A Needle in a Cosmic Haystack: A Review of FRB Search Techniques
Abstract
:1. Introduction
2. Key Steps in a FRB Search Pipeline
2.1. Rejection of Radio Frequency Interference
2.1.1. Static Channel Mask
2.1.2. Zero-DM Filter
2.1.3. Real-Time Thresholding
2.1.4. IQRM
2.1.5. Z-Dot Filter
2.1.6. Spectral Kurtosis
2.1.7. Secondary, Off-Line RFI Mitigation
2.2. Dedispersion
2.2.1. Brute Force
2.2.2. Tree Dedispersion
2.2.3. Semi-Coherent Dedispersion
2.2.4. Fourier Domain Dedispersion
2.3. Matched Filtering
2.4. Candidate Classification
2.4.1. Sifting and Clustering
2.4.2. Machine Learning Techniques
2.5. Buffering, Triggering, and Alerting
3. FRBs in the Era of SKAO/ngVLA
3.1. Expanding the FRB Parameter Space
3.2. Radon and Hough Transform
3.3. Quantum Computing Searches
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Resources
RFI Excision Software | |
IQRM | https://gitlab.com/kmrajwade/iqrm_apollo |
RFIClean | https://github.com/ymaan4/RFIClean |
RFim | https://github.com/TRASAL/RFIm |
Dedispersion + Matched Filtering software | |
Heimdall | https://sourceforge.net/projects/heimdall-astro/ |
Astro-Accelerate | https://github.com/AstroAccelerateOrg/astro-accelerate |
FDMT | https://github.com/kiranshila/FastDMTransform.jl |
Candidate classification software | |
FETCH | https://github.com/devanshkv/fetch |
FRBID | https://github.com/Zafiirah13/FRBID |
Full stack FRB search pipeline (all of the above) | |
AMBER | https://github.com/TRASAL/AMBER |
TransientX | https://github.com/ypmen/TransientX |
PRESTO | https://www.cv.nrao.edu/~sransom/presto/ |
1 | Zackay B., et al., An Accurate and Efficient Algorithm for Detection of Radio Bursts with an Unknown Dispersion Measure, for Single-dish Telescopes and Interferometers, 2017, Astrophysical Journal, Volume 835, Issue 1, DOI: 10.3847/1538-4357/835/1/11. © AAS reproduced with permission. |
References
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [PubMed]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Lorimer, D.R.; Faulkner, A.J.; Lyne, A.G.; Manchester, R.N.; Kramer, M.; McLaughlin, M.A.; Hobbs, G.; Possenti, A.; Stairs, I.H.; Camilo, F.; et al. The Parkes Multibeam Pulsar Survey—VI. Discovery and timing of 142 pulsars and a Galactic population analysis. Mon. Not. R. Astron. Soc. 2006, 372, 777–800. [Google Scholar] [CrossRef]
- Manchester, R.N.; Fan, G.; Lyne, A.G.; Kaspi, V.M.; Crawford, F. Discovery of 14 Radio Pulsars in a Survey of the Magellanic Clouds. Astrophys. J. 2006, 649, 235–242. [Google Scholar] [CrossRef]
- Macquart, J.P.; Prochaska, J.X.; McQuinn, M.; Bannister, K.W.; Bhandari, S.; Day, C.K.; Deller, A.T.; Ekers, R.D.; James, C.W.; Marnoch, L.; et al. A census of baryons in the Universe from localized fast radio bursts. Nature 2020, 581, 391–395. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, J.; Kooistra, E.; Oostrum, L.; Connor, L.; Hargreaves, J.E.; Maan, Y.; Pastor-Marazuela, I.; Petroff, E.; van der Schuur, D.; Sclocco, A.; et al. The Apertif Radio Transient System (ARTS): Design, commissioning, data release, and detection of the first five fast radio bursts. Astron. Astrophys. 2023, 672, A117. [Google Scholar] [CrossRef]
