Next Article in Journal
Toward a Reliability Scale for Assessing Reports of Unidentified Anomalous Phenomena (UAP)
Previous Article in Journal
Energy–Momentum Squared Gravity Attached with Perfect Fluid Admitting Conformal Ricci Solitons
Previous Article in Special Issue
Sculpting Spacetime: Thin Shells in Wormhole Physics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes

by
Bahareh Azad
1,
Jose Luis Blázquez-Salcedo
2,
Fech Scen Khoo
2,*,
Jutta Kunz
1 and
Francisco Navarro-Lérida
2
1
Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
2
Departamento de Física Teórica and IPARCOS, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
*
Author to whom correspondence should be addressed.
Universe 2025, 11(10), 325; https://doi.org/10.3390/universe11100325
Submission received: 11 July 2025 / Revised: 10 September 2025 / Accepted: 22 September 2025 / Published: 24 September 2025
(This article belongs to the Special Issue Experimental and Observational Constraints on Wormhole Models)

Abstract

We study the axial and polar perturbations of slowly rotating Ellis–Bronnikov wormholes in General Relativity, applying a perturbative double expansion. In particular, we derive the equations for l = 2 , M z = 2 perturbations of these objects, which are parametrized by an asymmetry parameter. The equations constitute an astrophysically interesting sector of the perturbations that contribute dominantly to the gravitational wave radiation. Moreover, calculation of these modes may exhibit potential instabilities in the quadrupole sector.

1. Introduction

The detection of gravitational waves from the inspiral, merger, and ringdown of compact objects provides an excellent tool to learn about both gravitation in the strong gravity regime and the compact objects themselves [1,2,3,4,5,6,7]. Besides black holes and neutron stars, a variety of further compact objects are being discussed as hypothetical astrophysical objects, whose signatures might be observable. Many of these objects feature as black hole mimickers, making their study an interesting endeavor [8].
One type of black hole mimicker is represented by wormholes [9]. In General Relativity (GR), wormholes need exotic matter [10,11,12,13,14,15] or quantum matter [16,17,18] for their support. In contrast, in alternative theories of gravity, the energy conditions may also be violated by the effective stress–energy tensor arising from the modified gravitational interaction [12,19,20,21,22,23].
Numerous potentially observable features of wormholes have already been discussed (see e.g., gravitational lensing by wormholes [24,25,26,27,28,29,30,31,32,33,34,35], shadows of wormholes [33,36,37,38,39,40,41,42], or accretion disks surrounding wormholes [43,44,45,46,47,48,49,50]). Concerning the ringdown of wormholes, so far, mainly quasinormal modes have been studied for static wormholes [51,52,53,54,55,56,57,58,59,60,61,62,63,64,65], and only recently has the exploration of quasinormal modes of rotating wormholes begun [66]. Besides those quasinormal modes, echoes of Kerr-like wormholes have also been addressed [67].
Here we focus on the ringdown of slowly rotating wormholes, choosing Ellis–Bronnikov wormholes [13,14] as the background solutions. Slowly rotating Ellis–Bronnikov wormholes have been constructed perturbatively up to second order in rotation in closed form [68,69,70,71]. For rapid rotation, no closed-form solutions have been obtained so far [72], while, numerically, some sets of solutions are available [73,74]. The analysis of the quasinormal modes in the slow rotation case usually proves rather valuable, since on the one hand, important features of the presence of rotation arise already, while on the other hand, the modes provide a crucial limiting test for the rapidly rotating case (see e.g., [75,76]).
In this paper, we derive the complete set of quadrupole perturbation equations for the quasinormal modes of second-order Ellis–Bronnikov background solutions. In Section 2, we present the theoretical settings together with the background solutions. Section 3 provides the general ansatz for the perturbations and discusses the derivation in the set of perturbation equations. The derivation makes large use of previous work for quasinormal modes of slowly rotating black holes [77], which showed that the exact quasinormal mode spectrum was approximated with rather good precision at least up to 50% of the extremal angular momentum. We conclude in Section 4 and provide some of the lengthy equations in the Appendix A.

2. Theoretical Settings

Ellis–Bronnikov wormholes are based on the action
S [ g , Φ ] = 1 16 π G d 4 x g R + 2 μ Φ μ Φ ,
where a phantom scalar field Φ is coupled minimally to GR. Thus, R is the curvature scalar, G is Newton’s constant, and the kinetic term of the scalar field has the sign reversed as compared to an ordinary scalar field. Variation of the action leads to the field equations of the theory
R μ ν = 2 μ Φ ν Φ , μ μ Φ = 0 .
The resulting Ellis–Bronnikov wormhole solutions are well-known static spherically symmetric solutions that can be expressed in the form
d s 2 = g μ ν d x μ d x ν = e f d t 2 + e f d r 2 + r 2 + r 0 2 d θ 2 + sin 2 θ d φ 2 ,
Φ ( r ) = Q 0 f ( r ) C
with
f = C r 0 tan 1 r r 0 π 2 .
This solution contains several parameters: C is related to the symmetry of the wormholes with respect to reflections r r . Since only C = 0 leads to a symmetric wormhole, C is referred to as the asymmetry parameter. The mass M 0 at (radial) plus infinity of the static wormholes is also given in terms of the asymmetry parameter C, M 0 = C / 2 ; the symmetric wormholes thus have vanishing mass, M 0 = 0 . The corresponding scalar charge Q 0 of the static wormholes is given by Q 0 = C 2 / 4 + r 0 2 . Here, r 0 is a free parameter that determines the size of the throat of symmetric wormholes. Note that for C = 0 , the scalar charge is simply given by this free parameter. The circumferential radius R is obtained from g ϕ ϕ ,
R 2 = e f ( r 2 + r 0 2 ) .
Clearly, for symmetric wormholes, it reaches its minimum for r = 0 . However, for asymmetric wormholes, the minimum, and thus the throat, is located at r = C / 2 . The area A of the throat is therefore given by
A = 4 π R 2 r = C / 2 .
Note that this expression corrects the expression for the area given in [70].

3. Perturbative Background Solutions

We now briefly recall the background solutions which are given up to a second order in rotation by [70,71,78,79]
d s 2 = e f 1 + ϵ r 2 2 h 0 ( r ) + h 2 ( r ) P 2 ( θ ) d t 2 + e f 1 + ϵ r 2 2 b 0 ( r ) + b 2 ( r ) P 2 ( θ ) d r 2 + e f R 2 1 + ϵ r 2 2 k 0 ( r ) + k 2 ( r ) P 2 ( θ ) × d θ 2 + sin 2 ( θ ) d φ ϵ r w ( r ) d t 2 ,
where R 2 = ( r 2 + r 0 2 ) , and P 2 ( θ ) = 3 cos 2 ( θ ) 1 / 2 denotes the Legendre polynomial. With the parameter ϵ r 1 , we keep track of the order of the slow rotation perturbation contributions. Up to second order we need to introduce seven radial perturbation functions, h 0 , h 2 , b 0 , b 2 , k 0 , k 2 , w , that can, in general, be reduced to six by choosing a gauge k 0 ( r ) = 0 and redefining k 2 = h 2 ν 2 . At the same time, the phantom field is given by
Φ = ϕ ( r ) + ϵ r 2 ϕ 20 ( r ) + ϕ 22 ( r ) P 2 ( θ ) ,
for the second order in rotation, with the two perturbation functions ϕ 20 , ϕ 22 . ϕ ( r ) is the static background scalar given by Equation (4). Thus, together there are eight unknown functions, w , h 0 , h 2 , b 0 , b 2 , ν 2 , ϕ 20 , ϕ 22 , that have to be determined by solving the field equations to obtain the desired background metric.
For the first order we obtain the function w ( r ) for the slowly rotating background [70,71],
w ( r ) = 3 J 2 C ( C 2 + r 0 2 ) 1 1 + 2 C C + r R 2 e 2 f ,
where J denotes the angular momentum of the wormhole. The remaining seven functions h 0 , h 2 , b 0 , b 2 , ν 2 , ϕ 20 , ϕ 22 decouple into two sets of functions, P 0 = { h 0 , b 0 , ϕ 20 } and P 2 = { h 2 , ν 2 , b 2 , ϕ 22 } . Closed-form expressions for these functions can be found in [70,71]. We exhibit all eight functions in Figure 1 for several values of the asymmetry parameter C.
The mass of the wormholes at plus infinity is then given in the second order in rotation by M = M 0 + Δ M , where the mass correction Δ M is extracted from the solution for b 0 ( r ) ,
Δ M = 3 J 2 C 2 + 4 r 0 2 C 2 + r 0 2 2 C 2 + 4 r 0 2 cot 1 C 2 r 0 2 C r 0 C 2 × ( 17 C 4 r 0 3 2 C 2 r 0 5 + 8 r 0 7 e 2 C cot 1 C 2 r 0 r 0 + C 2 + 4 r 0 2 × C 5 + 5 C 3 r 0 2 + 4 C r 0 4 cot 1 C 2 r 0 2 C 4 r 0 7 r 0 3 C 2 2 r 0 5 ) ,
which reduces for C = 0 to
Δ M = 3 J 2 ( π 2 8 ) / ( 2 π r 0 3 ) ,
and is read off at plus infinity. Thus the mass M of the rotating wormhole is non-vanishing for C = 0 , i.e., M | C = 0 = Δ M (see also [69]). Analogously, to the mass M, the scalar charge Q also consists of the static charge Q 0 and the correction term Δ Q ,
Q = Q 0 + ϵ r 2 Δ Q ,
where Δ Q = Δ M .

4. Quadrupole Perturbations

Having established the background solutions { g ( s r ) , Φ ( s r ) } up to second order in rotation, we now perturb up to the first order in ϵ q the metric field
g μ ν = g μ ν ( s r ) + ϵ q δ h μ ν ( t , r , θ , φ ) = g μ ν ( s r ) + ϵ q δ h μ ν ( A ) ( t , r , θ , φ ) + δ h μ ν ( P ) ( t , r , θ , φ ) ,
and the phantom scalar field
Φ = Φ ( s r ) + ϵ q δ ϕ ( P ) ( t , r , θ , φ ) .
The metric field perturbations consist of both the axial-led (A) and polar-led (P) perturbations, while the scalar field contributes solely to the polar perturbations.
In the static limit, the metric perturbations are given by
δ h μ ν = e i ω t e f N Y H 1 Y h 0 φ Y / s θ h 0 s θ θ Y H 1 Y e f L Y h 1 φ Y / s θ h 1 s θ θ Y h 0 φ Y / s θ h 1 φ Y / s θ R 2 T Y 0 h 0 s θ θ Y h 1 s θ θ Y 0 R 2 T s θ 2 Y ,
where Y denotes the spherical harmonics, s θ = sin θ , R 2 = r 2 + r 0 2 , and ω is an eigenvalue. The axial metric perturbations are given by h 0 ( r ) and h 1 ( r ) , while the polar metric perturbations are T ( r ) , L ( r ) , N ( r ) and H 1 ( r ) . The scalar perturbations are decomposed as
δ ϕ ( t , r , θ , φ ) = e i ω t ϕ 1 ( r ) Y ( θ , φ ) .
Besides the spherical harmonics Y ( θ , φ ) , all the r-dependent perturbation functions also carry two quantum numbers, l and M z .
In the presence of rotation, the perturbations need to be summed over all possible values of l and M z . While the axial symmetry of the background configurations still leads to a decoupling of the different values of M z , the l values are now coupled and one obtains a tower of equations, when the ansatz is inserted in the field equations for the metric and phantom scalar components,
G μ ν = G μ ν ( s r ) + ϵ q δ G μ ν e i ω t = 0 ,
S = S ( s r ) + ϵ q δ S e i ω t = 0 ,
where the slowly rotating background solution ensures G μ ν ( s r ) = 0 , and S ( s r ) = 0 .
Here, we follow [77,80] and decompose the field equations in terms of spherical harmonics, and then truncate the tower of equations in the slow rotation approximation, mixing different l. The resulting modes can be identified by the value of l (as well as by M z ), to which the modes reduce in the static limit of the background solutions, referring to the modes then as l-led modes. Moreover, in the perturbative scheme, the equations decouple into two sets, the polar-led and the axial-led perturbations [77].
The resulting system of equations then has the generic structure
z i = M i z i ,
where z i denotes a vector of perturbation functions or their derivatives; M i is a matrix containing the background functions, which depend on the radial coordinate r, the free parameter r 0 , the asymmetry parameter C, and the eigenvalue ω ; and i = p , a denotes the polar-led and axial-led equations, respectively. In the following, we focus on quadrupole, i.e., l = 2 -led, perturbations, and select M z = 2 .
The vector z a for the axial-led perturbations reads
z a = h 0 2 , 2 , h 1 2 , 2 , H 1 3 , 2 , T 3 , 2 , L 3 , 2 , N 3 , 2 , ϕ 1 3 , 2 , ϕ 1 3 , 2 T ,
where M a is a 8 × 8 matrix whose entries depend on the functions of the slowly rotating background and the eigenvalue ω . Analogously, the vector z p for the polar-led perturbations reads
z p = h 0 3 , 2 , h 1 3 , 2 , H 1 2 , 2 , T 2 , 2 , L 2 , 2 , N 2 , 2 , ϕ 1 2 , 2 , ϕ 1 2 , 2 T .
Thus, the l = 2 , M z = 2 axial-led perturbation functions A consist of the axial h 0 2 , 2 , h 1 2 , 2 functions and the polar H 1 3 , 2 , T 3 , 2 , L 3 , 2 , N 3 , 2 , ϕ 1 3 , 2 functions, while the l = 2 , M z = 2 polar-led perturbation functions P consist of the polar H 1 2 , 2 , T 2 , 2 , L 2 , 2 , N 2 , 2 , ϕ 1 2 , 2 functions and the axial h 0 3 , 2 , h 1 3 , 2 functions.
Consequently, there are, for each of the axial-led and polar-led l = M z = 2 perturbations in total, seven perturbation equations that have to be determined. We present the explicit expression for these perturbation equations for the symmetric wormholes, C = 0 , in the Appendix A, since in this case they already lead to rather lengthy expressions.
To obtain the solutions for the modes, one has to numerically solve the resulting system of equations as an eigenvalue problem, subject to the appropriate set of boundary conditions. For the wormholes, suitable boundary conditions are purely outgoing boundary conditions at both radial infinities.
To obtain the appropriate behavior at the boundaries, we consider the following parametrization of the perturbation functions at plus infinity,
h 0 l , 2 ( r ) = r 2 + r 0 2 h 0 ( r ) e i ω R * ,
h 1 l , 2 ( r ) = r 2 + r 0 2 h 1 ( r ) e i ω R * ,
H 1 l , 2 ( r ) = r 2 + r 0 2 H 1 ( r ) e i ω R * ,
T l , 2 ( r ) = T ( r ) e i ω R * ,
L l , 2 ( r ) = r 2 + r 0 2 L ( r ) e i ω R * ,
N l , 2 ( r ) = r 2 + r 0 2 N ( r ) e i ω R * ,
ϕ 1 l , 2 ( r ) = 1 / r 2 + r 0 2 ϕ 1 ( r ) e i ω R * ,
for l = 2 , 3 . At minus infinity, for axial-led perturbations, we consider the following parametrization,
h 0 2 , 2 ( r ) = ( r 2 + r 0 2 ) 3 / 2 h 0 ( r ) e i ω R * ,
h 1 2 , 2 ( r ) = ( r 2 + r 0 2 ) 3 / 2 h 1 ( r ) e i ω R * ,
H 1 3 , 2 ( r ) = ( r 2 + r 0 2 ) H 1 ( r ) e i ω R * ,
T 3 , 2 ( r ) = r 2 + r 0 2 T ( r ) e i ω R * ,
L 3 , 2 ( r ) = L ( r ) e i ω R * ,
N 3 , 2 ( r ) = N ( r ) e i ω R * ,
ϕ 1 3 , 2 ( r ) = ϕ 1 ( r ) e i ω R * .
For polar-led perturbations at minus infinity, we have
h 0 3 , 2 ( r ) = ( r 2 + r 0 2 ) h 0 ( r ) e i ω R * ,
h 1 3 , 2 ( r ) = ( r 2 + r 0 2 ) h 1 ( r ) e i ω R * ,
H 1 2 , 2 ( r ) = ( r 2 + r 0 2 ) 3 / 2 H 1 ( r ) e i ω R * ,
T 2 , 2 ( r ) = ( r 2 + r 0 2 ) T ( r ) e i ω R * ,
L 2 , 2 ( r ) = L ( r ) e i ω R * ,
N 2 , 2 ( r ) = N ( r ) e i ω R * ,
ϕ 1 2 , 2 ( r ) = r 2 + r 0 2 ϕ 1 ( r ) e i ω R * .
The tortoise coordinate R * is given by
d R * d r = e f ( r ) e 2 f ( r ) r r e f ( r ) h 0 ( r ) b 0 ( r ) ,
where f ( r ) , h 0 ( r ) , b 0 ( r ) are the background functions.
At plus infinity, an outgoing solution implies the following behavior for axial-led perturbations,
h 0 ( r ) C h 1 0 2 i r ω C h 1 0 ,
h 1 ( r ) C h 1 0 + 3 r π ω r 0 3 ( ( π 2 8 ) J 2 ω + i π r 0 3 ) C h 1 0 ,
H 1 ( r ) i ω C T 0 5 C T 0 r ,
T ( r ) C T 0 + C T 0 2 r 2 ω 2 ( 2 i ω 2 J ( r 0 ω ) 2 + 30 ) ,
L ( r ) i ω C T 0 + 5 C T 0 r ,
N ( r ) i ω C T 0 + 5 C T 0 r ,
ϕ 1 ( r ) C ϕ 1 0 + 6 i r ω C ϕ 1 0 ,
and for polar-led perturbations,
h 0 ( r ) C h 1 0 5 i r ω C h 1 0 ,
h 1 ( r ) C h 1 0 + 6 i r ω C h 1 0 ,
H 1 ( r ) i ω C T 0 + 3 C T 0 r π r 0 3 ( i J 2 π 2 ω 8 i J 2 ω 2 π r 0 3 / 3 ) ,
T ( r ) C T 0 + 1 140 π ω 2 r 0 3 r 2 ( 80 7 J 2 ω 3 π 2 C h 1 0 r 0 2 + 32 C T 0 i r 0 2 ω 2 315 32 ω J 2 π 2 35 π r 0 3 ( r 0 2 ω 2 6 ) 16 + 315 i J 2 ω 4 ) ,
L ( r ) i ω C T 0 6 C T 0 r π 2 r 0 6 ( i ω J 2 π 3 r 0 3 r 0 6 π 2 / 3 8 i ω r 0 3 J 2 π ) ,
N ( r ) i ω C T 0 + 2 C T 0 r ,
ϕ 1 ( r ) C ϕ 1 0 + 1 2 r ω π r 0 2 ( 3 ( π 2 8 ) ω J 2 C T 0 + 6 i π r 0 2 C ϕ 1 0 ) .
At minus infinity, the axial-led perturbation functions behave as
h 0 ( r ) 6 i 7 J 2 π 2 7 r 0 6 C T 1 J π 7 r ω r 0 6 ( 7 ω r 0 3 C T 1 ) ,
h 1 ( r ) 18 r 0 6 J 2 π 2 C h 1 2 54 i r ω r 0 6 J π C h 1 2 ( J π ω r 0 3 / 9 ) ,
H 1 ( r ) 11 J π ω C T 1 2 r 0 3 + C T 1 7 r r 0 3 ( 7 i ω r 0 3 175 i J π ) ,
T ( r ) 6 i J π C T 1 r 0 3 + C T 1 r ,
L ( r ) 6 C T 1 r 0 3 J ω π r 2 i C T 1 r 0 3 ( ω r 0 3 + 24 J π ) r 5 C T 1 + 3 C T 1 J π ω r 0 3 ( ω 2 r 0 2 30 ) ,
N ( r ) 5 C T 1 r 0 3 J ω π r 2 i C T 1 7 r 0 3 ( 7 ω r 0 3 + 168 J π ) r 5 C T 1 ,
ϕ 1 ( r ) 6 i J π C ϕ 1 1 r 0 3 + C ϕ 1 1 r ,
and for polar-led perturbations, they are
h 0 ( r ) 7 J π C T 2 7 r 0 3 + 6 i J π C h 1 1 r 0 3 ,
h 1 ( r ) 6 i J π C h 1 1 r 0 3 + C h 1 1 r ,
H 1 ( r ) 12 i J 2 π 2 ω C T 2 r 0 6 + J π C T 2 7 r r 0 6 ( 35 ω r 0 3 + 126 J π ) ,
T ( r ) 18 J 2 π 2 C T 2 r 0 6 + 6 i J π C T 2 r r 0 3 ,
L ( r ) 18 i ω J 2 π 2 C T 2 r 3 r 0 6 6 π J C T 2 ω r 2 r 0 3 ,
N ( r ) 6 i ω J 2 π 2 C T 2 r 3 r 0 6 2 π J r 2 C T 2 7 r 0 6 ( 14 ω r 0 3 + 27 J π ) ,
ϕ 1 ( r ) 18 J 2 π 2 C ϕ 1 2 r 0 6 54 i C ϕ 1 2 r 0 3 ω / 9 + π J J π r 0 6 ω r .
In general, C X k is a constant obtained from a specific order k of an expansion of the respective perturbation function X = T , H 1 , L , N , h 0 , h 1 , ϕ 1 , in O 1 r k for k = 0 , 1 , 2 , . . . Constants for k > 0 can all be expressed in terms of the three free constants at the zeroth order, i.e., C T 0 , C h 1 0 , C ϕ 1 0 . All these behaviors of the functions ensure an outgoing wave at the infinities.
Since the modes are determined in perturbation theory, one can also consider the eigenvalue ω as consisting of the static eigenvalue ω 0 and the higher-order contributions. Thus, in the second order in rotation, the eigenvalue will read
ω 2 , 2 = ω 2 , 2 ( 0 ) + ϵ r δ ω 2 , 2 ( 1 ) + ϵ r 2 δ ω 2 , 2 ( 2 ) ,
where, for clarity, we have omitted further classifications like the harmonic number n or indices for axial/polar. The modes can be obtained by integrating the perturbation equations, and they should connect smoothly to the static limit. In general, the scaled modes display quadratic behavior with respect to the scaled angular momentum, such that
M ω = M ω ( 0 ) + M δ ω ( 1 ) J M 2 + M δ ω ( 2 ) J M 2 2 ,
as reported in our previous studies in slow rotation up to the second order (see e.g., [77]).

