Antioxidant Activity, Sun Protection Activity, and Phytochemical Profile of Ethanolic Extracts of Daemonorops acehensis Resin and Its Phytosomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction
2.3. Antioxidant Capacity Assay
2.4. Sun Protection Factor (SPF) Value
2.5. Phytosome–Extract Complex Preparation
2.6. Fourier Transform Infrared (FTIR) Profile
2.7. Identification of Metabolites
2.8. Data Analysis
3. Results
3.1. Yields, Antioxidant Capacity, and SPF Value of D. Acehensis Resin Extracts
3.2. Yields, Antioxidant Capacity, SPF Value, and FTIR Profile of E100 Phytosomes
3.3. Phytochemical Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K.H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansuri, R.; Diwan, A.; Kumar, H.; Dangwal, K.; Yadav, D. Potential of Natural Compounds as Sunscreen Agents. Pharmacogn. Rev. 2021, 15, 47–56. [Google Scholar] [CrossRef]
- Nurwiyoto, N. Karakteristik Morfologi, Populasi, Dan Habitat Rotan Jernang (Daemonorops Didymophylla Becc.) Di Bengkulu. Konserv. Hayati 2021, 17, 17–28. [Google Scholar] [CrossRef]
- Sousa, M.M.; Melo, M.J.; Parola, A.J.; Seixas de Melo, J.S.; Catarino, F.; Pina, F.; Cook, F.E.M.; Simmonds, M.S.J.; Lopes, J.A. Flavylium Chromophores as Species Markers for Dragon’s Blood Resins from Dracaena and Daemonorops Trees. J. Chromatogr. A 2008, 1209, 153–161. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Dai, Y.W.; Cao, J.; Chen, Y.T.; Zhao, C.X.; Jiang, L. Eight New Flavonoids from the Fruits of Daemonorops Draco. Fitoterapia 2020, 143, 104549. [Google Scholar] [CrossRef]
- Wang, X.; Batubara, I.; Yamauchi, K.; Mitsunaga, T. Identification and Structure-Activity Relationship (SAR) of Chemical Constituents from Daemonorops Draco (Willd.) Blume and Selected Commercial Flavonoids on Anti-Osteoclastogenesis Activity. Fitoterapia 2019, 138, 104280. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Nunes, A.R.; Vieira, Í.G.P.; Queiroz, D.B.; Leal, A.L.A.B.; Maia Morais, S.; Muniz, D.F.; Calixto-Junior, J.T.; Coutinho, H.D.M. Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin. Adv. Pharmacol. Sci. 2018, 2018, 5341487. [Google Scholar] [CrossRef]
- Purwanti, S.; Wahyuni, W.T.; Batubara, I. Antioxidant Activity of Daemonorops Draco Resin. J. Kim. Sains dan Apl. 2019, 22, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Waluyo, T.K.; Pasaribu, G. Aktifitas Antioksidan Dan Antikoagulasi Resin Jernang. J. Penelit. Has. Hutan 2013, 31, 306–315. [Google Scholar] [CrossRef]
- Sari, R.K.; Prayogo, Y.H.; Afrida, R.; Sari, L.; Asidah, N.; Rafi, M.; Wientarsih, I. Intsia Bijuga Heartwood Extract and Its Phytosome as Tyrosinase Inhibitor, Antioxidant, and Sun Protector. Forests 2021, 12, 1792. [Google Scholar] [CrossRef]
- Sadegh, S.M.; Mahram, M. Environmental Impact and Toxicity of Chemicals Used at the Umiversity Coolege of Moras, University College of Boras. 2008. Available online: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1311823&dswid=2476 (accessed on 3 November 2021).
