Chiral Invariant Mass Constraints from HESS J1731–347 in an Extended Parity Doublet Model with Isovector Scalar Meson
Abstract
1. Introduction
2. Dense Nuclear Matter with Parity Doublet Model
2.1. A Parity Doublet Model with U(2)L × U(2)R Symmetry
2.2. PDM with Mean Field Approximation
2.3. Determination of Model Parameters
3. Asymmetric Nuclear Matter Properties
4. Neutron Star Matter
4.1. Unified EoS with Crossover Phase Transition
4.2. NS Mass-Radius Relation
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.G.; Lattimer, J.M.; Loewenstein, M.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. Astrophys. J. Lett. 2021, 918, L28. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett. 2021, 918, L27. [Google Scholar] [CrossRef]
- Doroshenko, V.; Suleimanov, V.; Pühlhofer, G.; Santangelo, A. A strangely light neutron star within a supernova remnant. Nat. Astron. 2022, 6, 1444–1451. [Google Scholar] [CrossRef]
- Tewari, S.; Chatterjee, S.; Kumar, D.; Mallick, R. Analyzing the dense matter equation of states in the light of the compact object HESS J1731-347. Phys. Rev. D 2025, 111, 103009. [Google Scholar] [CrossRef]
- Chu, P.C.; Li, X.H.; Liu, H.; Ju, M.; Zhou, Y. Properties of isospin asymmetric quark matter in quark stars. Phys. Rev. C 2023, 108, 025808. [Google Scholar] [CrossRef]
- Oikonomou, P.T.; Moustakidis, C.C. Color-flavor locked quark stars in light of the compact object in the HESS J1731-347 and the GW190814 event. Phys. Rev. D 2023, 108, 063010. [Google Scholar] [CrossRef]
- Yang, S.H.; Pi, C.M.; Zheng, X.P.; Weber, F. Confronting Strange Stars with Compact-Star Observations and New Physics. Universe 2023, 9, 202. [Google Scholar] [CrossRef]
- Kourmpetis, K.; Laskos-Patkos, P.; Moustakidis, C.C. Confronting recent light compact star observations with color-flavor locked quark matter. Front. Astron. Space Sci. 2025, 12, 1600563. [Google Scholar] [CrossRef]
- DeTar, C.; Kunihiro, T. Linear sigma model with parity doubling. Phys. Rev. D 1989, 39, 2805–2808. [Google Scholar] [CrossRef] [PubMed]
- Aarts, G.; Allton, C.; Hands, S.; Jäger, B.; Praki, C.; Skullerud, J.I. Nucleons and parity doubling across the deconfinement transition. Phys. Rev. D 2015, 92, 014503. [Google Scholar] [CrossRef]
- Aarts, G.; Allton, C.; De Boni, D.; Hands, S.; Jäger, B.; Praki, C.; Skullerud, J.I. Light baryons below and above the deconfinement transition: Medium effects and parity doubling. J. High Energy Phys. 2017, 2017, 34. [Google Scholar] [CrossRef]
- Aarts, G.; Allton, C.; De Boni, D.; Jäger, B. Hyperons in thermal QCD: A lattice view. Phys. Rev. D 2019, 99, 074503. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.H. Masses of hadrons in the chiral symmetry restored vacuum. Phys. Rev. D 2022, 105, 014014. [Google Scholar] [CrossRef]
- Jido, D.; Oka, M.; Hosaka, A. Chiral Symmetry of Baryons. Prog. Theor. Phys. 2001, 106, 873–908. [Google Scholar] [CrossRef]
- Yamazaki, T.; Harada, M. Chiral partner structure of light nucleons in an extended parity doublet model. Phys. Rev. D 2019, 99, 034012. [Google Scholar] [CrossRef]
- Hatsuda, T.; Prakash, M. Parity Doubling of the Nucleon and First Order Chiral Transition in Dense Matter. Phys. Lett. B 1989, 224, 11–15. [Google Scholar] [CrossRef]
- Zschiesche, D.; Tolos, L.; Schaffner-Bielich, J.; Pisarski, R.D. Cold, dense nuclear matter in a SU(2) parity doublet model. Phys. Rev. C 2007, 75, 055202. [Google Scholar] [CrossRef]