5. Further Remarks

By performing a double expansion, we have derived the coupled sets of ordinary differential equations that are needed to obtain the quasinormal modes of slowly rotating Ellis–Bronnikov wormholes. In particular, we have focused on l = 2 , M z = 2 -led perturbations, which are expected to be accounted for (or at least among) the most prominent modes during a ringdown. The detectability of these modes will depend on a high signal-to-noise ratio from observations. The numerical implementation of the developed scheme, however, still presents challenges in the case of the quadrupole modes of Ellis–Bronnikov wormholes.
The quasinormal modes of the static Ellis–Bronnikov wormholes exhibit a threefold isospectrality in the symmetric case ( C = 0 ) [64]. However, this isospectrality is broken for finite values of the asymmetry parameter C. Likewise, we expect rotation to break isospectrality for the slowly rotating wormholes addressed here. Note that for a set of rapidly rotating wormholes, isospectrality is broken, as well [66].
The developed scheme has already been successfully applied in the case of radial modes of the Ellis–Bronnikov wormholes [70,71]. As shown in the left plot of Figure 2, the well-known purely imaginary unstable mode of the wormholes [58,81,82,83,84] was seen to become more stable with increasing rotation, as the absolute value of the scaled imaginary eigenvalue is decreasing towards zero. As the asymmetry parameter C increases up to about C = 0.5 , the critical value of the scaled angular momentum where the imaginary eigenvalue vanishes decreases. However, for C > 0.5 , the critical angular momentum value grows. While in the right plot of Figure 2, a second branch of an unstable mode was seen to emerge from a zero mode in the static limit, this becomes unstable with increasing rotation. Nonetheless, this branch of the mode merges with the previously discussed unstable mode, and, moreover, at an even smaller value of the scaled angular momentum. Based on this evidence, therefore, the radial instability is conjectured to disappear.
Unfortunately, perturbation theory cannot resolve the question of radial stability completely, and (in rotation) non-perturbative calculations along the lines of [66] are needed. A possible scenario for the further evolution of the modes would be one where both purely imaginary modes merge, develop a real part, and slowly become more stable, until the instability disappears when approaching the final extremal configuration.
Wormholes may also suffer from non-radial instabilities, of course. Since the study of the quasinormal mode spectrum will reveal instabilities, determination of the spectrum represents an essential aspect concerning the viability of wormhole solutions as potentially observable compact objects. In recent years, studies in numerical relativity (see e.g., [85]) are also starting to address potentially observational aspects of wormholes. Finally, perturbations of wormholes in alternative theories of gravity, and of other multipolar nature, are left for future studies.

Author Contributions

Conceptualization, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; methodology, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; software, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; validation, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; formal analysis, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; investigation, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; resources, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; data curation, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; writing—original draft preparation, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; writing—review and editing, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; visualization, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; supervision, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; project administration, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L.; funding acquisition, B.A., J.L.B.-S., F.S.K., J.K. and F.N.-L. All authors have read and agreed to the published version of the manuscript.

Funding

We gratefully acknowledge the support of DAAD and MICINN project PID2021-125617NB-I00, “QuasiMode”. J.L.B.-S. gratefully acknowledges support from MICINN, project CNS2023-144089 “Quasinormal modes”. F.S.K. gratefully acknowledges support from “Atracción de Talento Investigador Cesar Nombela” of the Comunidad de Madrid, under the grant number 2024-T1/COM-31385.

Data Availability Statement

The data are available from the authors upon request.

Acknowledgments

We would like to thank Luis Manuel González-Romero and Hendrik Mennenga for their support.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

We exhibit the final sets of equations for the symmetric case C = 0 below. For asymmetric wormholes with C > 0 , the perturbation equations are extremely lengthy. Therefore, we do not present them here, but provide them in a supplementary file (Maple) available upon request.