- Asidah, N.; Sari, R.K.; Rafi, M.; Syafitri, U. Total Phenolic Content, Antioxidant, and Sunscreen Activities of Daemonorops Draco Resin Extracts from Extraction at Various Ethanol Concentrations and Resin-Solvent Ratio. IOP Conf. Ser. Earth Environ. Sci. 2021, 891, 012023. [Google Scholar] [CrossRef]
- Pratap Singh, R.; Narke, R. Preparation and Evaluation of Phytosome of Lawsone. Int. J. Pharm. Sci. Res. 2015, 6, 5217. [Google Scholar] [CrossRef]
- Permana, A.D.; Utami, R.N.; Courtenay, A.J.; Manggau, M.A.; Donnelly, R.F.; Rahman, L. Phytosomal Nanocarriers as Platforms for Improved Delivery of Natural Antioxidant and Photoprotective Compounds in Propolis: An Approach for Enhanced Both Dissolution Behaviour in Biorelevant Media and Skin Retention Profiles. J. Photochem. Photobiol. B Biol. 2020, 205, 111846. [Google Scholar] [CrossRef]
- Molaveisi, M.; Shahidi Noghabi, M.; Parastouei, K.; Taheri, R.A. Fate of Nano-Phytosomes Containing Bioactive Compounds of Echinacea Extract in an Acidic Food Beverage. Food Struct. 2021, 27, 100177. [Google Scholar] [CrossRef]
- Direito, R.; Reis, C.; Roque, L.; Gonçalves, M.; Sanches-Silva, A.; Gaspar, M.M.; Pinto, R.; Rocha, J.; Sepodes, B.; Bronze, M.R.; et al. Phytosomes with Persimmon (Diospyros kaki L.) Extract: Preparation and Preliminary Demonstration of in Vivo Tolerability. Pharmaceutics 2019, 11, 296. [Google Scholar] [CrossRef] [Green Version]
- Gnananath, K.; Nataraj, K.S.; Rao, B.G. Phospholipid Complex Technique for Superior Bioavailability of Phytoconstituents. Adv. Pharm. Bull. 2017, 7, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Hüsch, J.; Bohnet, J.; Fricker, G.; Skarke, C.; Artaria, C.; Appendino, G.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Enhanced Absorption of Boswellic Acids by a Lecithin Delivery Form (Phytosome®) of Boswellia Extract. Fitoterapia 2013, 84, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Aranda, R.; Pérez-López, L.A.; López-Arroyo, J.; Alanís-Garza, B.A.; Waksman de Torres, N. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico. Evid.-Based Complement. Altern. Med. 2011, 2011, 536139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk, M.; Duru, M.E.; Kivrak, Ş.; Mercan-Doĝan, N.; Türkoglu, A.; Özler, M.A. In Vitro Antioxidant, Anticholinesterase and Antimicrobial Activity Studies on Three Agaricus Species with Fatty Acid Compositions and Iron Contents: A Comparative Study on the Three Most Edible Mushrooms. Food Chem. Toxicol. 2011, 49, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid.-Based Complement. Altern. Med. 2015, 2015, 165457. [Google Scholar] [CrossRef] [Green Version]
- Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 2nd ed.; Chapman and Hall: New York, NY, USA, 1984; ISBN 9789401089562. [Google Scholar]
- Sari, R.K.; Wahyuningrum, M.; Rafi, M.; Wientarsih, I. Effect of Ethanol Polarity on Extraction Yield, Antioxidant, and Sunscreen Activities of Phytochemicals from Gyrinops Versteegii Leaves. IOP Conf. Ser. Mater. Sci. Eng. 2020, 935, 012038. [Google Scholar] [CrossRef]
- Prayogo, Y.H.; Syafii, W.; Sari, R.K.; Batubara, I. Danu Pharmacological Activity and Phytochemical Profile of Acacia Heartwood Extracts. Sci. Pharm. 2021, 89, 37. [Google Scholar] [CrossRef]
