G.H.; Horellou, C.; Röttgering, H.J.A.; Scaife, A.M.M.; Shimwell, T.W.; Shulevski, A.; Stuardi, C.; et al. Magnetic field strength in cosmic web filaments. Mon. Not. R. Astron. Soc. 2022, 512, 945–959. [Google Scholar] [CrossRef]
- Anderson, C.S.; McClure-Griffiths, N.M.; Rudnick, L.; Gaensler, B.M.; O’Sullivan, S.P.; Bradbury, S.; Akahori, T.; Baidoo, L.; Bruggen, M.; Carretti, E.; et al. Probing the magnetized gas distribution in galaxy groups and the cosmic web with POSSUM Faraday rotation measures. Mon. Not. R. Astron. Soc. 2024, 533, 4068–4080. [Google Scholar] [CrossRef]
- Gaensler, B.M.; Landecker, T.L.; Taylor, A.R.; POSSUM Collaboration. Survey Science with ASKAP: Polarization Sky Survey of the Universe’s Magnetism (POSSUM). Am. Astron. Soc. Meet. Abstr. 2010, 215, 470.13. [Google Scholar]
- Govoni, F.; Orrù, E.; Bonafede, A.; Iacobelli, M.; Paladino, R.; Vazza, F.; Murgia, M.; Vacca, V.; Giovannini, G.; Feretti, L.; et al. A radio ridge connecting two galaxy clusters in a filament of the cosmic web. Science 2019, 364, 981–984. [Google Scholar] [CrossRef]
- Balboni, M.; Bonafede, A.; Bernardi, G.; Wittor, D.; Vazza, F.; Botteon, A.; Carretti, E.; Shimwell, T.; Vacca, V.; van Weeren, R.J. Constraints on the magnetic field in the intercluster bridge A399–A401. Astron. Astrophys. 2023, 679, A107. [Google Scholar] [CrossRef]
- Pignataro, G.V.; O’Sullivan, S.P.; Bonafede, A.; Bernardi, G.; Vazza, F.; Carretti, E. Detection of magnetic fields in superclusters of galaxies. arXiv 2025, arXiv:2503.08765. [Google Scholar] [CrossRef]
- Vernstrom, T.; Gaensler, B.M.; Rudnick, L.; Andernach, H. Differences in Faraday Rotation between Adjacent Extragalactic Radio Sources as a Probe of Cosmic Magnetic Fields. Astrophys. J. 2019, 878, 92. [Google Scholar] [CrossRef]
- O’Sullivan, S.P.; Brüggen, M.; Vazza, F.; Carretti, E.; Locatelli, N.T.; Stuardi, C.; Vacca, V.; Vernstrom, T.; Heald, G.; Horellou, C.; et al. New constraints on the magnetization of the cosmic web using LOFAR Faraday rotation observations. Mon. Not. R. Astron. Soc. 2020, 495, 2607–2619. [Google Scholar] [CrossRef]
- Amaral, A.D.; Vernstrom, T.; Gaensler, B.M. Constraints on large-scale magnetic fields in the intergalactic medium using cross-correlation methods. Mon. Not. R. Astron. Soc. 2021, 503, 2913–2926. [Google Scholar] [CrossRef]
- Natwariya, P.K. Constraint on primordial magnetic fields in the light of ARCADE 2 and EDGES observations. Eur. Phys. J. C 2021, 81, 394. [Google Scholar] [CrossRef]
- Kulsrud, R.M.; Cen, R.; Ostriker, J.P.; Ryu, D. The Protogalactic Origin for Cosmic Magnetic Fields. Astrophys. J. 1997, 480, 481–491. [Google Scholar] [CrossRef]
- Roettiger, K.; Stone, J.M.; Burns, J.O. Magnetic Field Evolution in Merging Clusters of Galaxies. Astrophys. J. 1999, 518, 594–602. [Google Scholar] [CrossRef]
- Dolag, K.; Bartelmann, M.; Lesch, H. SPH simulations of magnetic fields in galaxy clusters. Astron. Astrophys. 1999, 348, 351–363. [Google Scholar]