Appendix A.1. Axial Perturbation Equations

We first show the axial perturbation equations. Here, the minimal system of equations is described by five ordinary differential equations (ODEs) for ϕ 1 3 , 2 , H 1 3 , 2 , T 3 , 2 , h 0 2 , 2 , and h 1 2 , 2 , and by two algebraic equations for L 3 , 2 , N 3 , 2 . As this is an axial-led perturbation system, one finds that only the axial metric perturbation functions h 0 , h 1 carry the quantum numbers l = M z = 2 . They are coupled with the other polar perturbation functions H 1 , T , L , N , ϕ 1 with l = 3 , M z = 2 .
For the perturbations of the phantom scalar field, we obtain
d 2 d r 2 ϕ 1 3 , 2 r = 2 r d d r ϕ 1 3 , 2 r r 2 + r 0 2 2 J r 0 ω T 3 , 2 r r 2 + r 0 2 2 12 J 7 r 0 h 0 2 , 2 r 7 r 2 + r 0 2 3 + 48 i J 7 r r 0 h 1 2 , 2 r 7 r 2 + r 0 2 4 ω + ( 12 ω J r 2 + r 0 2 ϕ r + r r 0 r 2 + r 0 2 r 0 3 + r 4 ω 2 + ( 2 r 0 2 ω 2 + 12 ) r 2 r 0 4 ω 2 + 8 r 0 2 ( r 2 + r 0 2 ) 2 ) ϕ 1 3 , 2 ( r ) .
Concerning the metric perturbations, there are six relevant perturbation functions. First, we show the equation for the H 1 function,
d d r H 1 3 , 2 ( r ) = i 25 r 0 2 ( r 2 + r 0 2 ) 2 ( ( r 2 + r 0 2 ) ( r 2 ω 2 + 50 ) r 0 2 + r 4 ω 2 + 40 r 2 J ϕ ( r ) r 0 ( 10 ω r 0 6 + 20 r 2 ω r 0 4 + r ( J r 2 ω 2 + 10 r 3 ω + 50 J ) r 0 2 + J r 3 ( r 2 ω 2 + 40 ) ) ) d d r ϕ 1 3 , 2 ( r ) + ( J r 0 50 r 0 3 ( r 2 + r 0 2 ) 2 ω ( ( r 2 + r 0 2 ) ( r 4 ω 4 + r 2 r 0 2 ω 4 + 130 r 2 ω 2 + 140 r 0 2 ω 2 300 ) r ϕ ( r ) + r 6 ω 4 + r 4 r 0 2 ω 4 + 130 r 4 ω 2 + 200 r 2 r 0 2 ω 2 + 60 r 0 4 ω 2 300 r 2 ) + ω 2 r 5 ) H 1 3 , 2 ( r ) + i 50 ( r 2 + r 0 2 ) r 0 3 ( ( ( r 2 + r 0 2 ) J ( ( r 2 ω 4 + 145 ω 2 ) r 0 2 + r 4 ω 4 + 125 r 2 ω 2 250 ) ϕ ( r ) ( 10 ω 3 r 0 6 + 20 ( r 2 ω 3 5 ω ) r 0 4 + r ω ( J r 2 ω 3 + 10 r 3 ω 2 + 155 J ω 100 r ) r 0 2 + J r ( r 4 ω 4 + 125 r 2 ω 2 250 ) ) r 0 ) ) T 3 , 2 ( r ) + 6 i ω J 7 h 0 2 , 2 ( r ) 7 r 0 3 ( r 2 + r 0 2 ) 2 ( r 2 + r 0 2 ) 2 ϕ ( r ) + r 3 r 0 + 13 r 0 3 r 15 + 6 J 7 h 1 2 , 2 ( r ) 35 r 0 3 ( r 2 + r 0 2 ) 3 ( r ω 2 ( r 2 + r 0 2 ) 3 ϕ ( r ) + ( ( r 2 ω 2 + 40 3 ) r 0 4 + ( 2 r 4 ω 2 + 32 3 r 2 ) r 0 2 + r 6 ω 2 ) r 0 ) + 3 i 25 r 0 2 ( r 2 + r 0 2 ) 3 ( ( r 2 + r 0 2 ) ( r 2 + 5 r 0 2 3 ) J ( r 2 ω 2 + r 0 2 ω 2 10 ) ϕ ( r ) + ( 20 ω r 0 6 3 + 5 r ω ( J ω 8 r ) r 0 4 3 + 8 r ( J r 2 ω 2 5 2 r 3 ω 25 4 J ) r 0 2 3 + J r 3 ( r 2 ω 2 10 ) ) r 0 ) r ϕ 1 3 , 2 ( r ) .
For the T function, the equation is given by
d d r T 3 , 2 ( r ) = ( 12 J 5 r 0 2 ω ( r 2 + r 0 2 ) 2 ( r ( r 2 + r 0 2 ) ( r 2 ω 2 + 30 ) ϕ ( r ) 60 + r 0 r 4 ω 2 60 + r 0 2 + r 2 2 ) 2 r r 0 5 ( r 2 + r 0 2 ) ) d d r ϕ 1 3 , 2 ( r ) + i 50 r 0 3 ω 2 ( r 2 + r 0 2 ) 2 ( r 4 ω 4 + 120 r 2 ω 2 900 ( r 2 + r 0 2 ) J ϕ ( r ) r 0 ( 10 ( r 2 ω 3 + 30 ω ) r 0 4 + 10 ( r 4 ω 3 + 12 J r ω 2 + 30 r 2 ω ) r 0 2 + J r ( r 4 ω 4 + 120 r 2 ω 2 900 ) ) ) H 1 3 , 2 ( r ) + ( J r 0 50 r 0 3 ω ( r 2 + r 0 2 ) 2 ( ( r 2 + r 0 2 ) ( r 4 ω 4 + r 2 r 0 2 ω 4 + 140 r 2 ω 2 + 150 r 0 2 ω 2 300 ) r ϕ ( r ) + r 6 ω 4 + r 4 r 0 2 ω 4 + 140 r 4 ω 2 + 220 r 2 r 0 2 ω 2 + 60 r 0 4 ω 2 300 r 2 300 r 0 2 ) ω 2 r 5 ) T 3 , 2 ( r ) 4 r 2 J 7 h 0 2 , 2 ( r ) 35 ( r 2 + r 0 2 ) 3 T 1 35 r 0 3 ( r 2 + r 0 2 ) 4 ω + T 2 5 r 0 2 ω ( r 2 + r 0 2 ) 3 + 2 ( 3 r 2 + 5 r 0 2 ) r 0 5 ( r 2 + r 0 2 ) 2 ϕ 1 3 , 2 ( r ) ,
where
T 1 = 6 7 i J h 1 2 , 2 ( r ) ( ( r 2 + r 0 2 ) 3 ( r 2 ω 2 + 30 ) ϕ ( r ) + ( r 2 ω 2 + 50 ) r 0 4 + 2 r 4 ω 2 + 232 3 r 2 r 0 2 + r 6 ω 2 + 30 r 4 r r 0 ) ,
and
T 2 = J ( ( r 2 ω 2 + 30 ) ( r 2 + r 0 2 ) r 0 2 + 3 r 2 5 ϕ ( r ) + 3 r 4 ω 2 5 + ( r 0 2 ω 2 + 18 ) r 2 + 6 r 0 2 r 0 r ) .
For the two algebraic equations, L is given by
L 3 , 2 ( r ) = ω J r 2 ( r 0 2 ϕ ( r ) + ϕ ( r ) r 2 + r r 0 ) 25 ( r 2 + r 0 2 ) r 0 2 + 2 r 0 5 d d r ϕ 1 3 , 2 ( r ) + i 50 ( r 2 + r 0 2 ) r 0 3 ( ( r 2 ω 2 + 90 ) ( r 2 + r 0 2 ) r J ϕ ( r ) + r 0 ( 10 r ω r 0 4 + 10 ( r 3 ω + 6 J ) r 0 2 + J r 2 ( r 2 ω 2 + 90 ) ) ) H 1 3 , 2 ( r ) + ( ω J 50 ( r 2 + r 0 2 ) r 0 3 ( ( r 2 + r 0 2 ) ( r 4 ω 2 + ( r 0 2 ω 2 + 110 ) r 2 + 120 r 0 2 ) ϕ ( r ) + r 0 r ( r 4 ω 2 + ( r 0 2 ω 2 + 110 ) r 2 + 130 r 0 2 ) ) 1 + ( r 2 + r 0 2 ) ω 2 5 ) T 3 , 2 ( r ) + 4 7 J r h 0 2 , 2 ( r ) 35 ( r 2 + r 0 2 ) 2 + 6 7 i J 35 r 0 3 ω ( r 2 + r 0 2 ) 3 ( r ω 2 ( r 2 + r 0 2 ) 3 ϕ ( r ) + ( r 2 ω 2 + 20 ) r 0 4 + ( 2 r 4 ω 2 + 52 3 r 2 ) r 0 2 + r 6 ω 2 r 0 ) h 1 2 , 2 ( r ) + r 5 3 ω J ( ( r 2 + r 0 2 ) ϕ ( r ) + r r 0 ) 5 r 0 2 ( r 2 + r 0 2 ) 2 r 2 + 5 r 0 2 3 + 4 r 0 r 2 + r 0 2 ϕ 1 3 , 2 ( r ) ,
and N is given by
N 3 , 2 ( r ) = ω J r 2 r 0 2 ϕ ( r ) + ϕ ( r ) r 2 + r r 0 25 ( r 2 + r 0 2 ) r 0 2 + 2 r 0 5 d d r ϕ 1 3 , 2 ( r ) + i 50 ( r 2 + r 0 2 ) r 0 3 ( ( r 2 ω 2 + 90 ) ( r 2 + r 0 2 ) r J ϕ ( r ) + r 0 ( 10 r ω r 0 4 + 10 ( r 3 ω + 6 J ) r 0 2 + J r 2 ( r 2 ω 2 + 90 ) ) ) H 1 3 , 2 ( r ) + ( ω J 50 ( r 2 + r 0 2 ) r 0 3 ( ( r 4 ω 2 + ( r 0 2 ω 2 + 60 ) r 2 + 70 r 0 2 ) ( r 2 + r 0 2 ) ϕ ( r ) + ( r 4 ω 2 + ( r 0 2 ω 2 + 60 ) r 2 + 80 r 0 2 ) r 0 r ) 1 + ( r 2 + r 0 2 ) ω 2 5 ) T 3 , 2 ( r ) 12 J 7 7 r 0 3 ( r 2 + r 0 2 ) 2 ( r 2 + r 0 2 ) 2 ϕ ( r ) + r 3 r 0 + 14 r 0 3 r 15 h 0 2 , 2 ( r ) + 6 7 i J h 1 2 , 2 ( r ) 35 r 0 3 ω ( r 2 + r 0 2 ) 3 ( r ω 2 ( r 2 + r 0 2 ) 3 ϕ ( r ) + ( r 2 ω 2 + 20 3 ) r 0 4 + ( 2 r 4 ω 2 + 52 3 r 2 ) r 0 2 + r 6 ω 2 r 0 ) + r 5 3 ω J ( r 2 + r 0 2 ) ϕ ( r ) + r r 0 5 r 0 2 ( r 2 + r 0 2 ) 2 r 2 + 5 r 0 2 3 + 4 r 0 r 2 + r 0 2 ϕ 1 3 , 2 ( r ) .
Lastly, we show the perturbation equations for the two axial metric functions, h 0 and h 1 . For h 0 , the equation is given by
d d r h 0 2 , 2 r = h 1 175 ω r 0 5 r 2 + r 0 2 3 h 2 350 r 0 6 ω 2 r 2 + r 0 2 3 h 3 350 r 0 6 ω r 2 + r 0 2 2 + h 4 7 r 0 6 ω 2 r 2 + r 0 2 3 + 4 J ω r 2 + r 0 2 2 + 2 r r 2 + r 0 2 h 0 2 , 2 r + h 5 35 r 0 6 r 2 + r 0 2 4 π ω 3 + h 6 175 r 0 5 ω r 2 + r 0 2 4 h 7 35 r 0 6 ω r 2 + r 0 2 2 ,
where
h 1 = 7 J d d r ϕ 1 3 , 2 ( r ) ( ( r 2 + r 0 2 ) 2 ( r 2 ω 2 + 270 ) r 0 2 + r 4 ω 2 + 30 r 2 r J ϕ ( r ) 2 + 2 ( r 2 + r 0 2 ) 2 5 r ω r 0 4 + 5 ( r 3 ω + 54 J ) r 0 2 + 120 J r π r 0 + J r 2 ( r 2 ω 2 + 30 ) r 0 ϕ ( r ) + ( 10 r 2 ω r 0 6 + 240 J π r 0 5 + 20 ( r 4 ω 3 J r ) r 0 4 + 480 J r 2 π r 0 3 + r 3 ( J r 2 ω 2 + 10 r 3 ω + 30 J ) r 0 2 + 240 J r 4 π r 0 + J r 5 ( r 2 ω 2 + 30 ) ) r 0 2 ) ,
h 2 = i 7 J H 1 3 , 2 ( r ) ( J ( r 2 + r 0 2 ) 3 ( r 4 ω 4 1500 r 2 ω 2 660 r 0 2 ω 2 900 ) ϕ ( r ) 2 + 2 ( 5 ( r 2 ω 3 + 30 ω ) r 0 5 330 J ω 2 π r 0 4 + 5 ( r 4 ω 3 336 J r ω 2 + 30 r 2 ω ) r 0 3 1140 J r 2 ω 2 π r 0 2 + J r ( r 4 ω 4 1500 r 2 ω 2 900 ) r 0 810 J r 4 π ω 2 ) ( r 2 + r 0 2 ) 2 ϕ ( r ) + r 0 ( 10 ( r 3 ω 3 198 J ω 2 + 30 r ω ) r 0 7 1740 J r ω 2 π r 0 6 + 20 ( r 5 ω 3 231 J r 2 ω 2 + 30 r 3 ω + 90 J ) r 0 5 5100 J r 3 ω 2 π r 0 4 + r 2 J r 4 ω 4 + 10 r 5 ω 3 4200 J r 2 ω 2 + 300 r 3 ω 900 J r 0 3 4980 J r 5 π ω 2 r 0 2 + J r 4 ( r 4 ω 4 1500 r 2 ω 2 900 ) r 0 1620 J r 7 ω 2 π ) ) ,
h 3 = 7 J T 3 , 2 ( r ) ( ( r 2 + r 0 2 ) 2 ( r 2 ω 4 + 390 ω 2 ) r 0 2 + r 4 ω 4 + 140 r 2 ω 2 2100 r J ϕ ( r ) 2 + 2 ( r 2 + r 0 2 ) ( 5 r ω 3 r 0 7 + ( 10 r 3 ω 3 + 295 J ω 2 ) r 0 5 + 120 J r ω 2 π r 0 4 + ( J r 4 ω 4 + 5 r 5 ω 3 + 450 J r 2 ω 2 1350 J ) r 0 3 + 120 π r J r 2 ω 2 15 2 r 0 2 + J r 2 ( r 4 ω 4 + 140 r 2 ω 2 2100 ) r 0 900 J r 3 π ) ϕ ( r ) + ( ( 10 r 2 ω 3 + 100 ω ) r 0 7 + 240 J ω 2 π r 0 6 + ( 20 r 4 ω 3 + 290 J r ω 2 + 100 r 2 ω ) r 0 5 + 480 π r 2 ω 2 5 2 J r 0 4 + r J r 4 ω 4 + 10 r 5 ω 3 + 510 J r 2 ω 2 2700 J r 0 3 + 240 π r 2 ω 2 25 2 r 2 J r 0 2 + J r 3 ( r 4 ω 4 + 140 r 2 ω 2 2100 ) r 0 1800 J r 4 π ) r 0 ) ,
h 4 = 36 J 2 ( r ω 2 ( r 2 + r 0 2 ) 3 ϕ ( r ) 2 + ( r 2 + r 0 2 ) ( 4 r 0 5 ω 2 3 + π r r 0 4 ω 2 + ( 151 r 2 ω 2 + 210 ) r 0 3 45 + 2 π r 3 r 0 2 ω 2 + 2 r 0 r 4 ω 2 + π r 5 ω 2 ) ϕ ( r ) + ( 2 π r 0 6 ω 2 3 + 2 ω 2 r r 0 5 + 7 π r 2 r 0 4 ω 2 3 + 2 r ( 53 r 2 ω 2 + 105 ) r 0 3 45 + 8 r 4 ω 2 π r 0 2 3 + r 5 ω 2 r 0 + r 6 π ω 2 ) r 0 ) 2 ,
h 5 = 6 i ( π r 2 ω 4 150 ω 2 r 0 2 + r 4 ω 4 90 r 2 ω 2 840 ( r 2 + r 0 2 ) 3 J 2 ϕ ( r ) 2 2 ( r 2 + r 0 2 ) ( 35 ω 3 π r 0 9 2 + 35 3 2 r 2 ω 3 + 2 ω π r 0 7 55 ω 2 π 2 56 11 J r 0 6 + r ω π J r 2 ω 3 + 105 2 r 3 ω 2 80 J ω + 140 r r 0 5 170 ω 2 π 2 56 17 r 2 J r 0 4 + 2 π J r 4 ω 4 + 35 4 r 5 ω 3 257 3 J r 2 ω 2 + 35 r 3 ω 420 J r r 0 3 175 π 2 8 5 ω 2 r 4 J r 0 2 + J r 3 π r 4 ω 4 90 r 2 ω 2 840 r 0 60 J r 6 ω 2 π 2 ) J ϕ ( r ) ( 35 ω 4 r 0 13 6 + 70 ( r 2 ω 4 ω 2 ) r 0 11 3 + 35 ω 2 r r 3 ω 2 + J ω 2 r r 0 9 + 5 21 J r 3 ω 3 + 28 J r ω + 14 3 r 6 ω 4 14 r 4 ω 2 + 128 3 J 2 ω 2 r 0 7 120 J 2 r ω 2 π r 0 6 + r 2 ω J 2 r 2 ω 3 + 105 J r 3 ω 2 + 610 3 J 2 ω + 280 J r + 35 6 r 6 ω 3 70 3 r 4 ω r 0 5 360 J 2 r 3 ω 2 π r 0 4 + 2 J r 4 ω 4 + 35 2 r 5 ω 3 154 3 J r 2 ω 2 + 70 r 3 ω 420 J r 2 J r 0 3 360 J 2 r 5 ω 2 π r 0 2 + J 2 r 4 r 4 ω 4 90 r 2 ω 2 840 r 0 120 J 2 r 7 ω 2 π ) π r 0 ) h 1 2 , 2 ( r ) ,
h 6 = 3 7 ( ( r 2 + r 0 2 ) 2 J ( 90 + 5 r 2 ω 2 3 r 0 4 + 8 3 r 4 ω 2 80 r 2 r 0 2 + r 6 ω 2 330 r 4 ) ϕ ( r ) 2 + 2 ( r 2 + r 0 2 ) 2 ( 25 r 0 7 ω 3 + 40 r 2 r 0 5 ω 3 + 20 J π r 0 4 + 5 r ( J r 2 ω 2 + 3 r 3 ω 6 J ) r 0 3 3 80 J r 2 π r 0 2 + J r 3 ( r 2 ω 2 330 ) r 0 180 J r 4 π ) ϕ ( r ) + ( 50 r r 0 9 ω 3 + 120 J + 130 r 3 ω 3 r 0 7 40 J π r r 0 6 + 5 r 2 ( J r 2 ω 2 + 22 r 3 ω + 18 J ) r 0 5 3 440 J π r 3 r 0 4 + 8 3 J r 6 ω 2 300 J r 4 + 10 r 7 ω r 0 3 760 J π r 5 r 0 2 + J r 6 ( r 2 ω 2 330 ) r 0 360 J π r 7 ) r 0 ) J ϕ 1 3 , 2 ( r ) ,
and
h 7 = 18 i 7 ( r 2 + r 0 2 3 ( r 2 + r 0 2 ) 2 ϕ ( r ) 2 + ( r 2 + r 0 2 ) 2 r 2 π + 1 3 π r 0 2 + 2 r r 0 ϕ ( r ) + r 0 r 5 π + 2 r 3 π r 0 2 + r π r 0 4 + r 0 r 4 + 5 3 r 0 3 r 2 + r 0 5 ) J 2 × 2 i d 2 d r 2 ϕ 1 3 , 2 ( r ) r 0 + r 2 ω 2 + r 0 2 ω 2 5 i d d r T 3 , 2 ( r ) ω r d d r H 1 3 , 2 ( r ) .
For the h 1 function, the equation is given by
d d r h 1 2 , 2 r = γ 1 35 r 0 5 r 2 + r 0 2 2 γ 2 35 r 0 6 ω r 2 + r 0 2 2 + γ 3 35 r 2 + r 0 2 2 r 0 6 + γ 4 7 r 2 ω r 0 6 π r 2 + r 0 2 3 γ 5 7 ω 2 r 3 r 0 6 π r 2 + r 0 2 3 + γ 6 35 r 0 5 r 2 + r 0 2 3 ,
where
γ 1 = 54 i J 2 7 d d r ϕ 1 3 , 2 ( r ) ( r 2 + r 0 2 3 ( r 2 + r 0 2 ) 2 ϕ ( r ) 2 + π r 4 + 4 3 π r 2 r 0 2 + 1 3 π r 0 4 + 2 r 3 r 0 + 53 27 r 0 3 r ( r 2 + r 0 2 ) ϕ ( r ) + r 0 r 5 π + 2 r 3 π r 0 2 + r π r 0 4 + r 0 r 4 + 44 27 r 0 3 r 2 + r 0 5 ) ,
γ 2 = 27 J 2 7 ( r 2 + r 0 2 3 ω 2 r ( r 2 + r 0 2 ) 2 ϕ ( r ) 2 + ( π r r 0 4 ω 2 3 + 53 r 2 ω 2 27 10 9 r 0 3 + 4 π r 3 r 0 2 ω 2 3 + 2 r 0 r 4 ω 2 + π r 5 ω 2 ) ( r 2 + r 0 2 ) ϕ ( r ) + r ( r 0 5 ω 2 + π r r 0 4 ω 2 + 44 r 2 ω 2 27 10 9 r 0 3 + 2 π r 3 r 0 2 ω 2 + r 0 r 4 ω 2 + π r 5 ω 2 ) r 0 ) H 1 3 , 2 ( r ) ,
γ 3 = 27 i 7 ( ( r 2 + r 0 2 ) 2 r 0 4 ω 2 3 + 5 3 + 4 r 2 ω 2 r 0 2 3 + r 4 ω 2 35 r 2 9 J ϕ ( r ) 2 + ( r 2 + r 0 2 ) 2 ( 5 r 0 5 ω 27 + J ω 2 π r 0 4 3 + 53 ω r ( J ω + 5 r 53 ) r 0 3 27 + 4 3 π r 2 ω 2 5 4 J r 0 2 + 2 r 2 ω 2 35 9 r J r 0 + J r 2 π r 2 ω 2 5 ) ϕ ( r ) + r 0 ( ω 5 r 27 + J ω r 0 7 + J r ω 2 π r 0 6 + 71 r 2 ω 2 70 J + 10 r 3 ω r 0 5 27 + 3 π r 2 ω 2 5 3 r J r 0 4 + 71 r 2 r 0 3 27 r 2 ω 2 195 71 J + 5 r 3 ω 71 + 3 π r 2 ω 2 10 3 r 3 J r 0 2 + J r 4 r 2 ω 2 35 9 r 0 + J π r 5 r 2 ω 2 5 ) ) J T 3 , 2 ( r ) ,
γ 4 = 72 i ( ω 2 π ( r 2 + r 0 2 ) 3 J 2 r 4 1 4 r 2 r 0 2 7 12 r 0 4 ϕ ( r ) 2 ω ( r 2 + r 0 2 ) 3 J ( 7 J ω ( π 2 8 ) r 0 4 24 + 7 π r r 0 3 6 ( J ω + r 2 ) + J r 2 ω ( π 2 + 56 ) r 0 2 24 + 2 J r 3 ω π r 0 + J r 4 ω π 2 ) ϕ ( r ) ( 7 r 2 ω 2 π r 0 11 72 + J 2 + r 4 4 7 ω 2 π r 0 9 6 + 7 J 2 r ω 2 ( π 2 8 ) r 0 8 24 + J 2 + 7 r 4 122 ω + 7 J r 61 61 ω π r 2 r 0 7 12 + π 2 56 15 15 ω 2 r 3 J 2 r 0 6 8 + J 2 r 2 + 7 528 r 6 ω 2 + 7 J r 3 ω 44 + 7 J 2 66 22 π r 2 r 0 5 3 + π 2 56 31 31 ω 2 r 5 J 2 r 0 4 8 + J ω + 7 r 53 53 ω π r 6 J r 0 3 12 + π 2 56 79 79 ω 2 r 7 J 2 r 0 2 24 + J 2 r 8 ω 2 π r 0 + J 2 r 9 ω 2 π 2 ) r 0 ) h 0 2 , 2 ( r ) ,
γ 5 = 36 ( ω 2 π ( r 2 + r 0 2 ) 3 r 4 7 r 0 4 6 J ϕ ( r ) 2 + ( r 2 + r 0 2 ) J ( 7 ω 2 ( π 2 8 ) r 0 8 12 + 7 r π r 0 7 ω 2 3 7 r 2 ω 2 ( π 2 8 ) r 0 6 6 + 6 r 3 π ω 2 r 0 5 + 5 12 ω 2 π 2 + 56 5 r 4 r 0 4 + 17 3 r 2 ω 2 + 28 17 r 3 π r 0 3 + 2 r 6 π 2 ω 2 r 0 2 + 2 r 7 π ω 2 r 0 + π 2 r 8 ω 2 ) ϕ ( r ) + ( 7 J π r 0 9 ω 2 3 + 7 J ω 2 r ( π 2 8 ) r 0 8 12 + 35 6 ω π J ω 4 r 15 r 2 r 0 7 + 29 12 ω 2 π 2 168 29 r 3 J r 0 6 + 21 2 ω π J ω 4 r 27 r 4 r 0 5 + 49 12 π 2 24 7 ω 2 r 5 J r 0 4 + 14 3 J r 4 π ( r 2 ω 2 + 2 ) r 0 3 + 13 4 ω 2 π 2 56 39 r 7 J r 0 2 + J π r 8 r 0 ω 2 + J π 2 r 9 ω 2 ) r 0 ) J h 1 2 , 2 ( r ) ,
and
γ 6 = 108 i J 2 ( r 2 + r 0 2 3 ( r 2 + r 0 2 ) 2 r ϕ ( r ) 2 + ( r 2 + r 0 2 ) r 5 π + 4 3 r 3 π r 0 2 + 1 3 r π r 0 4 + 2 r 0 r 4 + 37 18 r 0 3 r 2 + 5 54 r 0 5 ϕ ( r ) + r r 0 r 5 π + 2 r 3 π r 0 2 + r π r 0 4 + r 0 r 4 + 23 9 r 0 3 r 2 + 52 27 r 0 5 ) 7 ϕ 1 3 , 2 ( r ) .
Depending on the perturbation function, its differential equation in the minimal system may contain only up to first-order contributions from the rotation. In fact, in this sector of axial perturbations, this is true for all the ODEs of the polar metric functions H 1 ( r ) , T ( r ) , L ( r ) , N ( r ) and the scalar function ϕ 1 ( r ) , whereas for the axial metric functions h 0 ( r ) and h 1 ( r ) , they contain terms up to the second order in rotation.