- Eatough, R.P.; Keane, E.F.; Lyne, A.G. An interference removal technique for radio pulsar searches. Mon. Not. R. Astron. Soc. 2009, 395, 410–415. [Google Scholar] [CrossRef]
- Sclocco, A.; Vohl, D.; van Nieuwpoort, R.V. Real-Time RFI Mitigation for the Apertif Radio Transient System. In Proceedings of the 2019 RFI Workshop—Coexisting with Radio Frequency Interference (RFI), Toulouse, France, 23–26 September 2019; pp. 1–8. [Google Scholar]
- Rafiei-Ravandi, M.; Smith, K.M. Mitigating Radio Frequency Interference in CHIME/FRB Real-time Intensity Data. Astrophys. J. Suppl. Ser. 2023, 265, 62. [Google Scholar] [CrossRef]
- Morello, V.; Rajwade, K.M.; Stappers, B.W. IQRM: Real-time adaptive RFI masking for radio transient and pulsar searches. Mon. Not. R. Astron. Soc. 2022, 510, 1393–1403. [Google Scholar] [CrossRef]
- Men, Y.P.; Luo, R.; Chen, M.Z.; Hao, L.F.; Lee, K.J.; Li, J.; Li, Z.X.; Liu, Z.Y.; Pei, X.; Wen, Z.G.; et al. Piggyback search for fast radio bursts using Nanshan 26 m and Kunming 40 m radio telescopes—I. Observing and data analysis systems, discovery of a mysterious peryton. Mon. Not. R. Astron. Soc. 2019, 488, 3957–3971. [Google Scholar] [CrossRef]
- Nita, G.M. Spectral Kurtosis statistics of transient signals. Mon. Not. R. Astron. Soc. 2016, 458, 2530–2540. [Google Scholar] [CrossRef]
- Smith, E.; Lynch, R.S.; Pisano, D.J. Simulating Spectral Kurtosis Mitigation against Realistic Radio Frequency Interference Signals. Astron. J. 2022, 164, 123. [Google Scholar] [CrossRef]
- Purver, M.; Bassa, C.G.; Cognard, I.; Janssen, G.H.; Karuppusamy, R.; Kramer, M.; Lee, K.J.; Liu, K.; McKee, J.W.; Perrodin, D.; et al. Removal and replacement of interference in tied-array radio pulsar observations using the spectral kurtosis estimator. Mon. Not. R. Astron. Soc. 2022, 510, 1597–1611. [Google Scholar] [CrossRef]
- Ransom, S. PRESTO: PulsaR Exploration and Search TOolkit. Astrophysics Source Code Library, Record ascl:1107.017. 2011. Available online: http://xxx.lanl.gov/abs/1107.017 (accessed on 5 February 2024).
- van Straten, W.; Demorest, P.; Oslowski, S. Pulsar Data Analysis with PSRCHIVE. Astron. Res. Technol. 2012, 9, 237–256. [Google Scholar] [CrossRef]
- Maan, Y.; van Leeuwen, J.; Vohl, D. Fourier domain excision of periodic radio frequency interference. Astron. Astrophys. 2021, 650, A80. [Google Scholar] [CrossRef]
- Barsdell, B.R.; Bailes, M.; Barnes, D.G.; Fluke, C.J. Accelerating incoherent dedispersion. Mon. Not. R. Astron. Soc. 2012, 422, 379–392. [Google Scholar] [CrossRef]
- Sclocco, A.; van Leeuwen, J.; Bal, H.E.; van Nieuwpoort, R.V. Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators. Astron. Comput. 2016, 14, 1–7. [Google Scholar] [CrossRef]
- Taylor, J.H. A Sensitive Method for Detecting Dispersed Radio Emission. Astron. Astrophys. Suppl. 1974, 15, 367. [Google Scholar]
- Brigham, E.O.; Morrow, R.E. The fast Fourier transform. IEEE Spectr. 1967, 4, 63–70. [Google Scholar] [CrossRef]
- Zackay, B.; Ofek, E.O. An Accurate and Efficient Algorithm for Detection of Radio Bursts with an Unknown Dispersion Measure, for Single-dish Telescopes and Interferometers. Astrophys. J. 2017, 835, 11. [Google Scholar] [CrossRef]
