Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes
Abstract
1. Introduction
2. Theoretical Settings
3. Perturbative Background Solutions
4. Quadrupole Perturbations
5. Further Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Axial Perturbation Equations
Appendix A.2. Polar Perturbation Equations
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P. [LIGO Scientific and Virgo] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. [LIGO Scientific and Virgo] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. [KAGRA, LIGO Scientific and Virgo] Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Rev. Rel. 2016, 19, 1. [Google Scholar] [CrossRef]
- Cahillane, C.; Mansell, G. Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four. Galaxies 2022, 10, 36. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quant. Grav. 2010, 27, 194002. [Google Scholar] [CrossRef]
- Dwyer, S.; Sigg, D.; Ballmer, S.W.; Barsotti, L.; Mavalvala, N.; Evans, M. Gravitational wave detector with cosmological reach. Phys. Rev. D 2015, 91, 082001. [Google Scholar] [CrossRef]
- Colpi, M.; Danzmann, K.; Hewitson, M.; Jetzer, P.; Nelemans, G.; Petiteau, A.; Shoemaker, D.; Sopuerta, C.; Stebbins, R.; Tanvir, N.; et al. LISA Definition Study Report. arXiv 2024, arXiv:2402.07571. [Google Scholar] [CrossRef]
- Bambi, C.; Brustein, R.; Cardoso, V.; Chael, A.; Danielsson, U.; Giri, S.; Gupta, A.; Heidmann, P.; Lehner, L.; Liebling, S.; et al. Black hole mimickers: From theory to observation. arXiv 2025, arXiv:2505.09014. [Google Scholar] [CrossRef]
- Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D 2007, 76, 024016. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP: Woodbury, NY, USA, 1995. [Google Scholar]
- Lobo, F.S.N. Wormholes, Warp Drives and Energy Conditions; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ellis, H.G. Ether flow through a drainhole—A particle model in general relativity. J. Math. Phys. 1973, 14, 104. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Polon. B 1973, 4, 251. [Google Scholar]
- Ellis, H.G. The Evolving, Flowless Drain Hole: A Nongravitating Particle Model In General Relativity Theory. Gen. Rel. Grav. 1979, 10, 105. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Knoll, C.; Radu, E. Traversable wormholes in Einstein-Dirac-Maxwell theory. Phys. Rev. Lett. 2021, 126, 101102. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Zhidenko, A. Traversable Wormholes in General Relativity. Phys. Rev. Lett. 2022, 128, 091104. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Knoll, C.; Radu, E. Einstein–Dirac–Maxwell wormholes: Ansatz, construction and properties of symmetric solutions. Eur. Phys. J. C 2022, 82, 533. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. D 2012, 85, 044007. [Google Scholar] [CrossRef]
- Antoniou, G.; Bakopoulos, A.; Kanti, P.; Kleihaus, B.; Kunz, J. Novel Einstein–scalar-Gauss-Bonnet wormholes without exotic matter. Phys. Rev. D 2020, 101, 024033. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Charmousis, C.; Kanti, P. Traversable wormholes in beyond Horndeski theories. J. Cosmol. Astropart. Phys. 2022, 5, 022. [Google Scholar] [CrossRef]
- Naseer, T.; Sharif, M.; Faiza, M. Implications of f(R,Lm) theory on the existence of charged wormhole solutions. Chin. J. Phys. 2025, 94, 204–214. [Google Scholar] [CrossRef]
- Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Natural wormholes as gravitational lenses. Phys. Rev. D 1995, 51, 3117. [Google Scholar] [CrossRef]
- Safonova, M.; Torres, D.F.; Romero, G.E. Microlensing by natural wormholes: Theory and simulations. Phys. Rev. D 2002, 65, 023001. [Google Scholar] [CrossRef]