Appendix A.2. Polar Perturbation Equations

Next, we show the polar perturbation equations. Here, the mixing of l is reversed. The minimal system of equations is described by five ODEs for ϕ 1 2 , 2 , H 1 2 , 2 , T 2 , 2 , h 0 3 , 2 , and h 1 3 , 2 , and two algebraic equations for L 2 , 2 , N 2 , 2 . Due to the nature of the polar perturbations, the polar metric perturbation functions H 1 , T , L , N and the phantom scalar perturbation function ϕ 1 are the ones carrying the quantum numbers l = M z = 2 . They are coupled with the axial metric perturbation functions h 0 , h 1 with l = 3 , M z = 2 . Note that here the polar perturbation equations are significantly more involved compared to the axial perturbation equations.
First we obtain the equation for the polar-led perturbations of the phantom scalar field
d 2 d r 2 ϕ 1 2 , 2 r = χ 1 7 r 0 3 r 3 π r 2 + r 0 2 4 + χ 2 7 r 0 5 ω π r 2 + r 0 2 4 χ 3 7 r 0 5 π r 2 + r 0 2 4 + χ 4 r 0 5 ω r 2 + r 0 2 5 χ 5 7 r 0 5 ω 2 r 2 + r 0 2 5 + χ 6 7 r 2 π r 2 + r 0 2 5 r 0 6 ,
where
χ 1 = d d r ϕ 1 2 , 2 ( r ) ( 6 J 2 π r 0 r 4 14 r 2 r 0 2 7 r 0 4 r 2 + r 0 2 2 ϕ ( r ) 2 84 r 2 + r 0 2 J 2 ( π 2 4 + 2 r 0 7 + r π r 0 6 3 r 2 π 2 8 r 0 5 4 + 59 r 3 π r 0 4 21 + r 4 5 π 2 28 + 6 r 0 3 + 73 π r 5 r 0 2 21 + r 6 9 π 2 28 + 2 r 0 + r 7 π ) ϕ ( r ) + 14 π 6 J 2 r 4 r 0 9 21 J 2 r π 2 8 r 0 8 + 42 π 7 J 2 r 2 r 6 r 0 7 111 r 3 J 2 π 2 168 37 r 0 6 + 2 π 58 J 2 r 4 21 r 8 r 0 5 180 r 5 J 2 π 2 56 15 r 0 4 + 2 π 89 J 2 r 6 7 r 10 r 0 3 111 r 7 J 2 π 2 168 37 r 0 2 84 J 2 π r 8 r 0 21 J 2 r 9 π 2 8 ) ,
χ 2 = 72 i ( r 2 + r 0 2 2 π r 0 4 ω 2 3 + r 2 ω 2 1 2 r 0 2 + r 4 ω 2 3 r 2 2 ϕ ( r ) 2 + r 2 + r 0 2 π ( r 2 + r 0 2 r 0 4 ω 2 3 + r 2 ω 2 1 2 r 0 2 + r 4 ω 2 3 r 2 2 π + 2 r r 0 19 r 0 4 ω 2 18 + 67 r 2 ω 2 36 8 3 r 0 2 + r 4 ω 2 3 r 2 2 ) ϕ ( r ) + ( r 2 + r 0 2 2 r r 2 ω 2 + 13 16 r 0 2 ω 2 3 2 π 2 + r 0 6 ω 2 + 77 r 0 4 r 2 ω 2 18 + 107 36 r 4 ω 2 29 6 r 2 r 0 2 + r 6 ω 2 3 r 4 2 r 0 π 7 ω 2 r r 0 2 r 2 + r 0 2 2 6 ) r 0 ) J 2 H 1 2 , 2 ( r ) ,
χ 3 = 24 J ( π r 2 + r 0 2 2 r 0 4 ω 2 + r 2 ω 2 3 2 r 0 2 + 3 r 2 2 r J ϕ ( r ) 2 + π r 2 + r 0 2 2 ( r 0 5 ω 2 3 + π r r 0 4 ω 2 + 5 r 2 ω 2 + 31 r 0 3 6 + r π r 2 ω 2 3 2 r 0 2 + 3 r 2 r 0 + 3 r 3 π 2 ) J ϕ ( r ) + 9 16 ( 56 π r 0 9 ω 27 + J ω 2 π 2 + 56 9 r 0 8 232 ω π r r 0 7 27 J ω 14 r 29 + 3 J r 0 6 r 2 ω 2 2 3 π 2 + 56 9 92 9 r 2 ω 2 110 69 J 14 r 3 ω 69 π r r 0 5 + 3 r 2 J r 2 ω 2 4 9 π 2 + 56 r 2 ω 2 9 224 27 r 0 4 44 π r 3 J r 0 3 27 r 2 ω 2 116 11 + r 4 J r 2 ω 2 + 10 3 π 2 + 56 r 2 ω 2 9 112 9 r 0 2 + 8 J π r 5 r 0 3 + 8 J π 2 r 6 3 ) r 0 ) T 2 , 2 ( r ) ,
χ 4 = 36 ( J ω 2 r r 2 + r 0 2 4 ϕ ( r ) 2 + ω 2 r 2 + r 0 2 3 ( r 3 π + π r r 0 2 + 2 r 2 r 0 + 4 3 r 0 3 ) J ϕ ( r ) + ( 5 r 0 9 ω 21 + 2 J π r 0 8 ω 2 3 + 4 7 ω r J ω + 5 r 6 r 0 7 + 3 J π r 2 r 0 6 ω 2 + 61 21 J r 2 ω 2 + 5 61 r 3 ω 2 61 J r r 0 5 + 5 J π r 4 r 0 4 ω 2 + 10 J r 5 r 0 3 ω 2 3 + 11 J π r 6 r 0 2 ω 2 3 + J r 7 r 0 ω 2 + J π r 8 ω 2 ) r 0 ) 7 J h 0 3 , 2 ( r ) ,
χ 5 = 90 i 7 [ r 0 4 ω 2 3 + 4 r 2 ω 2 3 14 5 r 0 2 + r 4 ω 2 34 r 2 5 ω 2 r 2 + r 0 2 3 J ϕ ( r ) 2 + ( ω 4 π r 0 8 3 + 2 r r 0 7 ω 4 + 2 π ω 2 r 2 ω 2 7 5 r 0 6 + 6 r 3 ω 4 44 3 ω 2 r r 0 5 + 4 r 2 π r 2 ω 2 31 10 ω 2 r 0 4 + 6 r 5 ω 4 424 15 r 3 ω 2 8 r r 0 3 + 10 3 r 2 ω 2 123 25 r 4 π ω 2 r 0 2 + 2 r 7 ω 4 68 5 r 5 ω 2 r 0 + π r 6 ω 2 r 2 ω 2 34 5 ) r 2 + r 0 2 J ϕ ( r ) + ( ( r 0 9 ω 4 + π r r 0 8 ω 4 + 11 3 r 2 ω 4 44 5 ω 2 r 0 7 + 4 r 2 ω 2 11 6 r π ω 2 r 0 6 + 16 3 r 4 ω 4 28 r 2 ω 2 r 0 5 + 6 r 2 ω 2 161 45 r 3 π ω 2 r 0 4 + 8 r 2 + 11 3 r 6 ω 4 262 15 r 4 ω 2 r 0 3 + 4 r 5 π ω 2 r 2 ω 2 157 30 r 0 2 + r 8 ω 4 34 5 r 6 ω 2 r 0 + π r 7 ω 2 r 2 ω 2 34 5 ) J + 4 r ω r 0 5 r 2 + r 0 2 3 ) r 0 ] J h 1 3 , 2 ( r ) ,
and
χ 6 = 72 ϕ 1 2 , 2 ( r ) ( π r 2 + r 0 2 2 ( 7 r 0 10 ω 2 12 + r 0 8 3 7 2 + 8 r 2 ω 2 + r 0 6 2 11 r 4 ω 2 37 3 r 2 + 19 r 6 ω 2 43 r 4 r 0 4 3 + r 0 2 2 47 6 r 8 ω 2 23 r 6 + r 8 r 2 ω 2 7 2 ) J 2 ϕ ( r ) 2 + r 2 + r 0 2 ( 7 J ω 2 ( π 2 8 ) r 0 12 24 7 r ω π ( J ω + r ) r 0 11 6 + 43 24 J ω 2 π 2 280 43 r 2 14 π 2 43 + 112 43 r 0 10 8 π r r 0 9 3 J r 2 ω 2 + 7 4 r 3 ω 7 8 J + 21 r 2 J r 0 8 4 ω 2 π 2 40 9 r 2 25 π 2 63 + 8 3 + r 3 π J r 2 ω 2 7 r 3 ω + 56 9 J r 0 7 + 107 12 ω 2 π 2 280 107 r 2 57 π 2 107 + 168 107 r 4 J r 0 6 + 22 3 π r 5 J r 2 ω 2 7 11 r 3 ω 10 11 J r 0 5 + 211 24 r 6 J ω 2 π 2 280 211 r 2 102 π 2 211 + 112 211 r 0 4 + 41 6 π J r 2 ω 2 7 41 r 3 ω 96 41 J r 7 r 0 3 + 37 8 ω 2 π 2 56 111 r 2 8 π 2 37 r 8 J r 0 2 + 2 π r 9 J r 2 ω 2 7 2 r 0 + J r 12 ω 2 π 2 ) ϕ ( r ) J + ( 7 r 2 ω 2 π r 0 15 72 7 6 J 2 ω 2 + 5 12 r 4 ω 2 1 6 r 2 π r 0 13 7 J 2 r ω 2 ( π 2 8 ) r 0 12 24 65 12 π J 2 r 2 ω 2 + 7 39 r 6 ω 2 + 14 65 J r 3 ω 28 65 J 2 14 65 r 4 r 0 11 11 24 r J 2 ω 2 π 2 280 11 r 2 14 π 2 11 + 112 11 r 0 10 28 3 π r 2 J 2 r 2 ω 2 + 5 48 r 6 ω 2 + 1 2 J r 3 ω 43 56 J 2 1 4 r 4 r 0 9 + 25 12 ω 2 π 2 + 56 5 r 2 + 21 π 2 25 392 25 r 3 J 2 r 0 8 37 6 π r 4 J 2 r 2 ω 2 + 35 444 r 6 ω 2 + 42 37 J r 3 ω 391 111 J 2 35 111 r 4 r 0 7 + 85 12 ω 2 π 2 + 56 17 r 2 + 6 π 2 17 784 85 r 5 J 2 r 0 6 + 5 6 π r 6 J 2 r 2 ω 2 7 60 r 6 ω 2 28 5 J r 3 ω + 64 5 J 2 + 7 10 r 4 r 0 5 + 205 24 ω 2 π 2 + 56 41 r 2 + 10 π 2 41 1232 205 r 7 J 2 r 0 4 + 35 12 π r 8 J r 2 ω 2 2 5 r 3 ω 54 35 J J r 0 3 + 113 24 ω 2 π 2 + 56 113 r 2 + 18 π 2 113 336 113 r 9 J 2 r 0 2 + J 2 r 10 π r 2 ω 2 7 2 r 0 + J 2 r 13 ω 2 π 2 ) r 0 ) .
For the metric perturbation function H 1 , we obtain the equation
d d r H 1 2 , 2 r = α 1 4 r 2 r 0 5 ω π r 2 + r 0 2 3 + α 2 8 π ω 2 r 2 + r 0 2 3 r 3 r 0 6 + α 3 4 ω r 0 3 r 2 + r 0 2 2 + ω 2 r 2 H 1 2 , 2 r + α 4 8 r 2 ω π r 2 + r 0 2 3 r 0 6 + α 5 7 r 0 6 r 2 + r 0 2 4 α 6 7 ω r 0 6 r 2 + r 0 2 5 + α 7 14 r r 0 5 ω π r 2 + r 0 2 4 ,
where
α 1 = i d d r ϕ 1 2 , 2 ( r ) ( ( 12 r 0 6 ω 2 + 60 7 r 0 4 r 2 ω 2 + r 6 ω 4 + 782 7 r 4 ω 2 r 0 2 + r 4 ( r 4 ω 4 + 442 7 r 2 ω 2 24 ) ) π ( r 2 + r 0 2 ) 2 J 2 ϕ ( r ) 2 2 ( r 2 + r 0 2 ) ( 3 J ω 2 ( π 2 8 ) r 0 8 + 12 ω π r 1 12 r 3 ω 2 + J ω + 2 3 r r 0 7 + 51 7 ω 2 π 2 + 168 17 r 2 J r 0 6 + 94 47 r 3 ω 2 + J ω + 6 47 r ω π r 3 r 0 5 + 393 7 π 2 + 168 131 ω 2 r 4 J r 0 4 + 465 7 ω 2 π 2 + 56 155 r 6 J r 0 2 + r 3 π J r 4 ω 4 + r 5 ω 3 + 1072 7 J r 2 ω 2 + 4 r 3 ω 24 J r 0 3 + J r 5 π r 4 ω 4 + 442 7 r 2 ω 2 24 r 0 + 144 7 J r 8 ω 2 π 2 ) J ϕ ( r ) r 0 ( 4 r 2 ω 2 π r 0 11 + 24 ω 2 π J 2 + r 4 2 r 0 9 + 6 J 2 r ω 2 ( π 2 8 ) r 0 8 + 1272 7 7 636 J r 3 ω 2 + J 2 ω + 7 106 r 4 ω + 14 159 J r ω π r 2 r 0 7 + 93 ω 2 π 2 24 31 r 3 J 2 r 0 6 + 1916 7 ω π ( 7 479 J r 3 ω 2 + J 2 ω + 7 479 r 4 ω + 42 479 J r ) r 4 r 0 5 + 1464 7 J 2 r 5 ω 2 π 2 r 0 4 + J r 4 π J r 4 ω 4 + 2 r 5 ω 3 + 1410 7 J r 2 ω 2 + 8 r 3 ω 48 J r 0 3 + 1143 7 ω 2 r 7 J 2 π 2 + 56 381 r 0 2 + J 2 r 6 π r 4 ω 4 + 442 7 r 2 ω 2 24 r 0 + 288 7 J 2 r 9 ω 2 π 2 ) ) ,
α 2 = ( π ( ( r 10 + r 8 r 0 2 ) ω 6 156 7 r 4 r 0 4 62 39 r 2 r 0 2 4 3 r 4 ω 4 + 60 7 r 6 + 108 r 4 r 0 2 + 48 r 2 r 0 4 + 48 r 0 6 ω 2 + 144 r 4 ) ( r 2 + r 0 2 ) 2 ϕ ( r ) 2 + 2 ( π r 0 r 9 ( r 2 + r 0 2 ) ω 6 36 7 ( 8 π r 0 7 3 + r ( π 2 28 3 ) r 0 6 + 5 r 2 π r 0 5 9 + 2 r 3 ( π 2 28 ) r 0 4 3 85 r 4 π r 0 3 9 + 2 r 5 ( π 2 14 ) r 0 2 3 52 r 6 π r 0 9 + r 7 π 2 ) r 3 ω 4 + ( ( 12 π 2 96 ) r 0 8 48 π r r 0 7 + 24 r 2 ( π 2 8 ) r 0 6 960 7 π r 3 r 0 5 24 r 4 ( π 2 + 4 ) r 0 4 180 7 r 5 π r 0 3 576 7 π 2 r 6 r 0 2 60 7 π r 7 r 0 324 7 π 2 r 8 ) ω 2 + 144 r 0 r 5 π ) ( r 2 + r 0 2 ) ϕ ( r ) + ( π r 0 r 10 ( r 2 + r 0 2 ) ω 6 96 7 r 3 ( π 2 r 0 8 35 8 π r r 0 7 + r 2 41 π 2 32 21 4 r 0 6 61 12 π r 3 r 0 5 + 5 16 r 4 π 2 168 5 r 0 4 9 2 r 5 π r 0 3 + r 6 25 π 2 32 21 4 r 0 2 13 6 π r 7 r 0 + 3 4 π 2 r 8 ) ω 4 + ( 96 π r 0 9 + ( 24 π 2 + 192 ) r r 0 8 240 r 2 π r 0 7 + r 3 720 918 π 2 7 r 0 6 2208 7 r 4 π r 0 5 + r 5 864 1980 π 2 7 r 0 4 1116 7 r 6 π r 0 3 + r 7 336 1878 π 2 7 r 0 2 60 7 π r 8 r 0 648 7 π 2 r 9 ) ω 2 + 144 r 6 r 0 π ) r 0 ) J 2 ,