- Dolag, K.; Schindler, S.; Govoni, F.; Feretti, L. Correlation of the magnetic field and the intra-cluster gas density in galaxy clusters. Astron. Astrophys. 2001, 378, 777–786. [Google Scholar] [CrossRef]
- Brüggen, M.; Ruszkowski, M.; Simionescu, A.; Hoeft, M.; Dalla Vecchia, C. Simulations of Magnetic Fields in Filaments. Astrophys. J. 2005, 631, L21–L24. [Google Scholar] [CrossRef]
- Bonafede, A.; Dolag, K.; Stasyszyn, F.; Murante, G.; Borgani, S. A non-ideal magnetohydrodynamic GADGET: Simulating massive galaxy clusters. Mon. Not. R. Astron. Soc. 2011, 418, 2234–2250. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Lee, D.; Brüggen, M.; Parrish, I.; Oh, S.P. Cosmological Magnetohydrodynamic Simulations of Cluster Formation with Anisotropic Thermal Conduction. Astrophys. J. 2011, 740, 81. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P. On the amplification of magnetic fields in cosmic filaments and galaxy clusters. Mon. Not. R. Astron. Soc. 2014, 445, 3706–3722. [Google Scholar] [CrossRef]
- Schekochihin, A.A.; Cowley, S.C.; Taylor, S.F.; Maron, J.L.; McWilliams, J.C. Simulations of the Small-Scale Turbulent Dynamo. Astrophys. J. 2004, 612, 276–307. [Google Scholar] [CrossRef]
- Federrath, C.; Schober, J.; Bovino, S.; Schleicher, D.R.G. The Turbulent Dynamo in Highly Compressible Supersonic Plasmas. Astrophys. J. 2014, 797, L19. [Google Scholar] [CrossRef]
- Brandenburg, A.; Ntormousi, E. Magnetic field amplification during a turbulent collapse. arXiv 2025, arXiv:2505.02885. [Google Scholar]
- Beresnyak, A.; Miniati, F. Turbulent Amplification and Structure of the Intracluster Magnetic Field. Astrophys. J. 2016, 817, 127. [Google Scholar] [CrossRef]
- Donnert, J.; Vazza, F.; Brüggen, M.; ZuHone, J. Magnetic Field Amplification in Galaxy Clusters and Its Simulation. Space Sci. Rev. 2018, 214, 122. [Google Scholar] [CrossRef]
- Vazza, F.; Brunetti, G.; Brüggen, M.; Bonafede, A. Resolved magnetic dynamo action in the simulated intracluster medium. Mon. Not. R. Astron. Soc. 2018, 474, 1672–1687. [Google Scholar] [CrossRef]
- Quilis, V.; Martí, J.M.; Planelles, S. Cosmic magnetic fields with masclet: An application to galaxy clusters. Mon. Not. R. Astron. Soc. 2020, 494, 2706–2717. [Google Scholar] [CrossRef]
- Steinwandel, U.P.; Böss, L.M.; Dolag, K.; Lesch, H. On the Small-scale Turbulent Dynamo in the Intracluster Medium: A Comparison to Dynamo Theory. Astrophys. J. 2022, 933, 131. [Google Scholar] [CrossRef]
- Murgia, M.; Govoni, F.; Feretti, L.; Giovannini, G.; Dallacasa, D.; Fanti, R.; Taylor, G.B.; Dolag, K. Magnetic fields and Faraday rotation in clusters of galaxies. Astron. Astrophys. 2004, 424, 429–446. [Google Scholar] [CrossRef]
- Bonafede, A.; Feretti, L.; Murgia, M.; Govoni, F.; Giovannini, G.; Dallacasa, D.; Dolag, K.; Taylor, G.B. The Coma cluster magnetic field from Faraday rotation measures. Astron. Astrophys. 2010, 513, A30. [Google Scholar] [CrossRef]