- Bikiaris, N.D.; Michailidou, G.; Lazaridou, M.; Christodoulou, E.; Gounari, E.; Ofrydopoulou, A.; Lambropoulou, D.A.; Vergkizi-Nikolakaki, S.; Lykidou, S.; Nikolaidis, N. Innovative Skin Product Emulsions with Enhanced Antioxidant, Antimicrobial and UV Protection Properties Containing Nanoparticles of Pure and Modified Chitosan with Encapsulated Fresh Pomegranate Juice. Polymers 2020, 12, 1542. [Google Scholar] [CrossRef]
- Telange, D.R.; Patil, A.T.; Pethe, A.M.; Fegade, H.; Anand, S.; Dave, V.S. Formulation and Characterization of an Apigenin-Phospholipid Phytosome (APLC) for Improved Solubility, in Vivo Bioavailability, and Antioxidant Potential. Eur. J. Pharm. Sci. 2017, 108, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Arnone, A.; Nasini, G.; De Pava, O.V.; Merlini, L. Constituents of Dragon’s Blood. 5. Dracoflavans B1, B2, C1, C2, D1, and D2, New A-Type Deoxyproanthocyanidins. J. Nat. Prod. 1997, 60, 971–975. [Google Scholar] [CrossRef]
- Toh, Z.S.; Wang, H.; Yip, Y.M.; Lu, Y.; Lim, B.J.A.; Zhang, D.; Huang, D. Phenolic Group on A-Ring Is Key for Dracoflavan B as a Selective Noncompetitive Inhibitor of α-Amylase. Bioorganic Med. Chem. 2015, 23, 7641–7649. [Google Scholar] [CrossRef]
- Kuligowski, J.; Quintás, G.; Esteve-Turrillas, F.A.; Garrigues, S.; de la Guardia, M. On-Line Gel Permeation Chromatography-Attenuated Total Reflectance-Fourier Transform Infrared Determination of Lecithin and Soybean Oil in Dietary Supplements. J. Chromatogr. A 2008, 1185, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Freag, M.S.; Elnaggar, Y.S.R.; Abdallah, O.Y. Lyophilized Phytosomal Nanocarriers as Platforms for Enhanced Diosmin Delivery: Optimization and Ex Vivo Permeation. Int. J. Nanomed. 2013, 8, 2385–2397. [Google Scholar] [CrossRef] [Green Version]
- Waluyo, T.K.; Wibowo, S. Dracorhodin: A Potential Marker Compound for Detecting the Presence of Dragon’s Blood Resin from Daemonorops Originated from Indonesia. Biodiversitas 2018, 19, 1665–1671. [Google Scholar] [CrossRef]
- Yi, T.; Tang, Y.; Zhang, J.; Zhao, Z.; Yang, Z.; Chen, H. Characterization and Determination of Six Flavonoids in the Ethnomedicine “Dragon’s Blood” by UPLC-PAD-MS. Chem. Cent. J. 2012, 6, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, M.; Wang, D.; Wang, M.; Tashiro, S.I.; Onodera, S.; Minami, M.; Ikejima, T. Dracorhodin Perchlorate Induces Apoptosis via Activation of Caspases and Generation of Reactive Oxygen Species. J. Pharmacol. Sci. 2004, 95, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, L.; Qiao, L.; Zhang, B.; Wang, X.; Han, Y.; Yu, W. Dracorhodin Perchlorate Regulates Fibroblast Proliferation to Promote Rat’s Wound Healing. J. Pharmacol. Sci. 2018, 136, 66–72. [Google Scholar] [CrossRef]
Extracts | Yields (%) | Antioxidant Capacity (µmol trolox/g) | SPF Value | ||
---|---|---|---|---|---|
DPPH | CUPRAC | ABTS | |||
E100 | 33.90 ± 0.92 a | 107.86 ± 1.51 a | 1181.78 ± 0.78 a | 52.58 ± 2.12 a | 17.117 ± 0.003 a |
E75 | 33.62 ± 1.21 a | 82.86 ± 1.33 b | 1182.16 ± 0.21 a | 45.71 ± 0.50 b | 11.726 ± 0.002 b |
E50 | 32.43 ± 0.70 a | 56.86 ± 0.23 c | 1157.78 ± 0.57 b | 38.57 ± 1.44 c | 7.540 ± 0.002 c |
E25 | 25.55 ± 1.35 b | 54.40 ± 0.20 d | 1159.16± 1.63 b | 37.89 ± 0.44 c | 7.293 ± 0.003 d |
E0 | 23.52 ± 1.06 b | 44. 93 ± 0.31 e | 1006.16 ± 1.98 c | 35.29 ± 0.78 d | 2.296 ± 0.001 e |
Parameters | Parameters | ||||
---|---|---|---|---|---|
Yield | DPPH | CUPRAC | ABTS | SPF | |
Yield | 1.00 | 0.77 *** | 0.77 *** | 0.77 *** | 0.81 *** |
DPPH | 0.77 *** | 1.00 | 0.65 ** | 0.99 *** | 0.98 *** |