- Dexheimer, V.; Schramm, S.; Zschiesche, D. Nuclear matter and neutron stars in a parity doublet model. Phys. Rev. C 2008, 77, 025803. [Google Scholar] [CrossRef]
- Dexheimer, V.; Pagliara, G.; Tolos, L.; Schaffner-Bielich, J.; Schramm, S. Neutron stars within the SU(2) parity doublet model. Eur. Phys. J. A 2008, 38, 105–113. [Google Scholar] [CrossRef]
- Sasaki, C.; Mishustin, I. Thermodynamics of dense hadronic matter in a parity doublet model. Phys. Rev. C 2010, 82, 035204. [Google Scholar] [CrossRef]
- Gallas, S.; Giacosa, F.; Pagliara, G. Nuclear matter within a dilatation-invariant parity doublet model: The role of the tetraquark at nonzero density. Nucl. Phys. A 2011, 872, 13–24. [Google Scholar] [CrossRef]
- Steinheimer, J.; Schramm, S.; Stocker, H. The hadronic SU(3) Parity Doublet Model for Dense Matter, its extension to quarks and the strange equation of state. Phys. Rev. C 2011, 84, 045208. [Google Scholar] [CrossRef]
- Dexheimer, V.; Steinheimer, J.; Negreiros, R.; Schramm, S. Hybrid Stars in an SU(3) parity doublet model. Phys. Rev. C 2013, 87, 015804. [Google Scholar] [CrossRef]
- Motohiro, Y.; Kim, Y.; Harada, M. Asymmetric nuclear matter in a parity doublet model with hidden local symmetry. Phys. Rev. C 2015, 92, 025201, Erratum in Phys. Rev. C 2017, 95, 059903. [Google Scholar] [CrossRef]
- Suenaga, D. Examination of N*(1535) as a probe to observe the partial restoration of chiral symmetry in nuclear matter. Phys. Rev. C 2018, 97, 045203. [Google Scholar] [CrossRef]
- Takeda, Y.; Kim, Y.; Harada, M. Catalysis of partial chiral symmetry restoration by Δ matter. Phys. Rev. C 2018, 97, 065202. [Google Scholar] [CrossRef]
- Mukherjee, A.; Schramm, S.; Steinheimer, J.; Dexheimer, V. The application of the Quark-Hadron Chiral Parity-Doublet Model to neutron star matter. Astron. Astrophys. 2017, 608, A110. [Google Scholar] [CrossRef]
- Paeng, W.G.; Kuo, T.T.S.; Lee, H.K.; Ma, Y.L.; Rho, M. Scale-invariant hidden local symmetry, topology change, and dense baryonic matter. II. Phys. Rev. D 2017, 96, 014031. [Google Scholar] [CrossRef]
- Marczenko, M.; Blaschke, D.; Redlich, K.; Sasaki, C. Chiral symmetry restoration by parity doubling and the structure of neutron stars. Phys. Rev. D 2018, 98, 103021. [Google Scholar] [CrossRef]
- Marczenko, M.; Blaschke, D.; Redlich, K.; Sasaki, C. Parity Doubling and the Dense Matter Phase Diagram under Constraints from Multi-Messenger Astronomy. Universe 2019, 5, 180. [Google Scholar] [CrossRef]
- Yamazaki, T.; Harada, M. Constraint to chiral invariant masses of nucleons from GW170817 in an extended parity doublet model. Phys. Rev. C 2019, 100, 025205. [Google Scholar] [CrossRef]
- Marczenko, M.; Blaschke, D.; Redlich, K.; Sasaki, C. Toward a unified equation of state for multi-messenger astronomy. Astron. Astrophys. 2020, 643, A82. [Google Scholar] [CrossRef]
- Minamikawa, T.; Kojo, T.; Harada, M. Quark-hadron crossover equations of state for neutron stars: Constraining the chiral invariant mass in a parity doublet model. Phys. Rev. C 2021, 103, 045205. [Google Scholar] [CrossRef]
- Minamikawa, T.; Kojo, T.; Harada, M. Chiral condensates for neutron stars in hadron-quark crossover: From a parity doublet nucleon model to a Nambu–Jona-Lasinio quark model. Phys. Rev. C 2021, 104, 065201. [Google Scholar] [CrossRef]
