Matrix Metalloproteinase Inhibitors and Their Potential Clinical Application in Periodontitis
Abstract
1. Introduction
2. Methods
3. Pathophysiology of Periodontitis and MMPs
4. Types of MMP Inhibitors (MMPIs)
5. Clinical Application of MMPIs in Periodontitis
5.1. Zinc Chelators
5.2. Bisphosphonates
5.3. Peptide Mimetics
5.4. N-Acetylcysteine (NAC)
5.5. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)
5.6. Doxycycline
5.7. Proanthocyanidins (PACs)
5.8. Chlorhexidine
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus Report of Workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S162–S170. [Google Scholar] [CrossRef]
- World Health Organization Oral Health. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health (accessed on 26 May 2025).
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef]
- Darby, I. Risk Factors for Periodontitis & Peri-Implantitis. Periodontol. 2000 2022, 90, 9–12. [Google Scholar] [CrossRef]
- Loos, B.G.; Van Dyke, T.E. The Role of Inflammation and Genetics in Periodontal Disease. Periodontol. 2000 2020, 83, 26–39. [Google Scholar] [CrossRef]
- Murakami, S.; Mealey, B.L.; Mariotti, A.; Chapple, I.L.C. Dental Plaque-Induced Gingival Conditions. J. Periodontol. 2018, 89 (Suppl. 1), S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, X.; Zhang, H.; Liu, X.; Pan, S.; Li, C. The Role of Extracellular Matrix Metalloproteinase Inducer Glycosylation in Regulating Matrix Metalloproteinases in Periodontitis. J. Periodontal Res. 2018, 53, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [CrossRef]
- Klein, T.; Bischoff, R. Physiology and Pathophysiology of Matrix Metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef]
- Radzki, D.; Negri, A.; Kusiak, A.; Obuchowski, M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int. J. Mol. Sci. 2024, 25, 2763. [Google Scholar] [CrossRef] [PubMed]
- Hrabec, E.; Naduk, J.; Strek, M.; Hrabec, Z. [Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors]. Postepy Biochem. 2007, 53, 37–45. [Google Scholar] [PubMed]
- Mazzoni, A.; Breschi, L.; Carrilho, M.; Nascimento, F.D.; Orsini, G.; Ruggeri, A., Jr.; Gobbi, P.; Manzoli, L.; Tay, F.R.; Pashley, D.H.; et al. A Review of the Nature, Role, and Function of Dentin Non-Collagenous Proteins. Part II: Enzymes, Serum Proteins, and Growth Factors. Endod. Top. 2009, 21, 19–40. [Google Scholar] [CrossRef]
- Visse, R.; Nagase, H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef]
- Itoh, Y. Membrane-Type Matrix Metalloproteinases: Their Functions and Regulations. Matrix Biol. 2015, 44–46, 207–223. [Google Scholar] [CrossRef]
- Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int. J. Mol. Sci. 2022, 23, 1806. [Google Scholar] [CrossRef]
- Fatemi, K.; Rezaee, S.A.; Banihashem, S.A.; Keyvanfar, S.; Eslami, M. Importance of MMP-8 in Salivary and Gingival Crevicular Fluids of Periodontitis Patients. Iran. J. Immunol. 2020, 17, 236–243. [Google Scholar] [CrossRef]
- Caimi, G.; Hopps, E.; Montana, M.; Urso, C.; Carollo, C.; Canino, B.; Lo Presti, R. The Function of Matrix Metalloproteinase-9 (MMP-9) and Its Tissue Inhibitor (TIMP-1) in Several Clinical Conditions: Results and Analysis of Our Survey. Clin. Hemorheol. Microcirc. 2021, 78, 401–416. [Google Scholar] [CrossRef]
- Franco, C.; Patricia, H.-R.; Timo, S.; Claudia, B.; Marcela, H. Matrix Metalloproteinases as Regulators of Periodontal Inflammation. Int. J. Mol. Sci. 2017, 18, 440. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Role of Myeloperoxidase and Oxidant Formation in the Extracellular Environment in Inflammation-Induced Tissue Damage. Free Radic. Biol. Med. 2021, 172, 633–651. [Google Scholar] [CrossRef]
- Hernández, M.; Gamonal, J.; Tervahartiala, T.; Mäntylä, P.; Rivera, O.; Dezerega, A.; Dutzan, N.; Sorsa, T. Associations Between Matrix Metalloproteinase-8 and -14 and Myeloperoxidase in Gingival Crevicular Fluid From Subjects With Progressive Chronic Periodontitis: A Longitudinal Study. J. Periodontol. 2010, 81, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Marcaccini, A.M.; Meschiari, C.A.; Zuardi, L.R.; de Sousa, T.S.; Taba, M.; Teofilo, J.M.; Jacob-Ferreira, A.L.B.; Tanus-Santos, J.E.; Novaes, A.B.; Gerlach, R.F. Gingival Crevicular Fluid Levels of MMP-8, MMP-9, TIMP-2, and MPO Decrease after Periodontal Therapy. J. Clin. Periodontol. 2010, 37, 180–190. [Google Scholar] [CrossRef]