- Perlick, V. On the Exact gravitational lens equation in spherically symmetric and static space-times. Phys. Rev. D 2004, 69, 064017. [Google Scholar] [CrossRef]
- Nandi, K.K.; Zhang, Y.Z.; Zakharov, A.V. Gravitational lensing by wormholes. Phys. Rev. D 2006, 74, 024020. [Google Scholar] [CrossRef]
- Abe, F. Gravitational Microlensing by the Ellis Wormhole. Astrophys. J. 2010, 725, 787. [Google Scholar] [CrossRef]
- Toki, Y.; Kitamura, T.; Asada, H.; Abe, F. Astrometric Image Centroid Displacements due to Gravitational Microlensing by the Ellis Wormhole. Astrophys. J. 2011, 740, 121. [Google Scholar] [CrossRef]
- Nakajima, K.; Asada, H. Deflection angle of light in an Ellis wormhole geometry. Phys. Rev. D 2012, 85, 107501. [Google Scholar] [CrossRef]
- Tsukamoto, N.; Harada, T.; Yajima, K. Can we distinguish between black holes and wormholes by their Einstein ring systems? Phys. Rev. D 2012, 86, 104062. [Google Scholar] [CrossRef]
- Kuhfittig, P.K.F. Gravitational lensing of wormholes in the galactic halo region. Eur. Phys. J. C 2014, 74, 2818. [Google Scholar] [CrossRef]
- Bambi, C. Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 2013, 87, 107501. [Google Scholar] [CrossRef]
- Takahashi, R.; Asada, H. Observational Upper Bound on the Cosmic Abundances of Negative-mass Compact Objects and Ellis Wormholes from the Sloan Digital Sky Survey Quasar Lens Search. Astrophys. J. 2013, 768, L16. [Google Scholar] [CrossRef]
- Tsukamoto, N.; Harada, T. Light curves of light rays passing through a wormhole. Phys. Rev. D 2017, 95, 024030. [Google Scholar] [CrossRef]
- Nedkova, P.G.; Tinchev, V.K.; Yazadjiev, S.S. Shadow of a rotating traversable wormhole. Phys. Rev. D 2013, 88, 124019. [Google Scholar] [CrossRef]
- Ohgami, T.; Sakai, N. Wormhole shadows. Phys. Rev. D 2015, 91, 124020. [Google Scholar] [CrossRef]
- Shaikh, R. Shadows of rotating wormholes. Phys. Rev. D 2018, 98, 024044. [Google Scholar] [CrossRef]
- Gyulchev, G.; Nedkova, P.; Tinchev, V.; Yazadjiev, S. On the shadow of rotating traversable wormholes. Eur. Phys. J. C 2018, 78, 544. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Chen, C.Y.; Chew, X.Y.; Ong, Y.C.; Yeom, D.h. Traversable wormhole in Einstein 3-form theory with self-interacting potential. J. Cosmol. Astropart. Phys. 2021, 10, 059. [Google Scholar] [CrossRef]
- Guerrero, M.; Olmo, G.J.; Rubiera-García, D.; Sáez-Chillón, D.G. Light ring images of double photon spheres in black hole and wormhole spacetimes. Phys. Rev. D 2022, 105, 084057. [Google Scholar] [CrossRef]
- Huang, H.; Kunz, J.; Yang, J.; Zhang, C. Light ring behind wormhole throat: Geodesics, images, and shadows. Phys. Rev. D 2023, 107, 104060. [Google Scholar] [CrossRef]
- Harko, T.; Kovacs, Z.; Lobo, F.S.N. Electromagnetic signatures of thin accretion disks in wormhole geometries. Phys. Rev. D 2008, 78, 084005. [Google Scholar] [CrossRef]
- Harko, T.; Kovacs, Z.; Lobo, F.S.N. Thin accretion disks in stationary axisymmetric wormhole spacetimes. Phys. Rev. D 2009, 79, 064001. [Google Scholar] [CrossRef]
- Bambi, C. Broad Kα iron line from accretion disks around traversable wormholes. Phys. Rev. D 2013, 87, 084039. [Google Scholar] [CrossRef]
- Zhou, M.; Cardenas-Avendano, A.; Bambi, C.; Kleihaus, B.; Kunz, J. Search for astrophysical rotating Ellis wormholes with X-ray reflection spectroscopy. Phys. Rev. D 2016, 94, 024036. [Google Scholar] [CrossRef]
- Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F.H. Imaging a non-singular rotating black hole at the center of the Galaxy. Class. Quant. Grav. 2018, 35, 115009. [Google Scholar] [CrossRef]
- Deligianni, E.; Kunz, J.; Nedkova, P.; Yazadjiev, S.; Zheleva, R. Quasiperiodic oscillations around rotating traversable wormholes. Phys. Rev. D 2021, 104, 024048. [Google Scholar] [CrossRef]