α 3 = ( r r 4 ω 4 + r 0 2 ω 4 + 22 ω 2 r 2 + 26 r 0 2 ω 2 24 ( r 2 + r 0 2 ) ϕ ( r ) + r 0 r 6 ω 4 + r 0 2 ω 4 + 22 ω 2 r 4 + 38 r 0 2 ω 2 24 r 2 + 12 r 0 4 ω 2 ) J ,
α 4 = i ( ( 24 ω 4 r 0 8 + 12 27 7 r 2 ω 4 + 8 ω 2 r 0 6 + r 2 ω 2 r 4 ω 4 + 74 r 2 ω 2 + 1800 7 r 0 4 + 2 r 8 ω 6 + 556 7 r 6 ω 4 160 7 r 4 ω 2 r 0 2 + r 4 r 6 ω 6 + 438 7 r 4 ω 4 1048 7 r 2 ω 2 + 96 ) π ( r 2 + r 0 2 ) 2 J 2 ϕ ( r ) 2 2 ( 6 ω 4 J ( π 2 8 ) r 0 10 + 24 ω 3 π 1 24 r 3 ω 2 + J ω + 7 6 r r r 0 9 78 7 ω 2 π 2 224 13 r 2 28 π 2 13 + 224 13 ω 2 J r 0 8 + 878 7 ω π 21 878 r 5 ω 4 + J r 2 ω 3 + 266 439 r 3 ω 2 336 439 J ω 56 439 r r r 0 7 + 174 7 ω 2 ω 2 π 2 + 336 29 r 2 + 2 π 2 29 448 29 r 2 J r 0 6 + r 3 ω π 1788 7 J r 2 ω 3 + J r 4 ω 5 + 3 r 5 ω 4 + 68 r 3 ω 2 32 r 1916 7 J ω r 0 5 + 486 7 ω 2 ω 2 π 2 + 224 81 r 2 218 π 2 81 224 81 r 4 J r 0 4 + 2 ( J r 6 ω 6 + 1 2 r 7 ω 5 + 758 7 J r 4 ω 4 + 10 r 5 ω 3 1230 7 J r 2 ω 2 8 r 3 ω + 24 J ) π r 3 r 0 3 + 348 7 ω 2 π 2 + 28 29 r 2 153 π 2 29 ω 2 r 6 J r 0 2 + J r 5 π r 6 ω 6 + 438 7 r 4 ω 4 1048 7 r 2 ω 2 + 96 r 0 + 72 7 ω 2 π 2 r 2 ω 2 19 2 r 8 J ) ( r 2 + r 0 2 ) J ϕ ( r ) r 0 ( 4 r 2 ω 4 π r 0 13 + 48 ω 2 π J 2 ω 2 + 1 3 r 4 ω 2 1 3 r 2 r 0 11 + 12 J 2 r ω 4 ( π 2 8 ) r 0 10 + 1980 7 ω 2 π 7 990 J r 5 ω 3 + J 2 r 2 ω 2 + 14 165 r 6 ω 2 + 112 495 J r 3 ω 112 165 J 2 28 165 r 4 r 0 9 + 717 7 ω 2 ω 2 π 2 728 239 r 2 112 π 2 239 + 896 239 r J 2 r 0 8 + 3784 7 ω π ( 21 1892 J r 5 ω 4 + J 2 r 2 ω 3 + 14 473 r 6 ω 3 + 147 473 J r 3 ω 2 670 473 J 2 ω 42 473 r 4 ω 28 473 J r ) r 2 r 0 7 + 1791 7 ω 2 π 2 280 199 r 2 308 π 2 199 + 2464 597 ω 2 r 3 J 2 r 0 6 + ω π r 4 ( 4 r 6 ω 3 + 6 J r 5 ω 4 + ( J 2 ω 5 16 ω ) r 4 + 144 J r 3 ω 2 + 3622 7 J 2 r 2 ω 3 64 J r 7312 7 J 2 ω ) r 0 5 + 273 ω 2 ω 2 π 2 8 13 r 2 1968 π 2 637 + 320 91 r 5 J 2 r 0 4 + 2 π r 4 J J r 6 ω 6 + r 7 ω 5 + 960 7 J r 4 ω 4 + 20 r 5 ω 3 2300 7 J r 2 ω 2 16 r 3 ω + 48 J r 0 3 + 897 7 ω 2 π 2 56 299 r 2 124 π 2 23 + 672 299 ω 2 r 7 J 2 r 0 2 + J 2 r 6 π r 6 ω 6 + 438 7 r 4 ω 4 1048 7 r 2 ω 2 + 96 r 0 + 144 7 ω 2 π 2 r 2 ω 2 19 2 r 9 J 2 ) ) T 2 , 2 ( r ) ,
α 5 = 198 i ( r 2 + r 0 2 3 J 5 r 0 4 ω 2 11 + 58 r 2 ω 2 33 6 11 r 0 2 + r 4 ω 2 14 r 2 11 ϕ ( r ) 2 + r 2 + r 0 2 ( 2 r 0 9 ω 33 + 5 J π r 0 8 ω 2 11 + 94 33 ω J ω 3 r 47 r r 0 7 + 8 3 r 2 ω 2 3 44 π J r 0 6 + 767 99 J r 3 ω 2 2 11 r 4 ω 248 99 J r r 0 5 + 164 π r 2 J r 0 4 33 r 2 ω 2 21 82 + 683 99 J r 5 ω 2 2 33 r 6 ω 520 99 J r 3 r 0 3 + 124 33 r 2 ω 2 33 62 π r 4 J r 0 2 + 2 r 2 ω 2 14 11 r 5 J r 0 + J r 6 π r 2 ω 2 10 11 ) ϕ ( r ) + ( 4 99 r ω + 15 11 J ω 2 r 0 9 + 47 J π r r 0 8 ω 2 33 + 104 99 J + 2 99 r 3 ω + 52 11 J r 2 ω 2 r 0 7 + 58 11 π r 2 ω 2 13 87 r J r 0 6 + 644 99 J r 2 ω 2 2 161 r 3 ω 3 7 J r 2 r 0 5 + 80 11 r 2 ω 2 41 120 π r 3 J r 0 4 + 410 99 J r 2 ω 2 3 205 r 3 ω 34 41 J r 4 r 0 3 + 146 33 π r 5 J r 2 ω 2 43 73 r 0 2 + J r 6 r 2 ω 2 14 11 r 0 + J r 7 π r 2 ω 2 10 11 ) r 0 ) 7 J h 0 3 , 2 ( r ) ,
α 6 = 3 ( r 2 ω 4 + 60 ω 2 r 0 2 + r 4 ω 4 + 16 r 2 ω 2 24 r 2 + r 0 2 4 r J ϕ ( r ) 2 + 2 r 2 + r 0 2 ( r ω 3 r 0 11 + 4 r 3 ω 3 + 38 J ω 2 r 0 9 + 17 J π r r 0 8 ω 2 + J r 4 ω 4 + 6 r 5 ω 3 + 148 J r 2 ω 2 120 J r 0 7 + 48 J π r 3 r 0 6 ω 2 + 3 J r 6 ω 4 + 4 r 7 ω 3 + 589 3 J r 4 ω 2 772 3 J r 2 r 0 5 + 42 J π r 5 r 0 4 ω 2 + 3 J r 8 ω 4 + r 9 ω 3 + 307 3 J r 6 ω 2 464 3 J r 4 r 0 3 + 8 J r 7 ω 2 π r 0 2 + J r 6 r 4 ω 4 + 16 r 2 ω 2 24 r 0 3 J r 9 ω 2 π ) ϕ ( r ) + ( 136 3 ω + 2 r 2 ω 3 r 0 11 + 32 J π r 0 10 ω 2 + 70 3 J r ω 2 + 388 3 r 2 ω + 8 r 4 ω 3 r 0 9 + 126 J π r 2 r 0 8 ω 2 + r J r 4 ω 4 + 208 3 J r 2 ω 2 320 3 J + 368 3 r 3 ω + 12 r 5 ω 3 r 0 7 + 180 J π r 4 r 0 6 ω 2 + 3 J r 4 ω 4 + 8 3 r 5 ω 3 + 568 9 J r 2 ω 2 + 116 9 r 3 ω 1072 9 J r 3 r 0 5 + 104 J π r 6 r 0 4 ω 2 + 3 J r 9 ω 4 + 338 3 J r 7 ω 2 784 3 J r 5 + 2 r 10 ω 3 r 0 3 + 12 J π r 8 r 0 2 ω 2 + J r 7 r 4 ω 4 + 16 r 2 ω 2 24 r 0 6 J π r 10 ω 2 ) r 0 ) 7 J h 1 3 , 2 ( r ) ,
and
α 7 = i ( 7 π r 2 + r 0 2 2 ( 12 r 0 6 ω 2 + r 4 ω 4 + 206 7 r 2 ω 2 r 0 4 + r 2 r 4 ω 4 254 7 r 2 ω 2 24 r 0 2 180 r 6 ω 2 7 ) J 2 ϕ ( r ) 2 180 ω r 2 + r 0 2 ( 7 r 0 9 r 2 ω 2 π 90 7 J ω π 2 8 r 0 8 30 + 46 π r r 0 7 45 7 46 r 3 ω 2 + J ω + 7 23 r + J r 2 ω π 2 + 56 r 0 6 10 7 90 π r 3 J r 2 ω 3 + r 3 ω 2 356 7 J ω 4 r r 0 5 + 17 6 ω π 2 + 168 85 r 4 J r 0 4 7 90 r 2 ω 2 500 7 ω π r 5 J r 0 3 + 7 2 ω π 2 + 8 15 r 6 J r 0 2 + 2 J r 7 ω π r 0 + J r 8 ω π 2 ) J ϕ ( r ) 180 ( 7 r 2 ω 2 π r 0 11 45 + 14 15 ω 2 π 1 12 J r 3 ω + J 2 + 1 2 r 4 r 0 9 + ω 2 r J 2 r 0 8 12 π 2 168 5 + 77 ω 2 r 3 J 2 r 0 6 30 π 2 24 11 + 346 ω π r 2 r 0 7 45 7 346 J r 3 ω 2 + J 2 ω + 21 346 r 4 ω + 7 173 J r 7 ω π r 4 r 0 5 180 J 2 r 2 ω 3 + 2 J r 3 ω 2 1818 7 J 2 ω 4 r 4 ω 8 J r + 353 ω 2 r 5 J 2 r 0 4 60 π 2 168 353 7 J 2 r 4 π r 0 3 180 r 4 ω 4 134 r 2 ω 2 + 24 + 22 J 2 r 7 ω 2 π 2 r 0 2 5 + J 2 r 8 ω 2 π r 0 + J 2 r 9 ω 2 π 2 ) r 0 ) ϕ 1 2 , 2 ( r ) .
Next, the equation for T is given by
d d r T 2 , 2 r = Π 1 4 π r r 0 5 ω 2 r 2 + r 0 2 4 Π 2 2 r 0 2 ω r 2 + r 0 2 2 r r 0 r 2 + r 0 2 d d r ϕ 1 2 , 2 r + Π 3 8 π r 0 6 ω 3 r 2 + r 0 2 4 + ( Π 4 8 π r 0 6 ω 2 r 2 + r 0 2 4 Π 5 4 ω r 0 3 r 2 + r 0 2 2 ω 2 r 2 ) T 2 , 2 r + Π 6 7 ω r 0 6 r 2 + r 0 2 5 + Π 7 7 r 0 6 ω 2 r 2 + r 0 2 5 + Π 8 2 π r 2 r 0 5 ω 2 r 2 + r 0 2 5 + Π 9 ω r 2 + r 0 2 3 + 2 r 0 3 r 2 + r 0 2 2 ϕ 1 2 , 2 r ,
where
Π 1 = ( r 2 + r 0 2 2 π ( 12 r 0 6 ω 2 + 60 7 r 0 4 r 2 ω 2 + r 0 2 r 6 ω 4 + 384 7 r 0 2 r 4 ω 2 36 r 2 r 0 2 + r 8 ω 4 + 240 7 r 6 ω 2 36 r 4 ) ϕ ( r ) 2 + 2 r 2 + r 0 2 ( 3 ω 2 ( π 2 8 ) r 0 8 180 r π r 0 7 ω 2 7 + 51 7 r 2 π 2 56 17 ω 2 r 0 6 + 36 π 2 7 r 3 ω 2 r r 0 5 + 159 7 π 2 + 56 53 r 4 ω 2 r 0 4 + r 3 π r 4 ω 4 + 376 7 r 2 ω 2 72 r 0 3 + 165 r 6 ω 2 r 0 2 7 π 2 + 56 55 + r 5 π r 4 ω 4 + 240 7 r 2 ω 2 36 r 0 + 36 π 2 r 8 ω 2 7 ) ϕ ( r ) + ( 24 r 0 9 π ω 2 138 7 r ω 2 π 2 56 23 r 0 8 + 48 r 0 7 r 2 π ω 2 7 15 r 3 π 2 72 5 ω 2 r 0 6 + 24 π 3 r 2 + 11 7 r 4 ω 2 r 0 5 + 276 r 5 ω 2 r 0 4 7 π 2 + 168 23 + π r 4 108 + r 4 ω 4 + 416 7 r 2 ω 2 r 0 3 + 45 r 7 ω 2 π 2 + 8 3 r 0 2 + r 6 π r 4 ω 4 + 240 7 r 2 ω 2 36 r 0 + 72 r 9 ω 2 π 2 7 ) r 0 ) J 2 ,
Π 2 = r r 2 + r 0 2 r 2 ω 2 + 6 ϕ ( r ) + r 0 r 4 ω 2 + 6 r 2 + 12 r 0 2 J ,
Π 3 = i H 1 2 , 2 ( r ) ( π r 2 + r 0 2 2 ( 24 ω 4 r 0 6 + 12 13 r 2 ω 4 24 ω 2 r 0 4 7 + r 2 ω 2 + 6 r 4 ω 4 192 7 r 2 ω 2 + 36 r 0 2 + r 2 r 6 ω 6 + 6 7 r 4 ω 4 108 r 2 ω 2 + 216 ) J 2 ϕ ( r ) 2 2 r 2 + r 0 2 ( 6 ω 4 J ( π 2 8 ) r 0 8 360 ω π r 0 7 7 ( 7 360 r 4 ω 4 + J r ω 3 7 15 r 2 ω 2 + 7 10 ) 36 7 ω 2 ω 2 π 2 + 28 3 r 2 + 4 π 2 J r 0 6 750 ω π r r 0 5 7 ω r 2 ω 2 + 6 5 J 7 r r 4 ω 4 + 24 r 2 ω 2 36 375 258 7 ω 2 ω 2 π 2 56 43 r 2 + 162 π 2 43 r 2 J r 0 4 + π r 6 ω 6 356 7 r 4 ω 4 1488 7 r 2 ω 2 + 216 J + r 3 ω r 4 ω 4 + 24 r 2 ω 2 36 r r 0 3 324 7 ω 2 ω 2 π 2 28 27 r 2 + 44 π 2 9 r 4 J r 0 2 + J r 3 π r 6 ω 6 + 6 7 r 4 ω 4 108 r 2 ω 2 + 216 r 0 144 7 ω 2 π 2 r 6 J r 2 ω 2 + 21 4 ) J ϕ ( r ) ( 4 ω 2 π r 2 ω 2 + 6 r 0 11 48 ω 2 π J 2 ω 2 1 4 r 4 ω 2 J r ω 3 2 r 2 r 0 9 276 ω 4 r J 2 r 0 8 7 π 2 56 23 804 ω π r 0 7 7 ( ω r 2 ω 2 24 67 J 2 7 402 r r 4 ω 4 + 72 r 2 ω 2 36 J 7 r 4 ω r 2 ω 2 + 6 67 ) 879 ω 2 r J 2 r 0 6 7 ω 2 π 2 840 293 r 2 + 426 π 2 293 336 293 1164 ω π r 2 r 0 5 7 ( ω r 2 ω 2 + 114 97 J 2 7 r r 4 ω 4 + 36 r 2 ω 2 36 J 291 7 r 4 ω r 2 ω 2 + 6 291 ) 174 ω 2 r 3 J 2 ω 2 π 2 72 29 r 2 + 678 π 2 203 48 29 r 0 4 + π ( 216 + r 6 ω 6 562 7 r 4 ω 4 2076 7 r 2 ω 2 J + 2 r 7 ω 5 + 48 r 5 ω 3 72 r 3 ω ) r 2 J r 0 3 129 ω 2 π 2 56 43 r 2 + 1434 π 2 301 48 43 ω 2 r 5 J 2 r 0 2 + J 2 r 4 π r 6 ω 6 + 6 7 r 4 ω 4 108 r 2 ω 2 + 216 r 0 288 7 ω 2 π 2 r 7 J 2 r 2 ω 2 + 21 4 ) r 0 ) ,