- Boelen, G.-J.; Boute, L.; d’Hoop, J.; EzEldeen, M.; Lambrichts, I.; Opdenakker, G. Matrix Metalloproteinases and Inhibitors in Dentistry. Clin. Oral Investig. 2019, 23, 2823–2835. [Google Scholar] [CrossRef]
- Ramenzoni, L.L.; Hofer, D.; Solderer, A.; Wiedemeier, D.; Attin, T.; Schmidlin, P.R. Origin of MMP-8 and Lactoferrin Levels from Gingival Crevicular Fluid, Salivary Glands and Whole Saliva. BMC Oral Health 2021, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, E.A.; Ławicka, R.; Grygorczuk, P.; Nowosielska, M.; Kicman, A.; Ławicki, S. Importance of Metalloproteinase 8 (MMP-8) in the Diagnosis of Periodontitis. Int. J. Mol. Sci. 2024, 25, 2721. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, T.; Stankova, T.; Bivolarska, A.; Vlaykova, T. Matrix Metalloproteinases in Oral Health-Special Attention on MMP-8. Biomedicines 2023, 11, 1514. [Google Scholar] [CrossRef]
- Rai, B.; Kharb, S.; Jain, R.; Anand, S.C. Biomarkers of Periodontitis in Oral Fluids. J. Oral Sci. 2008, 50, 53–56. [Google Scholar] [CrossRef]
- Sorsa, T.; Tjäderhane, L.; Konttinen, Y.T.; Lauhio, A.; Salo, T.; Lee, H.-M.; Golub, L.M.; Brown, D.L.; Mäntylä, P. Matrix Metalloproteinases: Contribution to Pathogenesis, Diagnosis and Treatment of Periodontal Inflammation. Ann. Med. 2006, 38, 306–321. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.J.; Peppin, G.; Ortiz, X.; Ragsdale, C.; Test, S.T. Oxidative Autoactivation of Latent Collagenase by Human Neutrophils. Science 1985, 227, 747–749. [Google Scholar] [CrossRef]
- Sorsa, T.; Nwhator, S.O.; Sakellari, D.; Grigoriadis, A.; Umeizudike, K.A.; Brandt, E.; Keskin, M.; Tervahartiala, T.; Pärnänen, P.; Gupta, S.; et al. aMMP-8 Oral Fluid PoC Test in Relation to Oral and Systemic Diseases. Front. Oral Health 2022, 3, 897115. [Google Scholar] [CrossRef]
- Bräuninger, H.; Krüger, S.; Bacmeister, L.; Nyström, A.; Eyerich, K.; Westermann, D.; Lindner, D. Matrix Metalloproteinases in Coronary Artery Disease and Myocardial Infarction. Basic Res. Cardiol. 2023, 118, 18. [Google Scholar] [CrossRef]
- Hernández-Ríos, P.; Hernández, M.; Garrido, M.; Tervahartiala, T.; Leppilahti, J.M.; Kuula, H.; Heikkinen, A.M.; Mäntylä, P.; Rathnayake, N.; Nwhator, S.; et al. Oral Fluid Matrix Metalloproteinase (MMP)-8 as a Diagnostic Tool in Chronic Periodontitis. Met. Med. 2016, 3, 11–18. [Google Scholar] [CrossRef]
- Claesson, R.; Johansson, A.; Belibasakis, G.; Hänström, L.; Kalfas, S. Release and Activation of Matrix Metalloproteinase 8 from Human Neutrophils Triggered by the Leukotoxin of Actinobacillus Actinomycetemcomitans. J. Periodontal Res. 2002, 37, 353–359. [Google Scholar] [CrossRef]
- Quintero, P.A.; Knolle, M.D.; Cala, L.F.; Zhuang, Y.; Owen, C.A. Matrix Metalloproteinase-8 Inactivates Macrophage Inflammatory Protein-1 Alpha to Reduce Acute Lung Inflammation and Injury in Mice. J. Immunol. 2010, 184, 1575–1588. [Google Scholar] [CrossRef]
- Kiili, M.; Cox, S.W.; Chen, H.W.; Wahlgren, J.; Maisi, P.; Eley, B.M.; Salo, T.; Sorsa, T. Collagenase-2 (MMP-8) and Collagenase-3 (MMP-13) in Adult Periodontitis: Molecular Forms and Levels in Gingival Crevicular Fluid and Immunolocalisation in Gingival Tissue. J. Clin. Periodontol. 2002, 29, 224–232. [Google Scholar] [CrossRef]
- Alassiri, S.; Parnanen, P.; Rathnayake, N.; Johannsen, G.; Heikkinen, A.-M.; Lazzara, R.; van der Schoor, P.; van der Schoor, J.G.; Tervahartiala, T.; Gieselmann, D.; et al. The Ability of Quantitative, Specific, and Sensitive Point-of-Care/Chair-Side Oral Fluid Immunotests for aMMP-8 to Detect Periodontal and Peri-Implant Diseases. Dis. Markers 2018, 2018, 1306396. [Google Scholar] [CrossRef]
- Sorsa, T.; Alassiri, S.; Grigoriadis, A.; Räisänen, I.T.; Pärnänen, P.; Nwhator, S.O.; Gieselmann, D.-R.; Sakellari, D. Active MMP-8 (aMMP-8) as a Grading and Staging Biomarker in the Periodontitis Classification. Diagnostics 2020, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Pelekos, G.; Jin, L.; Tonetti, M.S. Diagnostic Accuracy of a Point-of-Care aMMP-8 Test in the Discrimination of Periodontal Health and Disease. J. Clin. Periodontol. 2021, 48, 1051–1065. [Google Scholar] [CrossRef]
- Gupta, S.; Sahni, V.; Räisänen, I.T.; Grigoriadis, A.; Sakellari, D.; Gieselmann, D.-R.; Sorsa, T. Linking Oral Microbial Proteolysis to aMMP-8 PoC Diagnostics along with the Stage and Grade of Periodontitis: A Cross-Sectional Study. Oral Dis. 2023, 29, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Stoica, S.A.; Valentini, G.; Dolci, M.; D’Agostino, S. Diabetes and Non-Surgical Periodontal Therapy: What Can We Hope For? Hygiene 2022, 2, 85–93. [Google Scholar] [CrossRef]