- Deligianni, E.; Kleihaus, B.; Kunz, J.; Nedkova, P.; Yazadjiev, S. Quasiperiodic oscillations in rotating Ellis wormhole spacetimes. Phys. Rev. D 2021, 104, 064043. [Google Scholar] [CrossRef]
- Abdulkhamidov, F.; Nedkova, P.; Rayimbaev, J.; Kunz, J.; Ahmedov, B. Parameter constraints on traversable wormholes within beyond Horndeski theories through quasiperiodic oscillations. Phys. Rev. D 2024, 109, 104074. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Molina, C. The Ringing wormholes. Phys. Rev. D 2005, 71, 124009. [Google Scholar] [CrossRef]
- Kim, S.W. Wormhole perturbation and its quasi normal modes. Prog. Theor. Phys. Suppl. 2008, 172, 21. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Zhidenko, A. Passage of radiation through wormholes of arbitrary shape. Phys. Rev. D 2010, 81, 124036. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Zhidenko, A. Wormholes versus black holes: Quasinormal ringing at early and late times. J. Cosmol. Astropart. Phys. 2016, 1612, 043. [Google Scholar] [CrossRef]
- Völkel, S.H.; Kokkotas, K.D. Wormhole Potentials and Throats from Quasi-Normal Modes. Class. Quant. Grav. 2018, 35, 105018. [Google Scholar] [CrossRef]
- Aneesh, S.; Bose, S.; Kar, S. Gravitational waves from quasinormal modes of a class of Lorentzian wormholes. Phys. Rev. D 2018, 97, 124004. [Google Scholar] [CrossRef]
- Konoplya, R.A. How to tell the shape of a wormhole by its quasinormal modes. Phys. Lett. B 2018, 784, 43. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Chew, X.Y.; Kunz, J. Scalar and axial quasinormal modes of massive static phantom wormholes. Phys. Rev. D 2018, 98, 044035. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Zinhailo, A.F.; Stuchlík, Z. Quasinormal modes, scattering, and Hawking radiation in the vicinity of an Einstein-dilaton-Gauss-Bonnet black hole. Phys. Rev. D 2019, 99, 124042. [Google Scholar] [CrossRef]
- Churilova, M.S.; Konoplya, R.A.; Zhidenko, A. Arbitrarily long-lived quasinormal modes in a wormhole background. Phys. Lett. B 2020, 802, 135207. [Google Scholar] [CrossRef]
- Jusufi, K. Correspondence between quasinormal modes and the shadow radius in a wormhole spacetime. Gen. Rel. Grav. 2021, 53, 87. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Konoplya, R.A.; Pappas, T.D. General parametrization of wormhole spacetimes and its application to shadows and quasinormal modes. Phys. Rev. D 2021, 103, 124062. [Google Scholar] [CrossRef]
- González, P.A.; Papantonopoulos, E.; Rincón, Á.; Vásquez, Y. Quasinormal modes of massive scalar fields in four-dimensional wormholes: Anomalous decay rate. Phys. Rev. D 2022, 106, 024050. [Google Scholar] [CrossRef]
- Azad, B.; Blázquez-Salcedo, J.L.; Chew, X.Y.; Kunz, J.; Yeom, D.h. Polar modes and isospectrality of Ellis-Bronnikov wormholes. Phys. Rev. D 2023, 107, 084024. [Google Scholar] [CrossRef]
- Maji, A.B.; Kar, S. Quasinormal spectra of a wormhole family: Overtone features and a parameter-controlled redshift. arXiv 2025, arXiv:2506.09860. [Google Scholar] [CrossRef]
- Khoo, F.S.; Azad, B.; Blázquez-Salcedo, J.L.; González-Romero, L.M.; Kleihaus, B.; Kunz, J.; Navarro-Lérida, F. Quasinormal modes of rapidly rotating Ellis-Bronnikov wormholes. Phys. Rev. D 2024, 109, 084013. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A.; Goelen, F.; Hertog, T.; Vercnocke, B. Echoes of Kerr-like wormholes. Phys. Rev. D 2018, 97, 024040. [Google Scholar] [CrossRef]
- Kashargin, P.E.; Sushkov, S.V. Slowly rotating wormholes: The First order approximation. Grav. Cosmol. 2008, 14, 80. [Google Scholar] [CrossRef]