- Marczenko, M.; Redlich, K.; Sasaki, C. Chiral symmetry restoration and Δ matter formation in neutron stars. Phys. Rev. D 2022, 105, 103009. [Google Scholar] [CrossRef]
- Minamikawa, T.; Gao, B.; Kojo, T.; Harada, M. Chiral Restoration of Nucleons in Neutron Star Matter: Studies Based on a Parity Doublet Model. Symmetry 2023, 15, 745. [Google Scholar] [CrossRef]
- Minamikawa, T.; Gao, B.; Kojo, T.; Harada, M. Parity doublet model for baryon octets: Diquark classifications and mass hierarchy based on the quark-line diagram. Phys. Rev. D 2023, 108, 076017. [Google Scholar] [CrossRef]
- Gao, B.; Kojo, T.; Harada, M. Parity doublet model for baryon octets: Ground states saturated by good diquarks and the role of bad diquarks for excited states. Phys. Rev. D 2024, 110, 016016. [Google Scholar] [CrossRef]
- Gao, B.; Yan, Y.; Harada, M. Reconciling constraints from the supernova remnant HESS J1731-347 with the parity doublet model. Phys. Rev. C 2024, 109, 065807. [Google Scholar] [CrossRef]
- Gao, B.; Yuan, W.L.; Harada, M.; Ma, Y.L. Exploring the first-order phase transition in neutron stars using the parity doublet model and a Nambu–Jona-Lasinio–type quark model. Phys. Rev. C 2024, 110, 045802. [Google Scholar] [CrossRef]
- Gao, B.; Harada, M. Quarkyonic matter with chiral symmetry restoration. Phys. Rev. D 2025, 111, 016024. [Google Scholar] [CrossRef]
- Yuan, W.L.; Gao, B.; Yan, Y.; Xu, R. Hybrid stars with large quark cores within the parity doublet model and modified NJL model. arXiv 2025, arXiv:2502.17859. [Google Scholar] [CrossRef]
- Gao, B. Constraints on the strength of first-order phase transition in the low density region. arXiv 2025, arXiv:2505.21970. [Google Scholar] [CrossRef]
- Marczenko, M. Anatomy of critical fluctuations in hadronic matter. Phys. Rev. D 2024, 110, 014018. [Google Scholar] [CrossRef]
- Marczenko, M.; Redlich, K.; Sasaki, C. Probing the nuclear liquid-gas phase transition with isospin correlations. Phys. Rev. C 2025, 111, 065203. [Google Scholar] [CrossRef]
- Gao, B.; Minamikawa, T.; Kojo, T.; Harada, M. Impacts of the U(1)A anomaly on nuclear and neutron star equation of state based on a parity doublet model. Phys. Rev. C 2022, 106, 065205. [Google Scholar] [CrossRef]
- Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rep. Prog. Phys. 2018, 81, 056902. [Google Scholar] [CrossRef]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2019, 4, 72–76. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef]
- Kong, Y.K.; Minamikawa, T.; Harada, M. Neutron star matter based on a parity doublet model including the a0(980) meson. Phys. Rev. C 2023, 108, 055206. [Google Scholar] [CrossRef]
- Li, B.A.; Krastev, P.G.; Wen, D.H.; Zhang, N.B. Towards Understanding Astrophysical Effects of Nuclear Symmetry Energy. Eur. Phys. J. A 2019, 55, 117. [Google Scholar] [CrossRef]
- Li, F.; Cai, B.J.; Zhou, Y.; Jiang, W.Z.; Chen, L.W. Effects of Isoscalar- and Isovector-scalar Meson Mixing on Neutron Star Structure. Astrophys. J. 2022, 929, 183. [Google Scholar] [CrossRef]
- Liu, B.; Guo, H.; Toro, M.D.; Greco, V. Neutron stars with isovector scalar correlations. Eur. Phys. J. A 2005, 25, 293–298. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.L. Quark structure of isoscalar- and isovector-scalar mesons and nuclear matter property. Phys. Rev. D 2024, 109, 074022. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.L. Composition of Scalar Mesons and Their Effects on Nuclear Matter Properties in an Extended Linear Sigma Model. arXiv 2025, arXiv:2507.10049. [Google Scholar] [CrossRef]