- Boynes, S.G.; Sofiyeva, N.; Saw, T.; Nieto, V.; Palomo, L. Assessment of Salivary Matrix Metalloproteinase (MMP8) and Activated Salivary Matrix Metalloproteinase (aMMP8) in Periodontitis Patients: A Systematic Review and Meta-Analysis. Front. Oral Health 2025, 6, 1444399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, C.; Liang, M.; Shao, W.; Wang, P.; Yang, Y.; Guo, K. Diagnostic Accuracy of Matrix Metalloproteinase-8 for Detecting Periodontal Disease: A Meta-Analysis. Oral Dis. 2025. [Google Scholar] [CrossRef]
- Rashid, Z.A.; Bardaweel, S.K. Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment. Int. J. Mol. Sci. 2023, 24, 12133. [Google Scholar] [CrossRef]
- Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology 2013, 28, 391–403. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Jiang, C.; Pan, K.; Deng, J.; Wan, C. MMP9 Protects against LPS-Induced Inflammation in Osteoblasts. Innate Immun. 2020, 26, 259–269. [Google Scholar] [CrossRef]
- Christensen, J.; Shastri, V.P. Matrix-Metalloproteinase-9 Is Cleaved and Activated by Cathepsin K. BMC Res. Notes 2015, 8, 322. [Google Scholar] [CrossRef]
- Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res. 2015, 2015, 615486. [Google Scholar] [CrossRef]
- Luchian, I.; Moscalu, M.; Goriuc, A.; Nucci, L.; Tatarciuc, M.; Martu, I.; Covasa, M. Using Salivary MMP-9 to Successfully Quantify Periodontal Inflammation during Orthodontic Treatment. J. Clin. Med. 2021, 10, 379. [Google Scholar] [CrossRef]
- Nędzi-Góra, M.; Górska, R.; Górski, B. The Utility of Gingival Crevicular Fluid Matrix Metalloproteinase-8 Provides Site-Specific Diagnostic Value for Periodontal Grading. Cent. Eur. J. Immunol. 2021, 46, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Yakob, M.; Meurman, J.H.; Sorsa, T.; Söder, B. Treponema Denticola Associates with Increased Levels of MMP-8 and MMP-9 in Gingival Crevicular Fluid. Oral Dis. 2013, 19, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Sánchez, M.A.; Rodríguez-Montaño, R.; Mosaddad, S.A.; Heboyan, A. Levels of IL-1β, MMP-8, and MMP-9 in the Saliva of Subjects With Periodontitis: A Systematic Review and Meta-Analysis. J. Clin. Lab. Anal. 2025, 39, e70040. [Google Scholar] [CrossRef] [PubMed]
- Konopka, L.; Pietrzak, A.; Brzezińska-Błaszczyk, E. Effect of Scaling and Root Planing on Interleukin-1β, Interleukin-8 and MMP-8 Levels in Gingival Crevicular Fluid from Chronic Periodontitis Patients. J. Periodontal Res. 2012, 47, 681–688. [Google Scholar] [CrossRef]
- Leppilahti, J.M.; Hernández-Ríos, P.A.; Gamonal, J.A.; Tervahartiala, T.; Brignardello-Petersen, R.; Mantyla, P.; Sorsa, T.; Hernández, M. Matrix Metalloproteinases and Myeloperoxidase in Gingival Crevicular Fluid Provide Site-Specific Diagnostic Value for Chronic Periodontitis. J. Clin. Periodontol. 2014, 41, 348–356. [Google Scholar] [CrossRef]
- Petain, S.; Kasnak, G.; Firatli, E.; Tervahartiala, T.; Gürsoy, U.K.; Sorsa, T. Periodontitis and Peri-Implantitis Tissue Levels of Treponema Denticola-CTLP and Its MMP-8 Activating Ability. Acta Histochem. 2021, 123, 151767. [Google Scholar] [CrossRef]
- Gendron, R.; Grenier, D.; Sorsa, T.; Mayrand, D. Inhibition of the Activities of Matrix Metalloproteinases 2, 8, and 9 by Chlorhexidine. Clin. Diagn. Lab. Immunol. 1999, 6, 437–439. [Google Scholar] [CrossRef]
- Rahman, F.; Wushur, I.; Malla, N.; Åstrand, O.A.H.; Rongved, P.; Winberg, J.-O.; Sylte, I. Zinc-Chelating Compounds as Inhibitors of Human and Bacterial Zinc Metalloproteases. Molecules 2021, 27, 56. [Google Scholar] [CrossRef]
- Rabajdová, M.; Špaková, I.; Klepcová, Z.; Smolko, L.; Abrahamovská, M.; Urdzík, P.; Mareková, M. Zinc(II) Niflumato Complex Effects on MMP Activity and Gene Expression in Human Endometrial Cell Lines. Sci Rep 2021, 11, 19086. [Google Scholar] [CrossRef]
- Lauinger, L.; Li, J.; Shostak, A.; Cemel, I.A.; Ha, N.; Zhang, Y.; Merkl, P.E.; Obermeyer, S.; Stankovic-Valentin, N.; Schafmeier, T.; et al. Thiolutin Is a Zinc Chelator That Inhibits the Rpn11 and Other JAMM Metalloproteases. Nat Chem Biol 2017, 13, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Jeong, J.H.; Eom, J.-W.; Koh, J.-Y.; Kim, Y.-H.; Suh, S.W. A Novel Zinc Chelator, 1H10, Ameliorates Experi-mental Autoimmune Encephalomyelitis by Modulating Zinc Toxicity and AMPK Activation. Int J Mol Sci 2020, 21, 3375. [Google Scholar] [CrossRef]