- Bassa, C.G.; Pleunis, Z.; Hessels, J.W.T. Enabling pulsar and fast transient searches using coherent dedispersion. Astron. Comput. 2017, 18, 40–46. [Google Scholar] [CrossRef]
- Bassa, C.G.; Romein, J.W.; Veenboer, B.; van der Vlugt, S.; Wijnholds, S.J. Fourier-domain dedispersion. Astron. Astrophys. 2022, 657, A46. [Google Scholar] [CrossRef]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts. Astron. Astrophys. Rev. 2019, 27, 4. [Google Scholar] [CrossRef]
- Caleb, M.; Heywood, I.; Rajwade, K.; Malenta, M.; Stappers, B.W.; Barr, E.; Chen, W.; Morello, V.; Sanidas, S.; van den Eijnden, J.; et al. Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat. Astron. 2022, 6, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Hurley-Walker, N.; Zhang, X.; Bahramian, A.; McSweeney, S.J.; O’Doherty, T.N.; Hancock, P.J.; Morgan, J.S.; Anderson, G.E.; Heald, G.H.; Galvin, T.J. A radio transient with unusually slow periodic emission. Nature 2022, 601, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Hurley-Walker, N.; Rea, N.; McSweeney, S.J.; Meyers, B.W.; Lenc, E.; Heywood, I.; Hyman, S.D.; Men, Y.P.; Clarke, T.E.; Coti Zelati, F.; et al. A long-period radio transient active for three decades. Nature 2023, 619, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Press, W.H.; Davis, M. How to identify and weigh virialized clusters of galaxies in a complete redshift catalog. Astrophys. J. 1982, 259, 449–473. [Google Scholar] [CrossRef]
- Connor, L.; van Leeuwen, J. Applying Deep Learning to Fast Radio Burst Classification. Astron. J. 2018, 156, 256. [Google Scholar] [CrossRef]
- Agarwal, D.; Aggarwal, K.; Burke-Spolaor, S.; Lorimer, D.R.; Garver-Daniels, N. FETCH: A deep-learning based classifier for fast transient classification. Mon. Not. R. Astron. Soc. 2020, 497, 1661–1674. [Google Scholar] [CrossRef]
- Bhat, S.S.; Prabu, T.; Stappers, B.; Ghalame, A.; Saha, S.; Sudarshan, T.S.B.; Hosenie, Z. Investigation of a Machine learning methodology for the SKA pulsar search pipeline. J. Astrophys. Astron. 2023, 44, 36. [Google Scholar] [CrossRef]
- Tendulkar, S.P.; Bassa, C.G.; Cordes, J.M.; Bower, G.C.; Law, C.J.; Chatterjee, S.; Adams, E.A.K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B.J.; et al. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102. Astrophys. J. Lett. 2017, 834, L7. [Google Scholar] [CrossRef]
- Petroff, E.; Houben, L.; Bannister, K.; Burke-Spolaor, S.; Cordes, J.; Falcke, H.; van Haren, R.; Karastergiou, A.; Kramer, M.; Law, C.; et al. VOEvent Standard for Fast Radio Bursts. arXiv 2017, arXiv:1710.08155. [Google Scholar]
- Pastor-Marazuela, I.; Connor, L.; van Leeuwen, J.; Maan, Y.; ter Veen, S.; Bilous, A.; Oostrum, L.; Petroff, E.; Straal, S.; Vohl, D.; et al. Chromatic periodic activity down to 120 megahertz in a fast radio burst. Nature 2021, 596, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Dewdney, P.E.; Hall, P.J.; Schilizzi, R.T.; Lazio, T.J.L.W. The Square Kilometre Array. IEEE Proc. 2009, 97, 1482–1496. [Google Scholar] [CrossRef]
- Di Francesco, J.; Chalmers, D.; Denman, N.; Fissel, L.; Friesen, R.; Gaensler, B.; Hlavacek-Larrondo, J.; Kirk, H.; Matthews, B.; O’Dea, C.; et al. The Next Generation Very Large Array. Proc. Can. Long Range Plan Astron. Astrophys. White Pap. 2019, 2020, 32. [Google Scholar] [CrossRef]