- Bonafede, A.; Vazza, F.; Brüggen, M.; Murgia, M.; Govoni, F.; Feretti, L.; Giovannini, G.; Ogrean, G. Measurements and simulation of Faraday rotation across the Coma radio relic. Mon. Not. R. Astron. Soc. 2013, 433, 3208–3226. [Google Scholar] [CrossRef]
- van Weeren, R.J.; de Gasperin, F.; Akamatsu, H.; Brüggen, M.; Feretti, L.; Kang, H.; Stroe, A.; Zandanel, F. Diffuse Radio Emission from Galaxy Clusters. Space Sci. Rev. 2019, 215, 16. [Google Scholar] [CrossRef]
- Rincon, F.; Califano, F.; Schekochihin, A.A.; Valentini, F. Turbulent dynamo in a collisionless plasma. Proc. Natl. Acad. Sci. USA 2016, 113, 3950–3953. [Google Scholar] [CrossRef]
- Sironi, L.; Comisso, L.; Golant, R. Generation of Near-Equipartition Magnetic Fields in Turbulent Collisionless Plasmas. Phys. Rev. Lett. 2023, 131, 055201. [Google Scholar] [CrossRef]
- Zhou, M.; Zhdankin, V.; Kunz, M.W.; Loureiro, N.F.; Uzdensky, D.A. Magnetogenesis in a collisionless plasma: From Weibel instability to turbulent dynamo. arXiv 2023, arXiv:2308.01924. [Google Scholar] [CrossRef]
- St-Onge, D.A.; Kunz, M.W. Fluctuation Dynamo in a Collisionless, Weakly Magnetized Plasma. Astrophys. J. 2018, 863, L25. [Google Scholar] [CrossRef]
- Rappaz, Y.; Schober, J. The effect of pressure-anisotropy-driven kinetic instabilities on magnetic field amplification in galaxy clusters. Astron. Astrophys. 2024, 683, A35. [Google Scholar] [CrossRef]
- Gheller, C.; Vazza, F.; Brüggen, M.; Alpaslan, M.; Holwerda, B.W.; Hopkins, A.M.; Liske, J. Evolution of cosmic filaments and of their galaxy population from MHD cosmological simulations. Mon. Not. R. Astron. Soc. 2016, 462, 448–463. [Google Scholar] [CrossRef]
- Ryu, D.; Kang, H.; Cho, J.; Das, S. Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe. Science 2008, 320, 909. [Google Scholar] [CrossRef]
- Akahori, T.; Gaensler, B.M.; Ryu, D. Statistical Techniques for Detecting the Intergalactic Magnetic Field from Large Samples of Extragalactic Faraday Rotation Data. Astrophys. J. 2014, 790, 123. [Google Scholar] [CrossRef]
- Marinacci, F.; Vogelsberger, M.; Mocz, P.; Pakmor, R. The large-scale properties of simulated cosmological magnetic fields. Mon. Not. R. Astron. Soc. 2015, 453, 3999–4019. [Google Scholar] [CrossRef]
- Locatelli, N.; Vazza, F.; Domínguez-Fernández, P. The Challenge of Detecting Intracluster Filaments with Faraday Rotation. Galaxies 2018, 6, 128. [Google Scholar] [CrossRef]
- Colberg, J.M.; Krughoff, K.S.; Connolly, A.J. Intercluster filaments in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 2005, 359, 272–282. [Google Scholar] [CrossRef]
- Angelinelli, M.; Ettori, S.; Vazza, F.; Jones, T.W. Proprieties of clumps and filaments around galaxy clusters. Astron. Astrophys. 2021, 653, A171. [Google Scholar] [CrossRef]
- Beck, A.M.; Lesch, H.; Dolag, K.; Kotarba, H.; Geng, A.; Stasyszyn, F.A. Origin of strong magnetic fields in Milky Way-like galactic haloes. Mon. Not. R. Astron. Soc. 2012, 422, 2152–2163. [Google Scholar] [CrossRef]