- Fleisch, H. Bisphosphonates. Pharmacology and Use in the Treatment of Tumour-Induced Hypercalcaemic and Metastatic Bone Disease. Drugs 1991, 42, 919–944. [Google Scholar] [CrossRef]
- Ozdemir, S.P.; Kurtiş, B.; Tüter, G.; Bozkurt, Ş.; Gültekin, S.E.; Sengüven, B.; Watanabe, K.; Aydın, S. Effects of Low-Dose Doxycycline and Bisphosphonate Clodronate on Alveolar Bone Loss and Gingival Levels of Matrix Metalloproteinase-9 and Interleukin-1β in Rats with Diabetes: A Histomorphometric and Immunohistochemical Study. J Periodontol 2012, 83, 1172–1182. [Google Scholar] [CrossRef] [PubMed]
- Teronen, O.; Heikkilä, P.; Konttinen, Y.T.; Laitinen, M.; Salo, T.; Hanemaaijer, R.; Teronen, A.; Maisi, P.; Sorsa, T. MMP Inhibition and Downregulation by Bisphosphonates. Ann. New York Acad. Sci. 1999, 878, 453–465. [Google Scholar] [CrossRef]
- Reel, B.; Korkmaz, C.G.; Arun, M.Z.; Yildirim, G.; Ogut, D.; Kaymak, A.; Micili, S.C.; Ergur, B.U. The Regulation of Matrix Metalloproteinase Expression and the Role of Discoidin Domain Receptor 1/2 Signalling in Zoledronate-Treated PC3 Cells. J. Cancer 2015, 6, 1020–1029. [Google Scholar] [CrossRef]
- Nakaya, H.; Osawa, G.; Iwasaki, N.; Cochran, D.L.; Kamoi, K.; Oates, T.W. Effects of Bisphosphonate on Matrix Metalloproteinase Enzymes in Human Periodontal Ligament Cells. J. Periodontol. 2000, 71, 1158–1166. [Google Scholar] [CrossRef]
- Kim, S.M.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Bhosale, P.B.; Park, J.E.; Heo, J.D.; Kim, Y.S.; Kim, G.S. Cellular Function of Annexin A1 Protein Mimetic Peptide Ac2-26 in Human Skin Keratinocytes HaCaT and Fibroblast Detroit 551 Cells. Nutrients 2020, 12, 3261. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Wang, N.; Li, C.; Hang, H.; Wu, G.; Ren, S.; Jun, T.; Wang, L. An Apolipoprotein E Receptor Mimetic Peptide Decreases Blood-Brain Barrier Permeability Following Intracerebral Hemorrhage by Inhibiting the CypA/MMP-9 Signaling Pathway via LRP1 Activation. Int. Immunopharmacol. 2024, 143, 113007. [Google Scholar] [CrossRef] [PubMed]
- Takedachi, M.; Murata, M.; Sawada, K.; Kawasaki, K.; Kawakami, K.; Sugimoto, A.; Morimoto, C.; Sakashita, H.; Usami, Y.; Fujihara, C.; et al. Anti-Inflammatory Annexin A1 in Periodontitis via Formyl Peptide Receptor 2. J. Dent. Res. 2025, 104, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Sztukowska, M.N.; Roky, M.; Demuth, D.R. Peptide and Non-Peptide Mimetics as Potential Therapeutics Targeting Oral Bacteria and Oral Biofilms. Mol. Oral Microbiol. 2019, 34, 169–182. [Google Scholar] [CrossRef]
- Namburu, J.R.; Rajendra Sanosh, A.B.; Poosarla, C.S.; Manthapuri, S.; Pinnaka, M.; Baddam, V.R.R. Streptococcus M Utans-Specific Antimicrobial Peptide C16G2-Mediated Caries Prevention: A Review. Front. Dent. 2022, 19, 17. [Google Scholar] [CrossRef]
- Dwir, D.; Cabungcal, J.-H.; Xin, L.; Giangreco, B.; Parietti, E.; Cleusix, M.; Jenni, R.; Klauser, P.; Conus, P.; Cuénod, M.; et al. Timely N-Acetyl-Cysteine and Environmental Enrichment Rescue Oxidative Stress-Induced Parvalbumin Interneuron Impairments via MMP9/RAGE Pathway: A Translational Approach for Early Intervention in Psychosis. Schizophr. Bull. 2021, 47, 1782–1794. [Google Scholar] [CrossRef]
- Liu, X.; Hou, Y.; Yang, M.; Xin, X.; Deng, Y.; Fu, R.; Xiang, X.; Cao, N.; Liu, X.; Yu, W.; et al. N-Acetyl-l-Cysteine-Derived Carbonized Polymer Dots with ROS Scavenging via Keap1-Nrf2 Pathway Regulate Alveolar Bone Homeostasis in Periodontitis. Adv. Healthc. Mater. 2023, 12, e2300890. [Google Scholar] [CrossRef]
- Sun, X.; Sun, Y.; Cao, S.; Liu, X. Effects of N-Acetyl-L-Cysteine Polysulfides on Periodontitis in a Mouse Model. Immun. Inflamm. Dis. 2023, 11, e959. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Lin, F.; Duan, X.; Bi, B. Naproxen Attenuates Osteoarthritis Progression through Inhibiting the Expression of Prostaglandinl-Endoperoxide Synthase 1. J. Cell. Physiol. 2019, 234, 12771–12785. [Google Scholar] [CrossRef]
- Sadowski, T.; Steinmeyer, J. Effects of Non-Steroidal Antiinflammatory Drugs and Dexamethasone on the Activity and Expression of Matrix Metalloproteinase-1, Matrix Metalloproteinase-3 and Tissue Inhibitor of Metalloproteinases-1 by Bovine Articular Chondrocytes. Osteoarthr. Cartil. 2001, 9, 407–415. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Hsu, C.-C.; Chang, H.-N.; Lin, Y.-C.; Lin, M.-S.; Pang, J.-H.S. Ibuprofen Upregulates Expressions of Matrix Metalloproteinase-1, -8, -9, and -13 without Affecting Expressions of Types I and III Collagen in Tendon Cells. J. Orthop. Res. 2010, 28, 487–491. [Google Scholar] [CrossRef]