CUPRAC | 0.77 *** | 0.65 ** | 1.00 | 0.64 * | 0.79 *** |
ABTS | 0.81 *** | 0.99 *** | 0.64 * | 1.00 | 0.96 *** |
Phytosomes Formulation | Yield (%) | Antioxidant Capacity (µmol trolox/g) | SPF Value | ||
---|---|---|---|---|---|
DPPH | CUPRAC | ABTS | |||
F1 | 78.50 ± 8.85 a | 277.40 ± 0.58 a | 840.16 ± 1.15 b | 46.44 ± 1.19 a | 16.04 ± 0.003 a |
F2 | 80.33 ± 8.50 a | 124.49 ± 1.24 c | 430.41 ± 0.57 c | 32.36 ± 0.13 c | 12.69 ± 0.100 c |
F3 | 78.67 ± 8.74 a | 242.22 ± 0.57 b | 857.04 ± 0.78 a | 42.85 ± 0.79 b | 15.36 ± 0.002 b |
Parameters | Parameters | ||||
---|---|---|---|---|---|
Yield | DPPH | CUPRAC | ABTS | SPF | |
Yield | 1.000 | −0.11 | −0.11 | −0.029 | −0.097 |
DPPH | −0.110 | 1.00 | 0.97 *** | 0.990 *** | 1.00 *** |
CUPRAC | 0.110 | 0.97 *** | 1.00 | 0.950 *** | 0.97 *** |
ABTS | −0.029 | 0.99 *** | 0.95 *** | 1.000 | 0.99 *** |
Parameter | E100 Extract | F1 |
---|---|---|
Alkaloid (semi-polar) | + | + |
Phenylhydroquinone (polar) | + | + |
Flavonoid (polar) | + | + |
Tannin (polar) | − | − |
Saponin (nonpolar) | + | + |
Steroid (nonpolar) | − | − |
Triterpenoid (nonpolar) | + | + |
Compounds | MW | Relative Abundance (%) | Class of Compound | ||||
---|---|---|---|---|---|---|---|
E0 | E25 | E50 | E75 | E100 | |||
Dracorhodin | 266.09 | 0.011 | 4.504 | 7.837 | 14.173 | 17.975 | Flavylium |
Nordracorhodin | 252.08 | 0.001 | 0.271 | 0.542 | 2.072 | 3.288 | Flavylium |
(2S)-5,7-Dihydroxy-dihydroflavone | 256.07 | 0.000 * | 0.841 | 1.675 | 1.496 | 1.510 | Flavonoid |
Dracorubin | 488.16 | 0.377 | 2.961 | 3.985 | 0.518 | 1.436 | Proanthocyanidin |
Daemoflavan E | 286.12 | 0.000 * | 1.745 | 2.535 | 1.825 | 1.323 | Flavonoid |
Daemoflavan G | 282.09 | 0.000 * | 0.281 | 0.634 | 0.663 | 0.822 | Flavonoid |
Dracoflavan B1 | 538.20 | 0.005 | 0.018 | 0.050 | 0.207 | 0.204 | Biflavonoid |
(2R)-caesalflavan B | 286.12 | 0.000 * | 0.001 | 0.002 | 0.245 | 0.203 | Flavonoid |
4,6-Dihydroxy-2-methoxy-3-methyldihydrochalcone | 286.12 | 0.000 * | 0.018 | 0.012 | 0.144 | 0.130 | Chalcone |
Daemoflavan H | 268.07 | 0.000 * | 0.013 | 0.058 | 0.098 | 0.129 | Flavonoid |
Dracooxepine | 538.20 | 0.438 | 0.002 | 0.003 | 0.002 | 0.004 | Biflavonoid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sari, R.K.; Prayogo, Y.H.; Rozan, S.A.; Rafi, M.; Wientarsih, I. Antioxidant Activity, Sun Protection Activity, and Phytochemical Profile of Ethanolic Extracts of Daemonorops acehensis Resin and Its Phytosomes. Sci. Pharm. 2022, 90, 10. https://doi.org/10.3390/scipharm90010010
Sari RK, Prayogo YH, Rozan SA, Rafi M, Wientarsih I. Antioxidant Activity, Sun Protection Activity, and Phytochemical Profile of Ethanolic Extracts of Daemonorops acehensis Resin and Its Phytosomes. Scientia Pharmaceutica. 2022; 90(1):10. https://doi.org/10.3390/scipharm90010010
Chicago/Turabian StyleSari, Rita Kartika, Yanico Hadi Prayogo, Salman Arib Rozan, Mohamad Rafi, and Ietje Wientarsih. 2022. "Antioxidant Activity, Sun Protection Activity, and Phytochemical Profile of Ethanolic Extracts of Daemonorops acehensis Resin and Its Phytosomes" Scientia Pharmaceutica 90, no. 1: 10. https://doi.org/10.3390/scipharm90010010
APA StyleSari, R. K., Prayogo, Y. H., Rozan, S. A., Rafi, M., & Wientarsih, I. (2022). Antioxidant Activity, Sun Protection Activity, and Phytochemical Profile of Ethanolic Extracts of Daemonorops acehensis Resin and Its Phytosomes. Scientia Pharmaceutica, 90(1), 10. https://doi.org/10.3390/scipharm90010010