- Kubis, S.; Kutschera, M. Nuclear matter in relativistic mean field theory with isovector scalar meson. Phys. Lett. B 1997, 399, 191–195. [Google Scholar] [CrossRef]
- Kubis, S.; Kutschera, M.; Stachniewicz, S. Neutron Stars in Relativistic Mean Field Theory with Isovector Scalar Meson. Acta Phys. Polon. B 1998, 29, 809–822. [Google Scholar]
- Miyatsu, T.; Cheoun, M.K.; Saito, K. Asymmetric Nuclear Matter in Relativistic Mean-field Models with Isoscalar- and Isovector-meson Mixing. Astrophys. J. 2022, 929, 82. [Google Scholar] [CrossRef]
- Thakur, V.; Kumar, R.; Kumar, P.; Kumar, V.; Kumar, M.; Mondal, C.; Agrawal, B.K.; Dhiman, S.K. Effects of an isovector scalar meson on the equation of state of dense matter within a relativistic mean field model. Phys. Rev. C 2022, 106. [Google Scholar] [CrossRef]
- Rabhi, A.; Providência, C.; Providência, J.D. Effect of the δ meson on the instabilities of nuclear matter under strong magnetic fields. Phys. Rev. C 2009, 80, 025806. [Google Scholar] [CrossRef]
- Liu, B.; Greco, V.; Baran, V.; Colonna, M.; Di Toro, M. Asymmetric nuclear matter: The role of the isovector scalar channel. Phys. Rev. C 2002, 65, 045201. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.F.; Dong, J.M. Neutron star properties in density-dependent relativistic mean field theory with consideration of an isovector scalar meson. Phys. Rev. C 2014, 90, 055801. [Google Scholar] [CrossRef]
- Roca-Maza, X.; Viñas, X.; Centelles, M.; Ring, P.; Schuck, P. Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations. Phys. Rev. C 2011, 84, 054309. [Google Scholar] [CrossRef]
- Kong, Y.K.; Harada, M. A Study of Effects from a0(980) Meson to Asymmetric Matter Based on a Parity Doublet Model. Nucl. Phys. Rev. 2024, 41, 787–793. [Google Scholar] [CrossRef]
- Bando, M.; Kugo, T.; Uehara, S.; Yamawaki, K.; Yanagida, T. Is the ρ Meson a Dynamical Gauge Boson of Hidden Local Symmetry? Phys. Rev. Lett. 1985, 54, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Bando, M.; Kugo, T.; Yamawaki, K. Nonlinear Realization and Hidden Local Symmetries. Phys. Rep. 1988, 164, 217–314. [Google Scholar] [CrossRef]
- Harada, M.; Yamawaki, K. Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition. Phys. Rep. 2003, 381, 1–233. [Google Scholar] [CrossRef]
- Sun, X.; Miao, Z.; Sun, B.; Li, A. Astrophysical Implications on Hyperon Couplings and Hyperon Star Properties with Relativistic Equations of States. Astrophys. J. 2023, 942, 55. [Google Scholar] [CrossRef]
- Kong, Y.K.; Kim, Y.; Harada, M. Nuclear Matter and Finite Nuclei: Recent Studies Based on Parity Doublet Model. Symmetry 2024, 16, 1238. [Google Scholar] [CrossRef]
- Li, B.A.; Cai, B.J.; Xie, W.J.; Zhang, N.B. Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables Since GW170817. Universe 2021, 7, 182. [Google Scholar] [CrossRef]
- Lattimer, J.M. Constraints on Nuclear Symmetry Energy Parameters. Particles 2023, 6, 30–56. [Google Scholar] [CrossRef]
- Margueron, J.; Hoffmann Casali, R.; Gulminelli, F. Equation of state for dense nucleonic matter from metamodeling. II. Predictions for neutron star properties. Phys. Rev. C 2018, 97, 025806. [Google Scholar] [CrossRef]
- Mondal, C.; Agrawal, B.K.; De, J.N.; Samaddar, S.K.; Centelles, M.; Viñas, X. Interdependence of different symmetry energy elements. Phys. Rev. C 2017, 96, 021302. [Google Scholar] [CrossRef]