- Odorici, G.; Monfrecola, G.; Bettoli, V. Tetracyclines and Photosensitive Skin Reactions: A Narrative Review. Dermatol. Ther. 2021, 34, e14978. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.M.; Pansani, T.N.; de Souza Costa, C.A.; Basso, F.G. Naringenin and Proanthocyanidins Pre-Treatment Decreases Synthesis and Activity of Gelatinases Induced by Zoledronic Acid in a Dental Implant Surface In Vitro Model. Arch. Oral. Biol. 2023, 151, 105703. [Google Scholar] [CrossRef] [PubMed]
- La, V.D.; Howell, A.B.; Grenier, D. Cranberry Proanthocyanidins Inhibit MMP Production and Activity. J. Dent. Res. 2009, 88, 627–632. [Google Scholar] [CrossRef]
- Ben Lagha, A.; LeBel, G.; Grenier, D. Dual Action of Highbush Blueberry Proanthocyanidins on Aggregatibacter Actinomycetemcomitans and the Host Inflammatory Response. BMC Complement. Altern. Med. 2018, 18, 10. [Google Scholar] [CrossRef]
- Alkimavičienė, E.; Pušinskaitė, R.; Basevičienė, N.; Banienė, R.; Savickienė, N.; Pacauskienė, I.M. Efficacy of Proanthocyanidins in Nonsurgical Periodontal Therapy. Int. Dent. J. 2023, 73, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, R.E.; Libert, C. Is There New Hope for Therapeutic Matrix Metalloproteinase Inhibition? Nat Rev Drug Discov 2014, 13, 904–927. [Google Scholar] [CrossRef]
- Whittaker, M.; Floyd, C.D.; Brown, P.; Gearing, A.J. Design and Therapeutic Application of Matrix Metalloproteinase Inhibitors. Chem. Rev. 1999, 99, 2735–2776. [Google Scholar] [CrossRef]
- Li, J.; Rush, T.S.; Li, W.; DeVincentis, D.; Du, X.; Hu, Y.; Thomason, J.R.; Xiang, J.S.; Skotnicki, J.S.; Tam, S.; et al. Synthesis and SAR of Highly Selective MMP-13 Inhibitors. Bioorganic Med. Chem. Lett. 2005, 15, 4961–4966. [Google Scholar] [CrossRef]
- Murphy, G. Tissue Inhibitors of Metalloproteinases. Genome Biol. 2011, 12, 233. [Google Scholar] [CrossRef]
- Devy, L.; Dransfield, D.T. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies. Biochem. Res. Int. 2011, 2011, 191670. [Google Scholar] [CrossRef] [PubMed]
- Epasinghe, D.J.; Yiu, C.K.Y.; Burrow, M.F.; Hiraishi, N.; Tay, F.R. The Inhibitory Effect of Proanthocyanidin on Soluble and Collagen-Bound Proteases. J. Dent. 2013, 41, 832–839. [Google Scholar] [CrossRef]
- Steckiewicz, K.P.; Cieciórski, P.; Barcińska, E.; Jaśkiewicz, M.; Narajczyk, M.; Bauer, M.; Kamysz, W.; Megiel, E.; Inkielewicz-Stepniak, I. Silver Nanoparticles as Chlorhexidine and Metronidazole Drug Delivery Platforms: Their Potential Use in Treating Periodontitis. Int. J. Nanomed. 2022, 17, 495–517. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; Pisano, M.; Di Palo, M.P.; Franci, G.; Rupe, A.; Fiorino, A.; Rengo, C. Peri-Implantitis-Associated Microbiota before and after Peri-Implantitis Treatment, the Biofilm “Competitive Balancing” Effect: A Systematic Review of Randomized Controlled Trials. Microorganisms 2024, 12, 1965. [Google Scholar] [CrossRef] [PubMed]
- Lumbikananda, S.; Srithanyarat, S.S.; Mattheos, N.; Osathanon, T. Oral Fluid Biomarkers for Peri-Implantitis: A Scoping Review. Int. Dent. J. 2024, 74, 387–402. [Google Scholar] [CrossRef]
- AlMoharib, H.S.; AlRowis, R.; AlMubarak, A.; Waleed Almadhoon, H.; Ashri, N. The Relationship between Matrix Metalloproteinases-8 and Peri-Implantitis: A Systematic Review and Meta-Analysis. Saudi Dent. J. 2023, 35, 283–293. [Google Scholar] [CrossRef]
- Dorjay Tamang, J.S.; Banerjee, S.; Baidya, S.K.; Das, S.; Ghosh, B.; Jha, T.; Adhikari, N. An Overview of Matrix Metalloproteinase-12 in Multiple Disease Conditions, Potential Selective Inhibitors, and Drug Designing Strategies. Eur. J. Med. Chem. 2025, 283, 117154. [Google Scholar] [CrossRef]
- Banerjee, S.; Baidya, S.K.; Adhikari, N.; Jha, T. An Updated Patent Review of Matrix Metalloproteinase (MMP) Inhibitors (2021-Present). Expert Opin. Ther. Pat. 2023, 33, 631–649. [Google Scholar] [CrossRef]
- Rubino, M.T.; Agamennone, M.; Campestre, C.; Campiglia, P.; Cremasco, V.; Faccio, R.; Laghezza, A.; Loiodice, F.; Maggi, D.; Panza, E.; et al. Biphenyl Sulfonylamino Methyl Bisphosphonic Acids as Inhibitors of Matrix Metalloproteinases and Bone Resorption. ChemMedChem 2011, 6, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Tauro, M.; Loiodice, F.; Ceruso, M.; Supuran, C.T.; Tortorella, P. Dual Carbonic Anhydrase/Matrix Metalloproteinase Inhibitors Incorporating Bisphosphonic Acid Moieties Targeting Bone Tumors. Bioorganic Med. Chem. Lett. 2014, 24, 2617–2620. [Google Scholar] [CrossRef]