Π 4 = ( r 2 + r 0 2 2 π ( 156 7 ω 4 r 0 6 + r 0 4 ω 6 r 4 + 120 7 r 0 4 r 2 ω 4 + 1548 7 r 0 4 ω 2 + 2 r 0 2 r 6 ω 6 + 512 7 r 4 r 0 2 ω 4 + 1704 7 r 2 r 0 2 ω 2 + 144 r 0 2 + r 8 ω 6 + 236 7 r 6 ω 4 + 444 7 r 4 ω 2 + 144 r 2 ) r ϕ ( r ) 2 + 2 r 2 + r 0 2 2 ( 96 ω 4 π r 0 7 7 36 7 r π 2 28 3 ω 4 r 0 6 20 7 π ω 2 r 2 ω 2 153 5 r 0 5 24 7 r ω 2 ω 2 π 2 28 r 2 + 9 π 2 2 r 0 4 + π r 6 ω 6 + 382 7 r 4 ω 4 + 1056 7 r 2 ω 2 + 72 r 0 3 24 7 r 3 ω 2 π 2 14 r 2 + 24 π 2 ω 2 r 0 2 + π r 2 r 6 ω 6 + 236 7 r 4 ω 4 + 444 7 r 2 ω 2 + 144 r 0 36 r 5 ω 2 π 2 r 2 ω 2 + 9 7 ) ϕ ( r ) + r 0 ( 96 π 2 r 0 10 ω 4 7 + 60 r ω 4 π r 0 9 + 3 ( ω 4 24 73 π 2 7 r 2 + 4 ω 2 8 + 9 π 2 7 ) r 0 8 + 908 7 r 2 ω 2 + 186 227 r π ω 2 r 0 7 153 7 r 2 ω 2 ω 2 π 2 168 17 r 2 + 80 π 2 17 448 51 r 0 6 + r π 1628 7 r 2 ω 2 + 976 7 r 4 ω 4 + r 6 ω 6 + 144 r 0 5 15 ω 2 π 2 72 5 r 2 + 804 π 2 35 32 5 r 4 ω 2 r 0 4 + 2 r 3 π r 6 ω 6 + 362 7 r 4 ω 4 + 648 7 r 2 ω 2 + 144 r 0 3 + 3 7 π 2 + 24 ω 4 r 8 744 r 6 ω 2 π 2 7 r 0 2 + r 5 π r 6 ω 6 + 236 7 r 4 ω 4 + 444 7 r 2 ω 2 + 144 r 0 72 7 r 8 ω 2 π 2 r 2 ω 2 + 9 ) ) J 2 ,
Π 5 = ( r r 4 ω 4 + r 0 2 ω 4 + 26 ω 2 r 2 + 30 r 0 2 ω 2 24 r 2 + r 0 2 ϕ ( r ) + r 0 r 6 ω 4 + r 0 2 ω 4 + 26 ω 2 r 4 + 46 r 0 2 ω 2 24 r 2 + 12 r 0 4 ω 2 24 r 0 2 ) J ,
Π 6 = 198 ( r 2 + r 0 2 3 5 r 0 4 ω 2 11 + 58 r 2 ω 2 33 4 11 r 0 2 + r 4 ω 2 r J ϕ ( r ) 2 + r 2 + r 0 2 2 ( 5 r π ω 2 r 0 6 11 + 94 r 2 ω 2 33 8 11 r 0 5 + 73 33 r 2 ω 2 12 73 r π r 0 4 + 485 99 r 4 ω 2 14 33 r 2 r 0 3 + 91 33 r 2 ω 2 12 91 r 3 π r 0 2 + 2 r 6 r 0 ω 2 + r 7 π ω 2 ) J ϕ ( r ) + ( 15 ω r r 0 9 11 J ω + 2 r 27 + 47 π J r 0 8 33 r 2 ω 2 12 47 + 52 r r 0 7 11 J r 2 ω 2 + 5 117 r 3 ω + 3 26 J + 80 π r 4 J r 0 4 11 r 2 ω 2 3 20 + 58 π r 2 J r 0 6 11 r 2 ω 2 6 29 + 644 r 3 r 0 5 99 J r 2 ω 2 + 5 322 r 3 ω + 1 14 J + 410 r 5 J r 0 3 99 r 2 ω 2 3 205 + 146 π r 6 J r 0 2 33 r 2 ω 2 6 73 + J r 9 r 0 ω 2 + J π r 10 ω 2 ) r 0 ) 7 J h 0 3 , 2 ( r ) ,
Π 7 = 3 i 7 ( r 2 + r 0 2 3 J ( r 4 ω 4 + 46 r 2 ω 2 + 24 r 0 2 + r 2 r 4 ω 4 + 6 r 2 ω 2 + 144 ) ϕ ( r ) 2 + 2 r 2 + r 0 2 ( r 2 ω 3 + 6 ω r 0 9 + 3 r 4 ω 3 + 36 J r ω 2 + 18 r 2 ω r 0 7 + 11 π J r 2 ω 2 + 30 11 r 0 6 + 13 π r 2 J r 2 ω 2 + 150 13 r 0 4 + r J r 4 ω 4 + 3 r 5 ω 3 + 92 J r 2 ω 2 + 18 r 3 ω + 84 J r 0 5 + 238 J r 3 + 2 J r 7 ω 4 + 181 3 J r 5 ω 2 + r 8 ω 3 + 6 r 6 ω r 0 3 7 J r 4 π r 2 ω 2 30 r 0 2 + J r 5 r 4 ω 4 + 6 r 2 ω 2 + 144 r 0 9 J r 6 π r 2 ω 2 10 ) ϕ ( r ) + ( 2 r 3 ω 3 + 52 r ω r 0 9 + 24 J π r r 0 8 ω 2 + 380 J + 328 3 r 3 ω + 6 r 5 ω 3 106 3 J r 2 ω 2 r 0 7 + 58 π r 2 ω 2 + 90 29 r J r 0 6 + 26 π r 2 ω 2 + 270 13 r 3 J r 0 4 + r 2 484 J + 208 3 r 3 ω + 6 r 5 ω 3 + J r 4 ω 4 + 188 3 J r 2 ω 2 r 0 5 + 2 r 4 J r 4 ω 4 + r 5 ω 3 + 103 3 J r 2 ω 2 + 6 r 3 ω + 154 J r 0 3 26 π r 2 ω 2 270 13 r 5 J r 0 2 + J r 6 r 4 ω 4 + 6 r 2 ω 2 + 144 r 0 18 J r 7 π r 2 ω 2 10 ) r 0 ) J h 1 3 , 2 ( r ) ,
Π 8 = ( r 2 + r 0 2 2 π ( 12 ω 2 r 0 8 384 ω 2 r 2 r 0 6 7 + r 2 r 4 ω 4 300 7 r 2 ω 2 36 r 0 4 + r 4 r 4 ω 4 276 7 r 2 ω 2 36 r 0 2 108 r 8 ω 2 7 ) ϕ ( r ) 2 + 2 ( 3 π 2 + 24 r 0 10 + 12 r π r 0 9 + r 0 8 129 π 2 7 + 120 r 2 + 42 r 3 π r 0 7 + r 0 6 279 π 2 7 + 168 r 4 + r 2 ω 2 + 208 7 r 5 π r 0 5 + r 0 4 393 π 2 7 + 72 r 6 + r 7 π r 2 ω 2 138 7 r 0 3 276 r 8 π 2 r 0 2 7 108 r 9 π r 0 7 54 r 10 π 2 7 ) r 2 + r 0 2 ω 2 ϕ ( r ) + ( 24 ω 2 π r 0 11 + 6 ω 2 r π 2 8 r 0 10 + 852 r 0 9 r 2 ω 2 π 7 + 27 r 3 ω 2 π 2 8 r 0 8 + 792 r 4 π r 0 7 ω 2 7 30 7 r 5 ω 2 π 2 + 504 5 r 0 6 + r 4 π r 4 ω 4 + 200 7 r 2 ω 2 + 36 r 0 5 81 π 2 + 136 27 r 7 ω 2 r 0 4 + r 4 ω 4 144 7 r 2 ω 2 + 36 r 6 π r 0 3 498 7 r 9 π 2 + 168 83 ω 2 r 0 2 108 r 10 π r 0 ω 2 7 108 r 11 ω 2 π 2 7 ) r 0 ) J 2 ,
and
Π 9 = J r 2 + r 0 2 r 2 ω 2 + 6 ϕ ( r ) + r r 0 r 2 ω 2 6 .
As in the axial case, there are similarly two algebraic equations for L and N in the polar-led perturbations. L is described by
L 2 , 2 r = ζ 1 4 π r 2 r 0 5 r 2 + r 0 2 3 + ζ 2 2 r 2 + r 0 2 r 0 2 + r 0 d d r ϕ 1 2 , 2 r + ζ 3 8 π ω r 2 + r 0 2 3 r 0 6 + ( 1 + ζ 4 8 r 0 6 π r 2 r 2 + r 0 2 3 + ζ 5 4 r 2 + r 0 2 r 0 3 + r 2 + r 0 2 ω 2 2 ) T 2 , 2 r ζ 6 7 r 2 + r 0 2 4 ω r 0 6 ζ 7 7 r 2 + r 0 2 4 r 0 6 ω 2 + ζ 8 2 π r r 0 5 r 2 + r 0 2 4 ζ 9 r 2 + r 0 2 2 + 2 r r 0 r 2 + r 0 2 ϕ 1 2 , 2 r ,
where
ζ 1 = ( r 2 + r 0 2 2 π 12 r 0 6 + 36 7 r 2 r 0 4 + r 6 r 0 2 ω 2 + 90 r 4 r 0 2 + r 8 ω 2 + 342 7 r 6 ϕ r 2 + 2 r 2 + r 0 2 ( 3 π 2 + 8 r 0 8 + 12 π r r 0 7 + 3 r 2 24 + 13 π 2 7 r 0 6 + 558 π r 3 r 0 5 7 + 9 r 4 8 + 37 π 2 7 r 0 4 + r 5 π r 2 ω 2 + 844 7 r 0 3 + 3 r 6 8 + 127 π 2 7 r 0 2 + r 7 π r 2 ω 2 + 342 7 r 0 + 108 π 2 r 8 7 ) ϕ r + ( 24 π r 0 9 + 6 r π 2 8 r 0 8 + 1200 r 2 π r 0 7 7 + 3 r 3 24 + 193 π 2 7 r 0 6 + 1668 r 4 π r 0 5 7 + 1248 π 2 r 5 r 0 4 7 + r 6 π r 2 ω 2 + 158 r 0 3 + 3 r 7 8 + 309 π 2 7 r 0 2 + r 8 π r 2 ω 2 + 342 7 r 0 + 216 r 9 π 2 7 ) r 0 ) J 2 ,
ζ 2 = ω J r 2 r 0 2 ϕ r + ϕ r r 2 + r r 0 ,
ζ 3 = i ( π r 2 + r 0 2 2 ( 180 r 0 4 ω 2 7 + r 4 ω 4 + 96 7 r 2 ω 2 36 r 0 2 + r 2 r 4 ω 4 + 108 7 r 2 ω 2 396 7 ) r J 2 ϕ ( r ) 2 + 2 r 2 + r 0 2 ( 96 7 ω π 7 96 r 3 ω 2 + J ω 21 16 r r 0 7 48 J ω 2 r π 2 7 r 0 6 7 120 7 π r 2 ω 2 + 33 5 J 7 r 3 ω r 2 ω 2 + 18 60 r 0 5 12 ω 2 π 2 8 r 2 + 3 π 2 r J r 0 4 + π r 4 ω 4 + 16 r 2 ω 2 1020 7 J + r 5 ω 3 + 18 r 3 ω r 2 r 0 3 108 7 ω 2 π 2 28 9 r 2 + 16 π 2 3 r 3 J r 0 2 + J r 4 π r 4 ω 4 + 108 7 r 2 ω 2 396 7 r 0 72 7 π 2 r 2 ω 2 + 9 2 r 5 J ) J ϕ ( r ) + ( 4 π r r 0 11 ω 2 + 24 ω π r 3 ω 2 + J r 0 9 96 J 2 ω 2 π 2 r 0 8 7 + 348 ω π r r 0 7 7 J 2 ω + 7 r r 2 ω 2 + 42 J 174 + 7 r 4 ω 29 195 J 2 r 0 6 7 ω 2 π 2 168 65 r 2 + 138 π 2 65 336 65 + 240 π r r 0 5 7 r 2 ω 2 36 5 J 2 + 7 r 3 ω r 2 ω 2 + 24 J 60 + 7 r 6 ω 2 60 246 r 2 J 2 r 0 4 7 ω 2 π 2 168 41 r 2 + 6 π 2 336 41 + π 1788 7 + r 4 ω 4 + 128 7 r 2 ω 2 J + 2 r 5 ω 3 + 36 r 3 ω r 3 J r 0 3 291 r 4 J 2 r 0 2 7 ω 2 π 2 168 97 r 2 + 570 π 2 97 336 97 + J 2 r 5 π r 4 ω 4 + 108 7 r 2 ω 2 396 7 r 0 144 7 π 2 r 2 ω 2 + 9 2 r 6 J 2 ) r 0 ) H 1 2 , 2 ( r ) ,
ζ 4 = ( π ( r 10 ω 4 + 2 r 0 2 ω 4 + 338 7 ω 2 r 8 + ω 4 r 0 4 + 860 7 r 0 2 ω 2 432 7 r 6 + 342 7 r 0 4 ω 2 216 7 r 0 2 r 4 + 348 7 r 0 6 ω 2 + 120 r 0 4 r 2 24 ω 2 r 0 8 + 48 r 0 6 ) × r 2 + r 0 2 2 ϕ ( r ) 2 + 2 r 2 + r 0 2 2 ( r 9 ω 4 π r 0 + 36 π 2 r 8 ω 2 7 + ω 2 π r 0 r 0 2 ω 2 + 338 7 r 7 + r 0 2 48 + 192 π 2 7 ω 2 468 π 2 7 r 6 + 850 7 π r 0 2 ω 2 216 425 r 0 r 5 + r 0 4 144 + 150 π 2 7 ω 2 864 π 2 r 0 2 7 r 4 + 610 7 π r 0 2 ω 2 426 305 r 0 3 r 3 48 7 r 0 2 π 2 21 ω 2 + 7 π 2 2 + 14 r 0 4 r 2 + 24 π r 0 5 r 0 2 ω 2 2 r 6 r 0 6 π 2 8 r 0 2 ω 2 2 ) ϕ ( r ) + r 0 ( π r 0 r 12 ω 4 + 72 r 11 ω 2 π 2 7 + 2 π r 0 2 ω 2 + 169 7 r 0 ω 2 r 10 + 87 π 2 24 r 0 2 ω 2 936 π 2 7 r 9 + π r 0 ω 4 r 0 4 432 7 + 1516 7 r 0 2 ω 2 r 8 + r 0 4 168 + 1479 π 2 7 ω 2 + r 0 2 3372 π 2 7 + 96 r 7 + 3070 7 π r 0 5 ω 2 336 π r 0 3 r 6 + 592 π r 0 5 + 3464 7 ω 2 π r 0 7 r 4 + 1503 7 r 0 2 π 2 280 167 ω 2 456 π 2 167 + 896 501 r 0 4 r 5 + 645 7 r 0 2 π 2 728 215 ω 2 612 π 2 215 + 224 43 r 0 6 r 3 + 1908 7 π r 0 2 ω 2 244 159 r 0 7 r 2 + 12 r 0 8 π 2 8 r 0 2 ω 2 2 r + 48 π r 0 9 r 0 2 ω 2 2 ) ) J 2 ,
ζ 5 = J ( r 4 ω 2 + r 0 2 ω 2 + 20 r 2 + 24 r 0 2 r 2 + r 0 2 ϕ r + r 0 r 4 ω 2 + r 0 2 ω 2 + 20 r 2 + 28 r 0 2 r ) ω ,
ζ 6 = 198 7 J ( ω 2 r 2 + r 0 2 3 r 4 + 58 33 r 2 r 0 2 + 5 11 r 0 4 J ϕ r 2 + ω 2 r 2 + r 0 2 2 ( r 6 π + 91 33 r 4 π r 0 2 + 73 33 r 2 π r 0 4 + 5 11 π r 0 6 + 2 r 5 r 0 + 485 99 r 3 r 0 3 + 94 33 r r 0 5 ) J ϕ r + ( 15 11 ω J ω + 2 r 27 r 0 9 + 47 J π r r 0 8 ω 2 33 + 52 11 J r 2 ω 2 + 4 33 J + 20 99 r 3 ω r 0 7 + 58 J π r 3 r 0 6 ω 2 11 + 644 99 r 2 J r 2 ω 2 + 5 322 r 3 ω + 5 322 J r 0 5 + 80 J π r 5 r 0 4 ω 2 11 + 410 J r 6 r 0 3 ω 2 99 + 146 J r 7 ω 2 π r 0 2 33 + J r 8 r 0 ω 2 + J r 9 ω 2 π ) r 0 ) h 0 3 , 2 r ,