- Kashargin, P.E.; Sushkov, S.V. Slowly rotating scalar field wormholes: The Second order approximation. Phys. Rev. D 2008, 78, 064071. [Google Scholar] [CrossRef]
- Azad, B.; Blázquez-Salcedo, J.L.; Khoo, F.S.; Kunz, J. Are slowly rotating Ellis-Bronnikov wormholes stable? Phys. Lett. B 2024, 848, 138349. [Google Scholar] [CrossRef]
- Azad, B.; Blázquez-Salcedo, J.L.; Khoo, F.S.; Kunz, J. Radial perturbations of Ellis-Bronnikov wormholes in slow rotation up to second order. Phys. Rev. D 2024, 109, 124051. [Google Scholar] [CrossRef]
- Volkov, M.S. Stationary generalizations for the Bronnikov-Ellis wormhole and for the vacuum ring wormhole. Phys. Rev. D 2021, 104, 124064. [Google Scholar] [CrossRef]
- Kleihaus, B.; Kunz, J. Rotating Ellis Wormholes in Four Dimensions. Phys. Rev. D 2014, 90, 121503. [Google Scholar] [CrossRef]
- Chew, X.Y.; Kleihaus, B.; Kunz, J. Geometry of Spinning Ellis Wormholes. Phys. Rev. D 2016, 94, 104031. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Khoo, F.S.; Kleihaus, B.; Kunz, J. Quasinormal modes of rapidly rotating Einstein-Gauss-Bonnet-dilaton black holes. Phys. Rev. D 2025, 111, L021505. [Google Scholar] [CrossRef]
- Khoo, F.S. Scalar quasinormal modes of rotating regular black holes. Phys. Rev. D 2025, 111, 124025. [Google Scholar] [CrossRef]
- Blázquez-Salcedo, J.L.; Khoo, F.S. Quasinormal modes of slowly rotating Kerr-Newman black holes using the double series method. Phys. Rev. D 2023, 107, 084031. [Google Scholar] [CrossRef]
- Hartle, J.B. Slowly rotating relativistic stars. 1. Equations of structure. Astrophys. J. 1967, 150, 1005–1029. [Google Scholar] [CrossRef]
- Hartle, J.B.; Thorne, K.S. Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars. Astrophys. J. 1968, 153, 807. [Google Scholar] [CrossRef]
- Kojima, Y. Equations governing the nonradial oscillations of a slowly rotating relativistic star. Phys. Rev. D 1992, 46, 4289. [Google Scholar] [CrossRef]
- Shinkai, H.a.; Hayward, S.A. Fate of the first traversible wormhole: Black hole collapse or inflationary expansion. Phys. Rev. D 2002, 66, 044005. [Google Scholar] [CrossRef]
- González, J.A.; Guzman, F.S.; Sarbach, O. Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis. Class. Quant. Grav. 2009, 26, 015010. [Google Scholar] [CrossRef]
- González, J.A.; Guzman, F.S.; Sarbach, O. Instability of wormholes supported by a ghost scalar field. II. Nonlinear evolution. Class. Quant. Grav. 2009, 26, 015011. [Google Scholar] [CrossRef]
- Cremona, F.; Pirotta, F.; Pizzocchero, L. On the linear instability of the Ellis–Bronnikov–Morris-Thorne wormhole. Gen. Rel. Grav. 2019, 51, 19. [Google Scholar] [CrossRef]
- Dent, J.B.; Gabella, W.E.; Holley-Bockelmann, K.; Kephart, T.W. Gravitational waves from a black hole orbiting in a wormhole geometry. Phys. Rev. D 2021, 104, 044030. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azad, B.; Blázquez-Salcedo, J.L.; Khoo, F.S.; Kunz, J.; Navarro-Lérida, F. Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes. Universe 2025, 11, 325. https://doi.org/10.3390/universe11100325
Azad B, Blázquez-Salcedo JL, Khoo FS, Kunz J, Navarro-Lérida F. Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes. Universe. 2025; 11(10):325. https://doi.org/10.3390/universe11100325
Chicago/Turabian StyleAzad, Bahareh, Jose Luis Blázquez-Salcedo, Fech Scen Khoo, Jutta Kunz, and Francisco Navarro-Lérida. 2025. "Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes" Universe 11, no. 10: 325. https://doi.org/10.3390/universe11100325
APA StyleAzad, B., Blázquez-Salcedo, J. L., Khoo, F. S., Kunz, J., & Navarro-Lérida, F. (2025). Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes. Universe, 11(10), 325. https://doi.org/10.3390/universe11100325