- De Colli, M.; Tortorella, P.; Agamennone, M.; Campestre, C.; Loiodice, F.; Cataldi, A.; Zara, S. Bisphosfonate Matrix Metalloproteinase Inhibitors for the Treatment of Periodontitis: An In Vitro Study. Int. J. Mol. Med. 2018, 42, 651–657. [Google Scholar] [CrossRef]
- Lane, N.; Armitage, G.C.; Loomer, P.; Hsieh, S.; Majumdar, S.; Wang, H.-Y.; Jeffcoat, M.; Munoz, T. Bisphosphonate Therapy Improves the Outcome of Conventional Periodontal Treatment: Results of a 12-Month, Randomized, Placebo-Controlled Study. J. Periodontol. 2005, 76, 1113–1122. [Google Scholar] [CrossRef]
- Alwithanani, N. Role of Bisphosphonates in Periodontal Diseases: Systematic Review. J. Pharm. Bioallied Sci. 2023, 15, S46–S53. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef] [PubMed]
- Bou Ghanem, G.O.; Koktysh, D.; Baratta, R.O.; Del Buono, B.J.; Schlumpf, E.; Wareham, L.K.; Calkins, D.J. Collagen Mimetic Peptides Promote Repair of MMP-1-Damaged Collagen in the Rodent Sclera and Optic Nerve Head. Int. J. Mol. Sci. 2023, 24, 17031. [Google Scholar] [CrossRef]
- Yang, L.; Gong, K.; Ren, G.; Chen, B. The Annexin A1 Protein Mimetic Peptide Ac2-26 Prevents Cellular Senescence of CHON-001 Chondrocytes against Tumor Necrosis Factor-α via the Nrf2/NF-κB Pathway. Biotechnol. Appl. Biochem. 2024, 72, 755–765. [Google Scholar] [CrossRef]
- Thapa, R.K.; Margolis, D.J.; Kiick, K.L.; Sullivan, M.O. Enhanced Wound Healing via Collagen-Turnover-Driven Transfer of PDGF-BB Gene in a Murine Wound Model. ACS Appl. Bio Mater. 2020, 3, 3500–3517. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Cheng, J.-W.; Yu, H.-Y.; Lin, L.; Chih, Y.-H.; Pan, Y.-P. Efficacy of a Novel Antimicrobial Peptide against Periodontal Pathogens in Both Planktonic and Polymicrobial Biofilm States. Acta Biomater. 2015, 25, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Berk, M.; Campochiaro, P.A.; Jaeschke, H.; Marenzi, G.; Richeldi, L.; Wen, F.Q.; Nicoletti, F.; Calverley, P.M.A. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Curr. Neuropharmacol. 2021, 19, 1202–1224. [Google Scholar] [CrossRef]
- Chaves Cayuela, N.; Kiyomi Koike, M.; de Jacysyn, J.F.; Rasslan, R.; Azevedo Cerqueira, A.R.; Pereira Costa, S.K.; Picanço Diniz-Júnior, J.A.; Massazo Utiyama, E.; de Frasson Souza Montero, E. N-Acetylcysteine Reduced Ischemia and Reperfusion Damage Associated with Steatohepatitis in Mice. Int. J. Mol. Sci. 2020, 21, 4106. [Google Scholar] [CrossRef]
- He, F.; Zheng, G.; Hou, J.; Hu, Q.; Ling, Q.; Wu, G.; Zhao, H.; Yang, J.; Wang, Y.; Jiang, L.; et al. N-Acetylcysteine Alleviates Post-Resuscitation Myocardial Dysfunction and Improves Survival Outcomes via Partly Inhibiting NLRP3 Inflammasome Induced-Pyroptosis. J. Inflamm. 2020, 17, 25. [Google Scholar] [CrossRef]
- Liu, D.-D.; Liu, X.-L.; Zheng, T.-F.; Li, X.; Zhao, Y.-C.; Pan, J.-C.; Yuan, C.; Wang, Q.-Q.; Zhang, M. Dapagliflozin Alleviates Right Heart Failure by Promoting Collagen Degradation by Reducing ROS Levels. Eur. J. Pharmacol. 2024, 981, 176875. [Google Scholar] [CrossRef]
- Rushworth, G.F.; Megson, I.L. Existing and Potential Therapeutic Uses for N-Acetylcysteine: The Need for Conversion to Intracellular Glutathione for Antioxidant Benefits. Pharmacol. Ther. 2014, 141, 150–159. [Google Scholar] [CrossRef]
- Wang, S.; Liu, G.; Jia, T.; Wang, C.; Lu, X.; Tian, L.; Yang, Q.; Zhu, C. Protection Against Post-Resuscitation Acute Kidney Injury by N-Acetylcysteine via Activation of the Nrf2/HO-1 Pathway. Front. Med. 2022, 9, 848491. [Google Scholar] [CrossRef]
- Liu, Y.; Ni, Y.; Zhang, W.; Sun, Y.-E.; Ma, Z.; Gu, X. N-Acetyl-Cysteine Attenuates Remifentanil-Induced Postoperative Hyperalgesia via Inhibiting Matrix Metalloproteinase-9 in Dorsal Root Ganglia. Oncotarget 2017, 8, 16988–17001. [Google Scholar] [CrossRef] [PubMed]
- Tras, B.; Eser Faki, H.; Ozdemir Kutahya, Z.; Bahcivan, E.; Dik, B.; Bozkurt, B.; Uney, K. Treatment and Protective Effects of Metalloproteinase Inhibitors Alone and in Combination with N-Acetyl Cysteine plus Vitamin E in Rats Exposed to Aflatoxin B1. Toxicon 2021, 194, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Vishnevetskii, D.V.; Averkin, D.V.; Efimov, A.A.; Lizunova, A.A.; Shamova, O.V.; Vladimirova, E.V.; Sukhareva, M.S.; Mekhtiev, A.R. L-Cysteine and N-Acetyl-L-Cysteine-Mediated Synthesis of Nanosilver-Based Sols and Hydrogels with Antibacterial and Antibiofilm Properties. J. Mater. Chem. B 2023, 11, 5794–5804. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, R.A.; Moak, S.A.; Ramamurthy, N.S.; Golub, L.M. Tetracyclines Suppress Matrix Metalloproteinase Activity in Adjuvant Arthritis and in Combination with Flurbiprofen, Ameliorate Bone Damage. J. Rheumatol. 1992, 19, 927–938. [Google Scholar] [PubMed]
- Lee, H.-M.; Ciancio, S.G.; Tüter, G.; Ryan, M.E.; Komaroff, E.; Golub, L.M. Subantimicrobial Dose Doxycycline Efficacy as a Matrix Metalloproteinase Inhibitor in Chronic Periodontitis Patients Is Enhanced When Combined with a Non-Steroidal Anti-Inflammatory Drug. J. Periodontol. 2004, 75, 453–463. [Google Scholar] [CrossRef]
- Leung, M.K.; Greenwald, R.A.; Ramamurthy, N.S.; Moak, S.A.; Koszulinski, R.; Dieudonne, D.; Golub, L.M. Tenidap and Flurbiprofen Enhance Uptake of Matrix Metalloproteinase Inhibitor 4-Dedimethylaminotetracycline in Inflamed Joints of Adjuvant Arthritic Rats. J. Rheumatol. 1995, 22, 1726–1731. [Google Scholar]
- Mirarab Razi, H.; Mosleh, N.; Shomali, T.; Tavangar, N.; Namazi, F. Deterioration of Wound Healing and Intense Suppression of MMP-9 mRNA Expression after Short-Term Administration of Different Topical Glucocorticoids or NSAIDs in an Avian Model of Corneal Lesions. Iran. J. Vet. Res. 2021, 22, 188–194. [Google Scholar] [CrossRef]
- Molina Da Silva, G.P.; Tanaka, O.M.; Campos Navarro, D.F.; Repeke, C.E.; Garlet, G.P.; Guariza-Filho, O.; Trevilatto, P.C. The Effect of Potassium Diclofenac and Dexamethasone on MMP-1 Gene Transcript Levels during Experimental Tooth Movement in Rats. Orthod. Craniofacial Res. 2017, 20, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Kosaka, N.; Ishiwa, J.; Sato, T.; Nagase, H.; Ito, A. Rhein, an Active Metabolite of Diacerein, down-Regulates the Production of pro-Matrix Metalloproteinases-1, -3, -9 and -13 and up-Regulates the Production of Tissue Inhibitor of Metalloproteinase-1 in Cultured Rabbit Articular Chondrocytes. Osteoarthr. Cartil. 2001, 9, 257–263. [Google Scholar] [CrossRef]
- Pillinger, M.H.; Rosenthal, P.B.; Tolani, S.N.; Apsel, B.; Dinsell, V.; Greenberg, J.; Chan, E.S.L.; Gomez, P.F.; Abramson, S.B. Cyclooxygenase-2-Derived E Prostaglandins down-Regulate Matrix Metalloproteinase-1 Expression in Fibroblast-like Synoviocytes via Inhibition of Extracellular Signal-Regulated Kinase Activation. J. Immunol. 2003, 171, 6080–6089. [Google Scholar] [CrossRef]
- Reviglio, V.E.; Rana, T.S.; Li, Q.J.; Ashraf, M.F.; Daly, M.K.; O’Brien, T.P. Effects of Topical Nonsteroidal Antiinflammatory Drugs on the Expression of Matrix Metalloproteinases in the Cornea. J. Cataract. Refract. Surg. 2003, 29, 989–997. [Google Scholar] [CrossRef]
- Cunha, B.A.; Baron, J.; Cunha, C.B. Similarities and Differences between Doxycycline and Minocycline: Clinical and Antimicrobial Stewardship Considerations. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 15–20. [Google Scholar] [CrossRef]
- Faure, M.; Cilibrizzi, A.; Abbate, V.; Bruce, K.; Hider, R. Effect of Iron Chelation on Anti-Pseudomonal Activity of Doxycycline. Int. J. Antimicrob. Agents 2021, 58, 106438. [Google Scholar] [CrossRef]
- Gaillard, T.; Madamet, M.; Pradines, B. Tetracyclines in Malaria. Malar. J. 2015, 14, 445. [Google Scholar] [CrossRef]
- Lago, K.; Telu, K.; Tribble, D.; Ganesan, A.; Kunz, A.; Geist, C.; Fraser, J.; Mitra, I.; Lalani, T.; Yun, H.C.; et al. Doxycycline Malaria Prophylaxis Impact on Risk of Travelers’ Diarrhea among International Travelers. Am. J. Trop. Med. Hyg. 2020, 103, 1864–1870. [Google Scholar] [CrossRef]
- Miow, Q.H.; Vallejo, A.F.; Wang, Y.; Hong, J.M.; Bai, C.; Teo, F.S.; Wang, A.D.; Loh, H.R.; Tan, T.Z.; Ding, Y.; et al. Doxycycline Host-Directed Therapy in Human Pulmonary Tuberculosis. J. Clin. Investig. 2021, 131, e141895. [Google Scholar] [CrossRef] [PubMed]
- Nadelman, R.B.; Nowakowski, J.; Fish, D.; Falco, R.C.; Freeman, K.; McKenna, D.; Welch, P.; Marcus, R.; Agüero-Rosenfeld, M.E.; Dennis, D.T.; et al. Prophylaxis with Single-Dose Doxycycline for the Prevention of Lyme Disease after an Ixodes Scapularis Tick Bite. New Engl. J. Med. 2001, 345, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Dijk, S.N.; Protasoni, M.; Elpidorou, M.; Kroon, A.M.; Taanman, J.-W. Mitochondria as Target to Inhibit Proliferation and Induce Apoptosis of Cancer Cells: The Effects of Doxycycline and Gemcitabine. Sci. Rep. 2020, 10, 4363. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, K.; Ghasemi, K. A Brief Look at Antitumor Effects of Doxycycline in the Treatment of Colorectal Cancer and Combination Therapies. Eur. J. Pharmacol. 2022, 916, 174593. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lo, M.-C.; Moody, R.R.; Stevers, N.O.; Tinsley, S.L.; Sun, D. Doxycycline Targets Aldehyde Dehydrogenase-positive Breast Cancer Stem Cells. Oncol. Rep. 2018, 39, 3041–3047. [Google Scholar] [CrossRef]