- Katz, H.; Martin-Alvarez, S.; Devriendt, J.; Slyz, A.; Kimm, T. Magnetogenesis at Cosmic Dawn: Tracing the origins of cosmic magnetic fields. Mon. Not. R. Astron. Soc. 2019, 484, 2620–2631. [Google Scholar] [CrossRef]
- Vazza, F.; Locatelli, N.; Rajpurohit, K.; Banfi, S.; Domínguez-Fernández, P.; Wittor, D.; Angelinelli, M.; Inchingolo, G.; Brienza, M.; Hackstein, S.; et al. Magnetogenesis and the Cosmic Web: A Joint Challenge for Radio Observations and Numerical Simulations. Galaxies 2021, 9, 109. [Google Scholar] [CrossRef]
- Mtchedlidze, S.; Domínguez-Fernández, P.; Du, X.; Carretti, E.; Vazza, F.; O’Sullivan, S.P.; Brandenburg, A.; Kahniashvili, T. Intergalactic medium rotation measure of primordial magnetic fields. arXiv 2024, arXiv:2406.16230. [Google Scholar] [CrossRef]
- Martin-Alvarez, S.; Slyz, A.; Devriendt, J.; Gómez-Guijarro, C. How primordial magnetic fields shrink galaxies. Mon. Not. R. Astron. Soc. 2020, 495, 4475–4495. [Google Scholar] [CrossRef]
- Sanati, M.; Martin-Alvarez, S.; Schober, J.; Revaz, Y.; Slyz, A.; Devriendt, J. Dwarf galaxies as a probe of a primordially magnetized Universe. Astron. Astrophys. 2024, 690, A59. [Google Scholar] [CrossRef]
- Ralegankar, P.; Garaldi, E.; Viel, M. Matter power spectrum induced by primordial magnetic fields: From the linear to the non-linear regime. arXiv 2024, arXiv:2410.02676. [Google Scholar]
- Pavičević, M.; Iršič, V.; Viel, M.; Bolton, J.; Haehnelt, M.G.; Martin-Alvarez, S.; Puchwein, E.; Ralegankar, P. Constraints on Primordial Magnetic Fields from the Lyman-α forest. arXiv 2025, arXiv:2501.06299. [Google Scholar]
- Arámburo-García, A.; Bondarenko, K.; Boyarsky, A.; Neronov, A.; Scaife, A.; Sokolenko, A. Revision of Faraday rotation measure constraints on the primordial magnetic field using the IllustrisTNG simulation. Mon. Not. R. Astron. Soc. 2022, 515, 5673–5681. [Google Scholar] [CrossRef]
- Tjemsland, J.; Meyer, M.; Vazza, F. Constraining the Astrophysical Origin of Intergalactic Magnetic Fields. Astrophys. J. 2024, 963, 135. [Google Scholar] [CrossRef]
- Valentini, M.; Dolag, K. Hydrodynamic methods and sub-resolution models for cosmological simulations. arXiv 2025, arXiv:2502.06954. [Google Scholar]
- Medlock, I.; Neufeld, C.; Nagai, D.; Anglés-Alcázar, D.; Genel, S.; Oppenheimer, B.D.; Sims, X.; Singh, P.; Villaescusa-Navarro, F. Quantifying Baryonic Feedback on the Warm–Hot Circumgalactic Medium in CAMELS Simulations. Astrophys. J. 2025, 980, 61. [Google Scholar] [CrossRef]
- O’Sullivan, S.P.; Shimwell, T.W.; Hardcastle, M.J.; Tasse, C.; Heald, G.; Carretti, E.; Brüggen, M.; Vacca, V.; Sobey, C.; Van Eck, C.L.; et al. The Faraday Rotation Measure Grid of the LOFAR Two-metre Sky Survey: Data Release 2. Mon. Not. R. Astron. Soc. 2023, 519, 5723–5742. [Google Scholar] [CrossRef]