- Hallinan, G.; Ravi, V.; Weinreb, S.; Kocz, J.; Huang, Y.; Woody, D.P.; Lamb, J.; D’Addario, L.; Catha, M.; Law, C.; et al. The DSA-2000—A Radio Survey Camera. Proc. Bull. Am. Astron. Soc. 2019, 51, 255. [Google Scholar] [CrossRef]
- Vanderlinde, K.; Liu, A.; Gaensler, B.; Bond, D.; Hinshaw, G.; Ng, C.; Chiang, C.; Stairs, I.; Brown, J.A.; Sievers, J.; et al. The Canadian Hydrogen Observatory and Radio-transient Detector (CHORD). Proc. Can. Long Range Plan Astron. Astrophys. White Pap. 2019, 2020, 28. [Google Scholar] [CrossRef]
- Chime/Frb Collaboration; Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Breitman, D.; Cassanelli, T.; Chatterjee, S.; Chawla, P.; et al. Sub-second periodicity in a fast radio burst. Nature 2022, 607, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Beniamini, P.; Wadiasingh, Z.; Hare, J.; Rajwade, K.M.; Younes, G.; van der Horst, A.J. Evidence for an abundant old population of Galactic ultra-long period magnetars and implications for fast radio bursts. Mon. Not. R. Astron. Soc. 2023, 520, 1872–1894. [Google Scholar] [CrossRef]
- Snelders, M.P.; Nimmo, K.; Hessels, J.W.T.; Bensellam, Z.; Zwaan, L.P.; Chawla, P.; Ould-Boukattine, O.S.; Kirsten, F.; Faber, J.T.; Gajjar, V. Detection of ultra-fast radio bursts from FRB 20121102A. Nat. Astron. 2023, 7, 1486–1496. [Google Scholar] [CrossRef]
- Radon, J. Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. In Berichte Uber die Verhandlungen der Koniglich-Sachsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse [Reports on the Proceedings of the Royal Saxonian Academy of Sciences at Leipzig, Mathematical and Physical Section]; Teubner: Leipzig, Germany, 1917. [Google Scholar]
- Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962. [Google Scholar]
- Schmid, N.A.; Prestage, R.M. Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain. Mon. Not. R. Astron. Soc. 2018, 477, 4052–4062. [Google Scholar] [CrossRef]
- Alkhweldi, M.; Schmid, N.A. Application of the Radon transform for search of candidate pulses in radio astronomy. J. Astron. Telesc. Instruments Syst. 2020, 6, 018003. [Google Scholar] [CrossRef]
- Brunet, T.; Tolley, E.; Corda, S.; Ilic, R.; Broekema, P.C.; Kneib, J.P. Quantum Radio Astronomy: Data Encodings and Quantum Image Processing. arXiv 2023, arXiv:2310.12084. [Google Scholar] [CrossRef]
- Kordzanganeh, M.; Utting, A.; Scaife, A. Quantum Machine Learning for Radio Astronomy. arXiv 2021, arXiv:2112.02655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajwade, K.M.; van Leeuwen, J. A Needle in a Cosmic Haystack: A Review of FRB Search Techniques. Universe 2024, 10, 158. https://doi.org/10.3390/universe10040158
Rajwade KM, van Leeuwen J. A Needle in a Cosmic Haystack: A Review of FRB Search Techniques. Universe. 2024; 10(4):158. https://doi.org/10.3390/universe10040158
Chicago/Turabian StyleRajwade, Kaustubh M., and Joeri van Leeuwen. 2024. "A Needle in a Cosmic Haystack: A Review of FRB Search Techniques" Universe 10, no. 4: 158. https://doi.org/10.3390/universe10040158
APA StyleRajwade, K. M., & van Leeuwen, J. (2024). A Needle in a Cosmic Haystack: A Review of FRB Search Techniques. Universe, 10(4), 158. https://doi.org/10.3390/universe10040158