ζ 7 = 3 i 7 ( ω 2 r 2 + r 0 2 3 r J r 2 ω 2 + 40 r 0 2 + r 4 ω 2 ϕ r 2 + 2 r 2 + r 0 2 ( r ω 3 r 0 9 + 3 r 3 ω 3 + 30 J ω 2 r 0 7 + 11 J r ω 2 π r 0 6 + J r 4 ω 4 + 3 r 5 ω 3 + 74 J r 2 ω 2 120 J r 0 5 + 13 J r 3 ω 2 π r 0 4 + 2 J r 6 ω 4 + r 7 ω 3 + 127 3 J r 4 ω 2 100 J r 2 r 0 3 7 J r 5 π ω 2 r 0 2 + J r 8 ω 4 r 0 9 J r 7 ω 2 π ) ϕ r + r 0 ( 2 r 2 ω 3 + 40 ω r 0 9 + 24 J π r 0 8 ω 2 + 142 3 J r ω 2 + 220 3 r 2 ω + 6 r 4 ω 3 r 0 7 + 58 J π r 2 r 0 6 ω 2 + r 240 J + J r 4 ω 4 + 98 3 J r 2 ω 2 + 100 3 r 3 ω + 6 r 5 ω 3 r 0 5 + 26 J π r 4 r 0 4 ω 2 + 2 r 3 J r 4 ω 4 + r 5 ω 3 + 67 3 J r 2 ω 2 100 J r 0 3 26 J π r 6 r 0 2 ω 2 + J r 9 r 0 ω 4 18 J π r 8 ω 2 ) ) J h 1 3 , 2 r ,
ζ 8 = ( ( 12 r 0 6 + r 4 ω 2 + 174 7 r 2 r 0 4 + r 6 ω 2 186 7 r 4 r 0 2 108 r 6 7 ) r 2 + r 0 2 2 π ϕ ( r ) 2 + 2 r 2 + r 0 2 ( 3 π 2 24 r 0 8 120 π r r 0 7 7 + 3 r 2 π 2 168 r 0 6 7 + r 3 π r 2 ω 2 368 7 r 0 5 + r 0 4 195 π 2 7 72 r 4 + r 2 ω 2 384 7 r 5 π r 0 3 + 33 π 2 24 r 0 2 r 6 108 π r 7 r 0 7 54 π 2 r 8 7 ) ϕ ( r ) + ( 24 π r 0 9 + 15 π 2 7 + 72 r 0 8 r 1392 π r 2 r 0 7 7 + 390 π 2 7 + 144 r 0 6 r 3 + r 2 ω 2 1786 7 r 4 π r 0 5 + 843 π 2 7 + 72 r 0 4 r 5 + r 6 π r 2 ω 2 114 r 0 3 576 π 2 r 7 r 0 2 7 108 π r 8 r 0 7 108 π 2 r 9 7 ) r 0 ) J 2 ,
and
ζ 9 = r 2 + r 0 2 ϕ r + r r 0 r ω J .
The perturbation function N is given by
N 2 , 2 r = β 1 4 π r 2 r 0 5 r 2 + r 0 2 3 + β 2 2 r 2 + r 0 2 r 0 2 + r 0 d d r ϕ 1 2 , 2 r + β 3 8 π ω r 2 + r 0 2 3 r 0 6 r + 1 + β 4 8 r 2 + r 0 2 3 π r 0 6 + β 5 4 r 2 + r 0 2 r 0 3 + r 2 + r 0 2 ω 2 2 T 2 , 2 r β 6 7 r 2 + r 0 2 4 ω r 0 6 β 7 7 r 2 + r 0 2 4 r 0 6 ω 2 + β 8 2 π r r 0 5 r 2 + r 0 2 4 β 9 r 2 + r 0 2 2 + 2 r r 0 r 2 + r 0 2 ϕ 1 2 , 2 r ,
where
β 1 = ( r 2 + r 0 2 2 π 12 r 0 6 + 324 7 r 2 r 0 4 + r 6 r 0 2 ω 2 + 606 7 r 4 r 0 2 + r 8 ω 2 + 198 7 r 6 ϕ ( r ) 2 + 2 r 2 + r 0 2 ( 3 π 2 8 r 0 8 12 π r r 0 7 + 3 r 2 24 + 47 π 2 7 r 0 6 + 134 π r 3 r 0 5 7 + 3 r 4 24 + 113 π 2 7 r 0 4 + r 5 π r 2 ω 2 + 444 7 r 0 3 + 3 r 6 8 + 85 π 2 7 r 0 2 + r 7 π r 2 ω 2 + 198 7 r 0 + 36 π 2 r 8 7 ) ϕ ( r ) + ( 24 π r 0 9 + 6 π 2 + 8 r r 0 8 120 r 2 π r 0 7 7 + 3 r 3 72 + 61 π 2 7 r 0 6 + 52 r 4 π r 0 5 7 + 12 r 5 24 + 47 π 2 7 r 0 4 + r 6 π 330 7 + r 2 ω 2 r 0 3 + 3 r 7 40 + 137 π 2 7 r 0 2 + π r 8 r 2 ω 2 + 198 7 r 0 + 72 r 9 π 2 7 ) r 0 ) J 2 ,
β 2 = ω J r 2 r 0 2 ϕ ( r ) + r 2 ϕ ( r ) + r r 0 ,
β 3 = i ( π r 2 + r 0 2 2 J 2 ( r 8 ω 4 + r 0 2 ω 4 36 7 ω 2 r 6 + 36 2 r 0 2 ω 2 11 r 4 7 + 36 3 7 r 0 4 ω 2 r 0 2 r 2 + 24 r 0 6 ω 2 ) ϕ ( r ) 2 + 2 r 2 + r 0 2 J ( J π r 9 r 0 ω 4 + 144 7 π 2 ω 2 J + ω 3 π r 0 3 r 8 + J ω 2 π r 0 r 0 2 ω 2 36 7 r 7 + 2 117 7 J ω 2 π 2 r 0 2 + ω 3 π r 0 5 + 9 ω π r 0 3 162 7 π 2 J r 6 288 7 π r 0 2 ω 2 + 11 8 r 0 J r 5 78 7 7 ω 3 π r 0 5 78 42 ω π r 0 3 13 + J ω 2 π 2 + 56 13 r 0 2 + 96 π 2 J 13 r 0 2 r 4 544 7 π r 0 3 J r 0 2 ω 2 + 171 136 r 3 + 54 7 ( 7 ω π r 0 3 3 + J ω 2 π 2 112 9 r 0 2 14 π 2 J 3 ) r 0 4 r 2 264 7 π r 0 2 ω 2 + 19 11 r 0 5 J r + 6 J ω 2 π 2 8 r 0 8 ) ϕ ( r ) + r 0 ( J 2 r 10 ω 4 π r 0 + 2 J ω 3 π r 0 3 144 7 J 2 ω 2 π 2 r 9 + π r 0 ω 2 4 r 0 4 + J 2 ω 2 r 0 2 36 7 J 2 r 8 807 7 28 ω 3 π r 0 5 807 84 ω π r 0 3 269 + J ω 2 π 2 392 269 r 0 2 + 216 π 2 J 269 J r 7 648 π r 0 r 6 7 J 2 ω 2 r 0 2 7 54 r 0 6 ω 2 + 11 18 J 2 930 7 ( 7 ω 3 π r 0 5 465 112 ω π r 0 3 155 + J ω 2 π 2 504 155 r 0 2 + 57 31 J π 2 56 95 ) r 0 2 J r 5 1376 7 π J 2 ω 2 r 0 2 21 344 r 0 6 ω 2 + 279 344 J 2 r 0 3 r 4 591 7 196 ω π r 0 3 197 + J ω 2 π 2 840 197 r 0 2 + 492 197 π 2 56 41 J r 0 4 J r 3 972 π r 0 5 r 2 7 J 2 ω 2 r 0 2 7 243 r 0 6 ω 2 + 88 81 J 2 180 7 14 ω π r 0 3 15 + J ω 2 π 2 56 15 r 0 2 + 23 10 π 2 56 23 J r 0 6 J r 48 J 2 ω 2 π r 0 9 ) ) H 1 2 , 2 ( r ) ,
β 4 = ( π r 2 + r 0 2 2 ( r 8 ω 4 + 2 r 0 2 ω 4 + 194 7 ω 2 r 6 + ω 4 r 0 4 + 692 7 r 0 2 ω 2 384 7 r 4 + 606 7 r 0 4 ω 2 648 7 r 0 2 r 2 + 108 7 r 0 6 ω 2 + 24 7 r 0 4 ) ϕ ( r ) 2 + 2 r 2 + r 0 2 2 ( π r 7 r 0 ω 4 36 7 r 6 ω 2 π 2 + ω 2 π r 0 r 0 2 ω 2 + 194 7 r 5 + 66 7 π 2 r 0 2 ω 2 54 11 r 4 + 450 7 π r 0 2 ω 2 64 75 r 0 r 3 + 156 7 r 0 4 π 2 ω 2 + 108 π 2 + 96 r 0 2 r 2 + 186 7 π r 0 3 r 0 2 ω 2 78 31 r + 54 7 ω 2 π 2 r 0 2 16 3 π 2 + 112 9 r 0 4 ) ϕ ( r ) + r 0 ( r 10 ω 4 π r 0 72 7 r 9 ω 2 π 2 + 2 π r 0 2 ω 2 + 97 7 r 0 ω 2 r 8 + r 0 2 51 7 π 2 + 72 ω 2 648 7 π 2 r 7 + π r 0 ω 4 r 0 4 + 596 7 r 0 2 ω 2 384 7 r 6 + 279 7 r 0 2 π 2 + 168 31 ω 2 260 31 π 2 224 93 r 0 2 r 5 + 678 7 π r 0 3 r 0 2 ω 2 176 113 r 4 + 423 7 r 0 2 π 2 + 168 47 ω 2 304 47 π 2 448 141 r 0 4 r 3 + 528 7 π r 0 2 ω 2 24 11 r 0 5 r 2 + 165 7 r 0 6 r 0 2 π 2 + 168 55 ω 2 348 55 π 2 224 55 r + 36 π r 0 7 r 0 2 ω 2 128 63 ) r 0 ) J 2 ,
β 5 = J ω ( r 4 ω 2 + r 0 2 ω 2 + 12 r 2 + 16 r 0 2 r 2 + r 0 2 ϕ ( r ) + r 0 r r 4 ω 2 + r 0 2 ω 2 + 12 r 2 + 20 r 0 2 ) ,
β 6 = 18 7 ( ω 2 r 2 + r 0 2 3 r 4 + 6 r 2 r 0 2 + 5 3 r 0 4 J ϕ ( r ) 2 + ω r 2 + r 0 2 2 ( 4 r 0 7 3 + 5 J ω π r 0 6 3 + 2 17 J r ω 4 r 2 r 0 5 3 + 23 J r 2 ω π r 0 4 3 + r 0 3 3 125 3 J r 3 ω 4 r 4 + 7 J r 4 ω π r 0 2 + 2 J r 5 ω r 0 + J r 6 ω π ) ϕ ( r ) + ( 5 J ω 2 2 9 r ω r 0 9 + 17 J π r r 0 8 ω 2 3 + 2 3 23 J r 2 ω 2 + 4 3 J 8 3 r 3 ω r 0 7 + 18 J π r 3 r 0 6 ω 2 + 2 r 0 5 3 J r 2 + 82 3 J r 4 ω 2 13 3 r 5 ω + 20 J π r 5 r 0 4 ω 2 + 80 ω r 6 r 0 3 9 J ω 3 r 20 + 26 J r 7 ω 2 π r 0 2 3 + J r 8 r 0 ω 2 + J r 9 ω 2 π ) r 0 ) J h 0 3 , 2 ( r ) ,
β 7 = 3 i 7 J ( ω 2 r 2 + r 0 2 3 r 2 ω 2 + 16 r 0 2 + r 4 ω 2 24 r 2 r J ϕ ( r ) 2 + 2 r 2 + r 0 2 ( r ω 3 r 0 9 + 3 r 3 ω 3 + 14 J ω 2 r 0 7 J r ω 2 π r 0 6 + J r 4 ω 4 + 3 r 5 ω 3 + 18 J r 2 ω 2 80 J r 0 5 23 J r 3 ω 2 π r 0 4 + 2 J r 6 ω 4 + r 7 ω 3 65 3 J r 4 ω 2 60 J r 2 r 0 3 43 J r 5 ω 2 π r 0 2 + J r 6 ω 2 r 2 ω 2 24 r 0 21 J r 7 ω 2 π ) ϕ ( r ) + ( 2 r 2 ω 3 + 80 3 ω r 0 9 + 8 J π r 0 8 ω 2 + 46 3 J r ω 2 + 140 3 r 2 ω + 6 r 4 ω 3 r 0 7 14 J π r 2 r 0 6 ω 2 + r 160 J + J r 4 ω 4 + 26 3 J r 2 ω 2 + 20 r 3 ω + 6 r 5 ω 3 r 0 5 94 J π r 4 r 0 4 ω 2 + 2 r 3 J r 4 ω 4 + r 5 ω 3 53 3 J r 2 ω 2 60 J r 0 3 114 J π r 6 r 0 2 ω 2 + J r 7 ω 2 r 2 ω 2 24 r 0 42 J π r 8 ω 2 ) r 0 ) h 1 3 , 2 ( r ) ,
β 8 = ( r 2 + r 0 2 2 π ( 12 r 0 6 + r 4 ω 2 114 7 r 2 r 0 4 + r 6 ω 2 162 7 r 4 r 0 2 + 36 r 6 7 ) ϕ ( r ) 2 + 2 r 2 + r 0 2 ( 3 π 2 + 24 r 0 8 + 104 π r r 0 7 7 + 99 π 2 7 + 72 r 0 6 r 2 + r 3 π r 2 ω 2 + 24 r 0 5 + 201 π 2 7 + 72 r 0 4 r 4 + π r 5 r 2 ω 2 + 72 7 r 0 3 + 15 π 2 + 24 r 0 2 r 6 + 36 π r 7 r 0 7 + 18 π 2 r 8 7 ) ϕ ( r ) + ( 24 π r 0 9 + 69 π 2 7 24 r 0 8 r + 184 π r 2 r 0 7 7 + 6 r 3 π 2 168 r 0 6 7 + r 2 ω 2 + 342 7 π r 4 r 0 5 + 159 π 2 7 216 r 0 4 r 5 + r 2 ω 2 + 234 7 π r 6 r 0 3 + 60 π 2 7 96 r 0 2 r 7 + 36 π r 8 r 0 7 + 36 π 2 r 9 7 ) r 0 ) J 2 ,
and
β 9 = r 2 + r 0 2 ϕ ( r ) + r r 0 r ω J .
Lastly, the differential equations for the axial metric functions h 0 and h 1 are rather simple. For h 0 , we obtain
d d r h 0 3 , 2 r = J r 7 7 r 0 2 r 2 + r 0 2 r 2 + r 0 2 ϕ r + r r 0 d d r ϕ 1 2 , 2 r + i r 2 ω 2 + 6 7 J 14 r 2 + r 0 2 ω r 0 3 r 2 + r 0 2 ϕ r + r r 0 H 1 2 , 2 r + 7 J 14 r 2 + r 0 2 r 0 3 ( r ω 2 ( r 2 + r 0 2 ) 2 ϕ r + ( r 2 ω 2 + 4 ) r 0 3 + r 0 r 4 ω 2 ) T 2 , 2 r + 2 J ω r 2 + r 0 2 2 + 2 r r 2 + r 0 2 h 0 3 , 2 r + λ 1 r 2 + r 0 2 2 ω 2 r 0 3 2 r 2 + r 0 2 ϕ r + r r 0 7 J 7 r 2 + r 0 2 2 ϕ 1 2 , 2 r ,
where
λ 1 = 6 i ( r 2 ω 2 + r 0 2 ω 2 + 10 r 2 + r 0 2 J ϕ ( r ) r 0 ( ω 3 r 0 6 6 + ( r 2 ω 3 5 ω ) r 0 4 3 + r ω r 3 ω 2 6 + J ω 5 r 3 r 0 2 + J r r 2 ω 2 + 10 ) ) h 1 3 , 2 ( r ) ,
and for h 1 , we obtain
d d r h 1 3 , 2 r = i ω 7 J 7 r 0 3 r 2 + r 0 2 ϕ r + r r 0 T 2 , 2 r + i r 2 + r 0 2 r 0 3 6 r 2 + r 0 2 J ϕ r r 2 r 0 3 ω r 0 5 ω 6 J r r 0 h 0 3 , 2 r + 10 J r 2 + r 0 2 2 ω h 1 3 , 2 r .
Here, compared to the axial perturbation sector, the polar perturbation sector shows an opposite dependence on the order of rotation. In all the ODEs of the polar metric functions H 1 ( r ) , T ( r ) , L ( r ) , N ( r ) , and of the scalar function ϕ 1 ( r ) , up to second order terms from rotation enter the equations. On the other hand, equations for the axial metric functions h 0 ( r ) and h 1 ( r ) only have up to the first-order terms in rotation.