- Gheller, C.; Vazza, F.; Favre, J.; Brüggen, M. Properties of cosmological filaments extracted from Eulerian simulations. Mon. Not. R. Astron. Soc. 2015, 453, 1164–1185. [Google Scholar] [CrossRef]
- Kahniashvili, T.; Brandenburg, A.; Tevzadze, A.G. The evolution of primordial magnetic fields since their generation. Phys. Scr. 2016, 91, 104008. [Google Scholar] [CrossRef]
- Diemer, B.; Mansfield, P.; Kravtsov, A.V.; More, S. The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology. Astrophys. J. 2017, 843, 140. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Marinacci, F.; Torrey, P.; Puchwein, E. Cosmological simulations of galaxy formation. Nat. Rev. Phys. 2020, 2, 42–66. [Google Scholar] [CrossRef]
- Habouzit, M.; Onoue, M.; Bañados, E.; Neeleman, M.; Anglés-Alcázar, D.; Walter, F.; Pillepich, A.; Davé, R.; Jahnke, K.; Dubois, Y. Co-evolution of massive black holes and their host galaxies at high redshift: Discrepancies from six cosmological simulations and the key role of JWST. Mon. Not. R. Astron. Soc. 2022, 511, 3751–3767. [Google Scholar] [CrossRef]
- Bourne, M.A.; Yang, H.Y.K. Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies 2023, 11, 73. [Google Scholar] [CrossRef]
- EPTA Collaboration; InPTA Collaboration; Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Bak Nielsen, A.S.; Bassa, C.G.; Bathula, A.; et al. The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
- Tevzadze, A.G.; Kisslinger, L.; Brandenburg, A.; Kahniashvili, T. Magnetic Fields from QCD Phase Transitions. Astrophys. J. 2012, 759, 54. [Google Scholar] [CrossRef]
- Neronov, A.; Pol, A.R.; Caprini, C.; Semikoz, D. NANOGrav signal from magnetohydrodynamic turbulence at the QCD phase transition in the early Universe. Phys. Rev. D 2021, 103, L041302. [Google Scholar] [CrossRef]
- Hosking, D.N.; Schekochihin, A.A. Cosmic-void observations reconciled with primordial magnetogenesis. Nat. Commun. 2023, 14, 7523. [Google Scholar] [CrossRef]
- Brandenburg, A.; Neronov, A.; Vazza, F. Resistively controlled primordial magnetic turbulence decay. Astron. Astrophys. 2024, 687, A186. [Google Scholar] [CrossRef]
- Vazza, F.; Ferrari, C.; Bonafede, A.; Brüggen, M.; Gheller, C.; Braun, R.; Brown, S. Filaments of the radio cosmic web: Opportunities and challenges for SKA. arXiv 2015, arXiv:1501.00315. [Google Scholar]
- Vazza, F.; Ferrari, C.; Brüggen, M.; Bonafede, A.; Gheller, C.; Wang, P. Forecasts for the detection of the magnetised cosmic web from cosmological simulations. Astron. Astrophys. 2015, 580, A119. [Google Scholar] [CrossRef]
- Vacca, V.; Govoni, F.; Murgia, M.; Loi, F.; Feretti, L.; Li, H.; Battistelli, E.; Enßlin, T.A.; Marchegiani, P. Filaments in and between galaxy clusters at low and mid-frequency with the SKA. Astron. Astrophys. 2024, 691, A334. [Google Scholar] [CrossRef]
- Han, J.L. Observing Interstellar and Intergalactic Magnetic Fields. Annu. Rev. Astron. Astrophys. 2017, 55, 111–157. [Google Scholar] [CrossRef]
- Akahori, T.; Ryu, D.; Gaensler, B.M. Fast Radio Bursts as Probes of Magnetic Fields in the Intergalactic Medium. Astrophys. J. 2016, 824, 105. [Google Scholar] [CrossRef]
- Hackstein, S.; Brüggen, M.; Vazza, F.; Gaensler, B.M.; Heesen, V. Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields. Mon. Not. R. Astron. Soc. 2019, 488, 4220–4238. [Google Scholar] [CrossRef]
- Mannings, A.G.; Pakmor, R.; Prochaska, J.X.; van de Voort, F.; Simha, S.; Shannon, R.M.; Tejos, N.; Deller, A.; Rafelski, M. Fast Radio Bursts as Probes of Magnetic Fields in Galaxies at z < 0.5. Astrophys. J. 2023, 954, 179. [Google Scholar] [CrossRef]
- Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; et al. Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 2011, 32, 193–316. [Google Scholar] [CrossRef]
- Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array; The CTA Consortium: Island of La Palma, Spain, 2019. [Google Scholar] [CrossRef]
Technique | Targets | Magnetic Field | Density Range | Instrument(s) | References |
---|---|---|---|---|---|
Sync. | cluster bridges | ∼200–500 | ∼50–200 | LOFAR-HBA (120 MHz) | [64] |
Sync. | cluster pairs | ≤250 | ∼5–50 | LOFAR-HBA (120 MHz) | [34] |
Sync. Pol. | cluster pairs | ≥0.4 | ∼300 | LOFAR-HBA (144 MHz) | [65] |
Optical-radio CC. | galaxies | ≤250 | ∼10–102 | MWA-EoR0 (180 MHz) | [32,34] |
RRM | superclusters | ∼11–69 | ∼3–100 | VLA (1.4 GHz), LOFAR-HBA (144 MHz) | [66] |
Sync. stacking | cluster pairs | ∼20–60 | ∼5–50 | MWA+LWA (50–120 MHz) | [16] |
Sync. stacking | cluster pairs | ≤75 | ∼5–50 | LOFAR-HBA (120 MHz) | [37] |
Pol. stacking | cluster pairs | ∼40–60 | ∼5–50 | GMIMS (1.4 GHz), PLANCK (30 GHz) | [31] |
radio gal. pairs | ≤40 | ∼1–10 | VLA-NVSS (1.4 GHz) | [67] | |
radio gal. pairs | ≤4 | ∼1–10 | LOFAR-HBA (120 MHz) | [68] | |
radio gal. pairs | ≤9 | ∼1–10 | LOFAR-HBA (120 MHz) | [49] | |
CC. | bg pol. sources | ≤30 | ∼1–10 | VLA-NVSS (1.4 GHz) | [69] |
bg pol.sources | ∼8–26 | ∼10 | LOFAR-HBA (144 MHz) | [17] | |
Sync. | full-sky | ≤10−3–0.3 | ∼1 | ARCADE2+LW1 (78 MHz) | [70] |
Model | ||||
---|---|---|---|---|
[nG] | [rad m−2] | |||
= −1 | ||||
= 0 | ||||
= 1 | ||||
= 2 | ||||
uniform | ||||
astro B4 | ||||
astro B4 + = −1 |
Model | ||||
---|---|---|---|---|
[nG] | [rad m−2] | |||
= −1 | ||||
= 0 | ||||
= 1 | ||||
= 2 | ||||
uniform | ||||
astro B4 | ||||
astro B4 + = −1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carretti, E.; Vazza, F. Radio Observations as a Probe of Cosmic Web Magnetism. Universe 2025, 11, 164. https://doi.org/10.3390/universe11050164
Carretti E, Vazza F. Radio Observations as a Probe of Cosmic Web Magnetism. Universe. 2025; 11(5):164. https://doi.org/10.3390/universe11050164
Chicago/Turabian StyleCarretti, Ettore, and Franco Vazza. 2025. "Radio Observations as a Probe of Cosmic Web Magnetism" Universe 11, no. 5: 164. https://doi.org/10.3390/universe11050164
APA StyleCarretti, E., & Vazza, F. (2025). Radio Observations as a Probe of Cosmic Web Magnetism. Universe, 11(5), 164. https://doi.org/10.3390/universe11050164