- Dutra, M.; Lourenco, O.; Sá Martins, J.S.; Delfino, A.; Stone, J.R.; Stevenson, P.D. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 2012, 85, 035201. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X 2019, 9, 011001. [Google Scholar] [CrossRef]
- Lenzi, C.H.; Lugones, G. Hybrid stars in the light of the massive pulsar PSR J1614-2230. Astrophys. J. 2012, 759, 57. [Google Scholar] [CrossRef]
- Benic, S.; Blaschke, D.; Alvarez-Castillo, D.E.; Fischer, T.; Typel, S. A new quark-hadron hybrid equation of state for astrophysics—I. High-mass twin compact stars. Astron. Astrophys. 2015, 577, A40. [Google Scholar] [CrossRef]
- Contrera, G.A.; Blaschke, D.; Carlomagno, J.P.; Grunfeld, A.G.; Liebing, S. Quark-nuclear hybrid equation of state for neutron stars under modern observational constraints. Phys. Rev. C 2022, 105, 045808. [Google Scholar] [CrossRef]
- Christian, J.E.; Schaffner-Bielich, J.; Rosswog, S. Which first order phase transitions to quark matter are possible in neutron stars? Phys. Rev. D 2024, 109, 063035. [Google Scholar] [CrossRef]
- Li, J.J.; Sedrakian, A.; Alford, M. Confronting new NICER mass-radius measurements with phase transition in dense matter and twin compact stars. J. Cosmol. Astropart. Phys. 2025, 2, 002. [Google Scholar] [CrossRef]
- Baym, G.; Pethick, C.; Sutherland, P. The Ground State of Matter at High Densities: Equation of State and Stellar Models. Astrophys. J. 1971, 170, 299. [Google Scholar] [CrossRef]
[] | [MeV] | [MeV] | [MeV] |
---|---|---|---|
0.16 | 16 | 240 | 31 |
138 | 550 | 980 | 783 | 776 | 92.4 |
[MeV] | 600 | 700 | 800 | 900 |
---|---|---|---|---|
8.48 | 7.81 | 6.99 | 5.96 | |
14.93 | 14.26 | 13.44 | 12.41 | |
22.43 | 19.38 | 12.06 | 1.64 | |
40.40 | 35.51 | 23.21 | 4.56 | |
15.75 | 13.90 | 8.93 | 0.69 | |
9.14 | 7.31 | 5.66 | 3.52 | |
−10.77 | −13.82 | −21.15 | −31.56 | |
180.45 | 168.18 | 135.97 | 84.38 |
[MeV] | 600 | 700 | 800 | 900 |
---|---|---|---|---|
MeV | 15.69 | 14.00 | 12.71 | 11.42 |
MeV | 15.20 | 13.46 | 12.07 | 10.71 |
MeV | 14.75 | 12.98 | 11.51 | 10.11 |
MeV | 14.34 | 12.54 | 11.03 | 9.61 |
MeV | 13.96 | 12.15 | 10.60 | 9.17 |
[MeV] | 600 | 700 | 800 | 900 |
---|---|---|---|---|
MeV | 0.025 | 0.076 | 0.290 | 2.457 |
MeV | 0.022 | 0.065 | 0.241 | 1.944 |
MeV | 0.019 | 0.054 | 0.192 | 1.430 |
MeV | 0.016 | 0.043 | 0.143 | 0.917 |
MeV | 0.014 | 0.032 | 0.093 | 0.403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.K.; Gao, B.; Harada, M. Chiral Invariant Mass Constraints from HESS J1731–347 in an Extended Parity Doublet Model with Isovector Scalar Meson. Universe 2025, 11, 345. https://doi.org/10.3390/universe11100345
Kong YK, Gao B, Harada M. Chiral Invariant Mass Constraints from HESS J1731–347 in an Extended Parity Doublet Model with Isovector Scalar Meson. Universe. 2025; 11(10):345. https://doi.org/10.3390/universe11100345
Chicago/Turabian StyleKong, Yuk Kei, Bikai Gao, and Masayasu Harada. 2025. "Chiral Invariant Mass Constraints from HESS J1731–347 in an Extended Parity Doublet Model with Isovector Scalar Meson" Universe 11, no. 10: 345. https://doi.org/10.3390/universe11100345
APA StyleKong, Y. K., Gao, B., & Harada, M. (2025). Chiral Invariant Mass Constraints from HESS J1731–347 in an Extended Parity Doublet Model with Isovector Scalar Meson. Universe, 11(10), 345. https://doi.org/10.3390/universe11100345