References

  1. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P. [LIGO Scientific and Virgo] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
  2. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. [LIGO Scientific and Virgo] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
  3. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. [KAGRA, LIGO Scientific and Virgo] Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Rev. Rel. 2016, 19, 1. [Google Scholar] [CrossRef]
  4. Cahillane, C.; Mansell, G. Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four. Galaxies 2022, 10, 36. [Google Scholar] [CrossRef]
  5. Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quant. Grav. 2010, 27, 194002. [Google Scholar] [CrossRef]
  6. Dwyer, S.; Sigg, D.; Ballmer, S.W.; Barsotti, L.; Mavalvala, N.; Evans, M. Gravitational wave detector with cosmological reach. Phys. Rev. D 2015, 91, 082001. [Google Scholar] [CrossRef]
  7. Colpi, M.; Danzmann, K.; Hewitson, M.; Jetzer, P.; Nelemans, G.; Petiteau, A.; Shoemaker, D.; Sopuerta, C.; Stebbins, R.; Tanvir, N.; et al. LISA Definition Study Report. arXiv 2024, arXiv:2402.07571. [Google Scholar] [CrossRef]
  8. Bambi, C.; Brustein, R.; Cardoso, V.; Chael, A.; Danielsson, U.; Giri, S.; Gupta, A.; Heidmann, P.; Lehner, L.; Liebling, S.; et al. Black hole mimickers: From theory to observation. arXiv 2025, arXiv:2505.09014. [Google Scholar] [CrossRef]
  9. Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D 2007, 76, 024016. [Google Scholar] [CrossRef]
  10. Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
  11. Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP: Woodbury, NY, USA, 1995. [Google Scholar]
  12. Lobo, F.S.N. Wormholes, Warp Drives and Energy Conditions; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
  13. Ellis, H.G. Ether flow through a drainhole—A particle model in general relativity. J. Math. Phys. 1973, 14, 104. [Google Scholar] [CrossRef]
  14. Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Polon. B 1973, 4, 251. [Google Scholar]
  15. Ellis, H.G. The Evolving, Flowless Drain Hole: A Nongravitating Particle Model In General Relativity Theory. Gen. Rel. Grav. 1979, 10, 105. [Google Scholar] [CrossRef]
  16. Blázquez-Salcedo, J.L.; Knoll, C.; Radu, E. Traversable wormholes in Einstein-Dirac-Maxwell theory. Phys. Rev. Lett. 2021, 126, 101102. [Google Scholar] [CrossRef]
  17. Konoplya, R.A.; Zhidenko, A. Traversable Wormholes in General Relativity. Phys. Rev. Lett. 2022, 128, 091104. [Google Scholar] [CrossRef]
  18. Blázquez-Salcedo, J.L.; Knoll, C.; Radu, E. Einstein–Dirac–Maxwell wormholes: Ansatz, construction and properties of symmetric solutions. Eur. Phys. J. C 2022, 82, 533. [Google Scholar] [CrossRef]
  19. Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef]
  20. Kanti, P.; Kleihaus, B.; Kunz, J. Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. D 2012, 85, 044007. [Google Scholar] [CrossRef]
  21. Antoniou, G.; Bakopoulos, A.; Kanti, P.; Kleihaus, B.; Kunz, J. Novel Einstein–scalar-Gauss-Bonnet wormholes without exotic matter. Phys. Rev. D 2020, 101, 024033. [Google Scholar] [CrossRef]
  22. Bakopoulos, A.; Charmousis, C.; Kanti, P. Traversable wormholes in beyond Horndeski theories. J. Cosmol. Astropart. Phys. 2022, 5, 022. [Google Scholar] [CrossRef]
  23. Naseer, T.; Sharif, M.; Faiza, M. Implications of f(R,Lm) theory on the existence of charged wormhole solutions. Chin. J. Phys. 2025, 94, 204–214. [Google Scholar] [CrossRef]
  24. Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Natural wormholes as gravitational lenses. Phys. Rev. D 1995, 51, 3117. [Google Scholar] [CrossRef]
  25. Safonova, M.; Torres, D.F.; Romero, G.E. Microlensing by natural wormholes: Theory and simulations. Phys. Rev. D 2002, 65, 023001. [Google Scholar] [CrossRef]
  26. Perlick, V. On the Exact gravitational lens equation in spherically symmetric and static space-times. Phys. Rev. D 2004, 69, 064017. [Google Scholar] [CrossRef]
  27. Nandi, K.K.; Zhang, Y.Z.; Zakharov, A.V. Gravitational lensing by wormholes. Phys. Rev. D 2006, 74, 024020. [Google Scholar] [CrossRef]
  28. Abe, F. Gravitational Microlensing by the Ellis Wormhole. Astrophys. J. 2010, 725, 787. [Google Scholar] [CrossRef]
  29. Toki, Y.; Kitamura, T.; Asada, H.; Abe, F. Astrometric Image Centroid Displacements due to Gravitational Microlensing by the Ellis Wormhole. Astrophys. J. 2011, 740, 121. [Google Scholar] [CrossRef]
  30. Nakajima, K.; Asada, H. Deflection angle of light in an Ellis wormhole geometry. Phys. Rev. D 2012, 85, 107501. [Google Scholar] [CrossRef]
  31. Tsukamoto, N.; Harada, T.; Yajima, K. Can we distinguish between black holes and wormholes by their Einstein ring systems? Phys. Rev. D 2012, 86, 104062. [Google Scholar] [CrossRef]
  32. Kuhfittig, P.K.F. Gravitational lensing of wormholes in the galactic halo region. Eur. Phys. J. C 2014, 74, 2818. [Google Scholar] [CrossRef]
  33. Bambi, C. Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 2013, 87, 107501. [Google Scholar] [CrossRef]
  34. Takahashi, R.; Asada, H. Observational Upper Bound on the Cosmic Abundances of Negative-mass Compact Objects and Ellis Wormholes from the Sloan Digital Sky Survey Quasar Lens Search. Astrophys. J. 2013, 768, L16. [Google Scholar] [CrossRef]
  35. Tsukamoto, N.; Harada, T. Light curves of light rays passing through a wormhole. Phys. Rev. D 2017, 95, 024030. [Google Scholar] [CrossRef]
  36. Nedkova, P.G.; Tinchev, V.K.; Yazadjiev, S.S. Shadow of a rotating traversable wormhole. Phys. Rev. D 2013, 88, 124019. [Google Scholar] [CrossRef]
  37. Ohgami, T.; Sakai, N. Wormhole shadows. Phys. Rev. D 2015, 91, 124020. [Google Scholar] [CrossRef]
  38. Shaikh, R. Shadows of rotating wormholes. Phys. Rev. D 2018, 98, 024044. [Google Scholar] [CrossRef]
  39. Gyulchev, G.; Nedkova, P.; Tinchev, V.; Yazadjiev, S. On the shadow of rotating traversable wormholes. Eur. Phys. J. C 2018, 78, 544. [Google Scholar] [CrossRef]
  40. Bouhmadi-López, M.; Chen, C.Y.; Chew, X.Y.; Ong, Y.C.; Yeom, D.h. Traversable wormhole in Einstein 3-form theory with self-interacting potential. J. Cosmol. Astropart. Phys. 2021, 10, 059. [Google Scholar] [CrossRef]
  41. Guerrero, M.; Olmo, G.J.; Rubiera-García, D.; Sáez-Chillón, D.G. Light ring images of double photon spheres in black hole and wormhole spacetimes. Phys. Rev. D 2022, 105, 084057. [Google Scholar] [CrossRef]
  42. Huang, H.; Kunz, J.; Yang, J.; Zhang, C. Light ring behind wormhole throat: Geodesics, images, and shadows. Phys. Rev. D 2023, 107, 104060. [Google Scholar] [CrossRef]
  43. Harko, T.; Kovacs, Z.; Lobo, F.S.N. Electromagnetic signatures of thin accretion disks in wormhole geometries. Phys. Rev. D 2008, 78, 084005. [Google Scholar] [CrossRef]
  44. Harko, T.; Kovacs, Z.; Lobo, F.S.N. Thin accretion disks in stationary axisymmetric wormhole spacetimes. Phys. Rev. D 2009, 79, 064001. [Google Scholar] [CrossRef]
  45. Bambi, C. Broad Kα iron line from accretion disks around traversable wormholes. Phys. Rev. D 2013, 87, 084039. [Google Scholar] [CrossRef]
  46. Zhou, M.; Cardenas-Avendano, A.; Bambi, C.; Kleihaus, B.; Kunz, J. Search for astrophysical rotating Ellis wormholes with X-ray reflection spectroscopy. Phys. Rev. D 2016, 94, 024036. [Google Scholar] [CrossRef]
  47. Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F.H. Imaging a non-singular rotating black hole at the center of the Galaxy. Class. Quant. Grav. 2018, 35, 115009. [Google Scholar] [CrossRef]
  48. Deligianni, E.; Kunz, J.; Nedkova, P.; Yazadjiev, S.; Zheleva, R. Quasiperiodic oscillations around rotating traversable wormholes. Phys. Rev. D 2021, 104, 024048. [Google Scholar] [CrossRef]
  49. Deligianni, E.; Kleihaus, B.; Kunz, J.; Nedkova, P.; Yazadjiev, S. Quasiperiodic oscillations in rotating Ellis wormhole spacetimes. Phys. Rev. D 2021, 104, 064043. [Google Scholar] [CrossRef]
  50. Abdulkhamidov, F.; Nedkova, P.; Rayimbaev, J.; Kunz, J.; Ahmedov, B. Parameter constraints on traversable wormholes within beyond Horndeski theories through quasiperiodic oscillations. Phys. Rev. D 2024, 109, 104074. [Google Scholar] [CrossRef]
  51. Konoplya, R.A.; Molina, C. The Ringing wormholes. Phys. Rev. D 2005, 71, 124009. [Google Scholar] [CrossRef]
  52. Kim, S.W. Wormhole perturbation and its quasi normal modes. Prog. Theor. Phys. Suppl. 2008, 172, 21. [Google Scholar] [CrossRef]
  53. Konoplya, R.A.; Zhidenko, A. Passage of radiation through wormholes of arbitrary shape. Phys. Rev. D 2010, 81, 124036. [Google Scholar] [CrossRef]
  54. Konoplya, R.A.; Zhidenko, A. Wormholes versus black holes: Quasinormal ringing at early and late times. J. Cosmol. Astropart. Phys. 2016, 1612, 043. [Google Scholar] [CrossRef]
  55. Völkel, S.H.; Kokkotas, K.D. Wormhole Potentials and Throats from Quasi-Normal Modes. Class. Quant. Grav. 2018, 35, 105018. [Google Scholar] [CrossRef]
  56. Aneesh, S.; Bose, S.; Kar, S. Gravitational waves from quasinormal modes of a class of Lorentzian wormholes. Phys. Rev. D 2018, 97, 124004. [Google Scholar] [CrossRef]
  57. Konoplya, R.A. How to tell the shape of a wormhole by its quasinormal modes. Phys. Lett. B 2018, 784, 43. [Google Scholar] [CrossRef]
  58. Blázquez-Salcedo, J.L.; Chew, X.Y.; Kunz, J. Scalar and axial quasinormal modes of massive static phantom wormholes. Phys. Rev. D 2018, 98, 044035. [Google Scholar] [CrossRef]
  59. Konoplya, R.A.; Zinhailo, A.F.; Stuchlík, Z. Quasinormal modes, scattering, and Hawking radiation in the vicinity of an Einstein-dilaton-Gauss-Bonnet black hole. Phys. Rev. D 2019, 99, 124042. [Google Scholar] [CrossRef]
  60. Churilova, M.S.; Konoplya, R.A.; Zhidenko, A. Arbitrarily long-lived quasinormal modes in a wormhole background. Phys. Lett. B 2020, 802, 135207. [Google Scholar] [CrossRef]
  61. Jusufi, K. Correspondence between quasinormal modes and the shadow radius in a wormhole spacetime. Gen. Rel. Grav. 2021, 53, 87. [Google Scholar] [CrossRef]
  62. Bronnikov, K.A.; Konoplya, R.A.; Pappas, T.D. General parametrization of wormhole spacetimes and its application to shadows and quasinormal modes. Phys. Rev. D 2021, 103, 124062. [Google Scholar] [CrossRef]
  63. González, P.A.; Papantonopoulos, E.; Rincón, Á.; Vásquez, Y. Quasinormal modes of massive scalar fields in four-dimensional wormholes: Anomalous decay rate. Phys. Rev. D 2022, 106, 024050. [Google Scholar] [CrossRef]
  64. Azad, B.; Blázquez-Salcedo, J.L.; Chew, X.Y.; Kunz, J.; Yeom, D.h. Polar modes and isospectrality of Ellis-Bronnikov wormholes. Phys. Rev. D 2023, 107, 084024. [Google Scholar] [CrossRef]
  65. Maji, A.B.; Kar, S. Quasinormal spectra of a wormhole family: Overtone features and a parameter-controlled redshift. arXiv 2025, arXiv:2506.09860. [Google Scholar] [CrossRef]
  66. Khoo, F.S.; Azad, B.; Blázquez-Salcedo, J.L.; González-Romero, L.M.; Kleihaus, B.; Kunz, J.; Navarro-Lérida, F. Quasinormal modes of rapidly rotating Ellis-Bronnikov wormholes. Phys. Rev. D 2024, 109, 084013. [Google Scholar] [CrossRef]
  67. Bueno, P.; Cano, P.A.; Goelen, F.; Hertog, T.; Vercnocke, B. Echoes of Kerr-like wormholes. Phys. Rev. D 2018, 97, 024040. [Google Scholar] [CrossRef]
  68. Kashargin, P.E.; Sushkov, S.V. Slowly rotating wormholes: The First order approximation. Grav. Cosmol. 2008, 14, 80. [Google Scholar] [CrossRef]
  69. Kashargin, P.E.; Sushkov, S.V. Slowly rotating scalar field wormholes: The Second order approximation. Phys. Rev. D 2008, 78, 064071. [Google Scholar] [CrossRef]
  70. Azad, B.; Blázquez-Salcedo, J.L.; Khoo, F.S.; Kunz, J. Are slowly rotating Ellis-Bronnikov wormholes stable? Phys. Lett. B 2024, 848, 138349. [Google Scholar] [CrossRef]
  71. Azad, B.; Blázquez-Salcedo, J.L.; Khoo, F.S.; Kunz, J. Radial perturbations of Ellis-Bronnikov wormholes in slow rotation up to second order. Phys. Rev. D 2024, 109, 124051. [Google Scholar] [CrossRef]
  72. Volkov, M.S. Stationary generalizations for the Bronnikov-Ellis wormhole and for the vacuum ring wormhole. Phys. Rev. D 2021, 104, 124064. [Google Scholar] [CrossRef]
  73. Kleihaus, B.; Kunz, J. Rotating Ellis Wormholes in Four Dimensions. Phys. Rev. D 2014, 90, 121503. [Google Scholar] [CrossRef]
  74. Chew, X.Y.; Kleihaus, B.; Kunz, J. Geometry of Spinning Ellis Wormholes. Phys. Rev. D 2016, 94, 104031. [Google Scholar] [CrossRef]
  75. Blázquez-Salcedo, J.L.; Khoo, F.S.; Kleihaus, B.; Kunz, J. Quasinormal modes of rapidly rotating Einstein-Gauss-Bonnet-dilaton black holes. Phys. Rev. D 2025, 111, L021505. [Google Scholar] [CrossRef]
  76. Khoo, F.S. Scalar quasinormal modes of rotating regular black holes. Phys. Rev. D 2025, 111, 124025. [Google Scholar] [CrossRef]
  77. Blázquez-Salcedo, J.L.; Khoo, F.S. Quasinormal modes of slowly rotating Kerr-Newman black holes using the double series method. Phys. Rev. D 2023, 107, 084031. [Google Scholar] [CrossRef]
  78. Hartle, J.B. Slowly rotating relativistic stars. 1. Equations of structure. Astrophys. J. 1967, 150, 1005–1029. [Google Scholar] [CrossRef]
  79. Hartle, J.B.; Thorne, K.S. Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars. Astrophys. J. 1968, 153, 807. [Google Scholar] [CrossRef]
  80. Kojima, Y. Equations governing the nonradial oscillations of a slowly rotating relativistic star. Phys. Rev. D 1992, 46, 4289. [Google Scholar] [CrossRef]
  81. Shinkai, H.a.; Hayward, S.A. Fate of the first traversible wormhole: Black hole collapse or inflationary expansion. Phys. Rev. D 2002, 66, 044005. [Google Scholar] [CrossRef]
  82. González, J.A.; Guzman, F.S.; Sarbach, O. Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis. Class. Quant. Grav. 2009, 26, 015010. [Google Scholar] [CrossRef]
  83. González, J.A.; Guzman, F.S.; Sarbach, O. Instability of wormholes supported by a ghost scalar field. II. Nonlinear evolution. Class. Quant. Grav. 2009, 26, 015011. [Google Scholar] [CrossRef]
  84. Cremona, F.; Pirotta, F.; Pizzocchero, L. On the linear instability of the Ellis–Bronnikov–Morris-Thorne wormhole. Gen. Rel. Grav. 2019, 51, 19. [Google Scholar] [CrossRef]
  85. Dent, J.B.; Gabella, W.E.; Holley-Bockelmann, K.; Kephart, T.W. Gravitational waves from a black hole orbiting in a wormhole geometry. Phys. Rev. D 2021, 104, 044030. [Google Scholar] [CrossRef]
Figure 1. Scaled background perturbation functions vs. the radial coordinate r for several values of the asymmetry parameter C ( r 0 = 1 ). The scaling parameter is the angular momentum J.
Figure 1. Scaled background perturbation functions vs. the radial coordinate r for several values of the asymmetry parameter C ( r 0 = 1 ). The scaling parameter is the angular momentum J.
Universe 11 00325 g001
Figure 2. Unstable radial modes in second-order perturbation theory in rotation: a purely imaginary eigenvalue ω I vs. the angular momentum J, both scaled with appropriate powers of the corrected throat area (compare [70,71]) for several values of the asymmetry parameter C. The left plot shows the unstable mode already present in the static case, and the right plot includes the second unstable mode emerging from a zero mode, as well. Close to the bifurcation of two modes, the second order approximation breaks down.
Figure 2. Unstable radial modes in second-order perturbation theory in rotation: a purely imaginary eigenvalue ω I vs. the angular momentum J, both scaled with appropriate powers of the corrected throat area (compare [70,71]) for several values of the asymmetry parameter C. The left plot shows the unstable mode already present in the static case, and the right plot includes the second unstable mode emerging from a zero mode, as well. Close to the bifurcation of two modes, the second order approximation breaks down.
Universe 11 00325 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Azad, B.; Blázquez-Salcedo, J.L.; Khoo, F.S.; Kunz, J.; Navarro-Lérida, F. Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes. Universe 2025, 11, 325. https://doi.org/10.3390/universe11100325

AMA Style

Azad B, Blázquez-Salcedo JL, Khoo FS, Kunz J, Navarro-Lérida F. Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes. Universe. 2025; 11(10):325. https://doi.org/10.3390/universe11100325

Chicago/Turabian Style

Azad, Bahareh, Jose Luis Blázquez-Salcedo, Fech Scen Khoo, Jutta Kunz, and Francisco Navarro-Lérida. 2025. "Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes" Universe 11, no. 10: 325. https://doi.org/10.3390/universe11100325

APA Style

Azad, B., Blázquez-Salcedo, J. L., Khoo, F. S., Kunz, J., & Navarro-Lérida, F. (2025). Quadrupole Perturbations of Slowly Spinning Ellis–Bronnikov Wormholes. Universe, 11(10), 325. https://doi.org/10.3390/universe11100325

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop