You are currently viewing a new version of our website. To view the old version click .
Scientia Pharmaceutica
  • Scientia Pharmaceutica is published by MDPI from Volume 84 Issue 3 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Austrian Pharmaceutical Society (Österreichische Pharmazeutische Gesellschaft, ÖPhG).
  • Article
  • Open Access

14 April 2013

Intranasal Delivery of Chitosan Nanoparticles for Migraine Therapy

,
and
1
Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology, Meerut, UP, India
2
School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
*
Author to whom correspondence should be addressed.

Abstract

Objective: The objective of the research was to formulate and evaluate sumatriptan succinate-loaded chitosan nanoparticles for migraine therapy in order to improve its therapeutic effect and reduce dosing frequency. Material and Methods: The Taguchi method design of experiments (L9 orthogonal array) was applied to obtain the optimized formulation. The sumatriptan succinate-loaded chitosan nanoparticles (CNPs) were prepared by ionic gelation of chitosan with tripolyphosphate anions (TPP) and Tween 80 as surfactant. Results: The CNPs had a mean size of 306.8 ± 3.9 nm, a zeta potential of +28.79 mV, and entrapment efficiency of 75.4 ± 1.1%. The in vitro drug release of chitosan nanoparticles was evaluated in phosphate buffer saline pH 5.5 using goat nasal mucosa and found to be 76.7 ± 1.3% within 28 hours. Discussion: The release of the drug from the nanoparticles was anomalous, showing non-Fickian diffusion indicating that drug release is controlled by more than one process i.e. the superposition of both phenomena, a diffusion-controlled as well as a swelling-controlled release. This is clearly due to the characteristics of chitosan which easily dissolves at low pH, thus a nasal pH range of 5.5 ± 0.5 supports it very well. The mechanism of pH-sensitive swelling involves protonation of the amine groups of chitosan at low pH. This protonation leads to chain repulsion, diffusion of protons and counter ions together with water inside the gel, and the dissociation of secondary interactions. Conclusion: The results suggest that sumatriptan succinate-loaded chitosan nanoparticles are the most suitable mode of drug delivery for promising therapeutic action.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.