- Altoé, L.S.; Alves, R.S.; Miranda, L.L.; Sarandy, M.M.; Bastos, D.S.S.; Gonçalves-Santos, E.; Novaes, R.D.; Gonçalves, R.V. Doxycycline Hyclate Modulates Antioxidant Defenses, Matrix Metalloproteinases, and COX-2 Activity Accelerating Skin Wound Healing by Secondary Intention in Rats. Oxidative Med. Cell. Longev. 2021, 2021, 4681041. [Google Scholar] [CrossRef]
- Stechmiller, J.; Cowan, L.; Schultz, G. The Role of Doxycycline as a Matrix Metalloproteinase Inhibitor for the Treatment of Chronic Wounds. Biol. Res. Nurs. 2010, 11, 336–344. [Google Scholar] [CrossRef]
- Ilyes, I.; Rusu, D.; Rădulescu, V.; Vela, O.; Boariu, M.I.; Roman, A.; Surlin, P.; Kardaras, G.; Boia, S.; Chinnici, S.; et al. A Placebo-Controlled Trial to Evaluate Two Locally Delivered Antibiotic Gels (Piperacillin Plus Tazobactam vs. Doxycycline) in Stage III–IV Periodontitis Patients. Medicina 2023, 59, 303. [Google Scholar] [CrossRef] [PubMed]
- Needleman, I.; Suvan, J.; Gilthorpe, M.S.; Tucker, R.; St George, G.; Giannobile, W.; Tonetti, M.; Jarvis, M. A Randomized-Controlled Trial of Low-Dose Doxycycline for Periodontitis in Smokers. J. Clin. Periodontol. 2007, 34, 325–333. [Google Scholar] [CrossRef]
- Yap, K.C.H.; Pulikkotil, S.J. Systemic Doxycycline as an Adjunct to Scaling and Root Planing in Diabetic Patients with Periodontitis: A Systematic Review and Meta-Analysis. BMC Oral Health 2019, 19, 209. [Google Scholar] [CrossRef]
- Attia, M.S.; Alblowi, J.A. Effect of Subantimicrobial Dose Doxycycline Treatment on Gingival Crevicular Fluid Levels of MMP-9 and MMP-13 in Periodontitis Stage 2, Grade B in Subjects with Type 2 Diabetes Mellitus. J. Immunol. Res. 2020, 2020, 2807259. [Google Scholar] [CrossRef]
- Golub, L.M.; Lee, H.M.; Stoner, J.A.; Sorsa, T.; Reinhardt, R.A.; Wolff, M.S.; Ryan, M.E.; Nummikoski, P.V.; Payne, J.B. Subantimicrobial-Dose Doxycycline Modulates Gingival Crevicular Fluid Biomarkers of Periodontitis in Postmenopausal Osteopenic Women. J. Periodontol. 2008, 79, 1409–1418. [Google Scholar] [CrossRef]
- Walker, C.; Puumala, S.; Golub, L.M.; Stoner, J.A.; Reinhardt, R.A.; Lee, H.-M.; Payne, J.B. Subantimicrobial Dose Doxycycline Effects on Osteopenic Bone Loss: Microbiologic Results. J. Periodontol. 2007, 78, 1590–1601. [Google Scholar] [CrossRef]
- Pârvu, A.E.; Alb, S.F.; Crăciun, A.; Taulescu, M.A. Efficacy of Subantimicrobial-Dose Doxycycline against Nitrosative Stress in Chronic Periodontitis. Acta Pharmacol. Sin. 2013, 34, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Bothelo, M.A.; Martins, J.G.; Ruela, R.S.; Querioz, D.B.; Ruela, W.S. Nanotechnology in Ligature-Induced Periodontitis: Protective Effect of a Doxycycline Gel with Nanoparticules. J. Appl. Oral Sci. 2010, 18, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Okić Đorđević, I.; Kukolj, T.; Živanović, M.; Momčilović, S.; Obradović, H.; Petrović, A.; Mojsilović, S.; Trivanović, D.; Jauković, A. The Role of Doxycycline and IL-17 in Regenerative Potential of Periodontal Ligament Stem Cells: Implications in Periodontitis. Biomolecules 2023, 13, 1437. [Google Scholar] [CrossRef]
- Golub, L.M.; Lee, H.M.; Ryan, M.E.; Giannobile, W.V.; Payne, J.; Sorsa, T. Tetracyclines Inhibit Connective Tissue Breakdown by Multiple Non-Antimicrobial Mechanisms. Adv. Dent. Res. 1998, 12, 12–26. [Google Scholar] [CrossRef]
- Golub, L.M.; Lee, H.-M. Periodontal Therapeutics: Current Host-Modulation Agents and Future Directions. Periodontol. 2000 2020, 82, 186–204. [Google Scholar] [CrossRef]
- Golub, L.M.; Lee, H.-M.; Bacigalupo, J.; Gu, Y. Host Modulation Therapy in Periodontitis, Diagnosis and Treatment-Status Update. Front. Dent. Med. 2024, 5, 1423401. [Google Scholar] [CrossRef]
- Swamy, D.N.; Sanivarapu, S.; Moogla, S.; Kapalavai, V. Chemically Modified Tetracyclines: The Novel Host Modulating Agents. J. Indian Soc. Periodontol. 2015, 19, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Alyousef, A.A.; Divakar, D.D.; Muzaheed. Chemically Modified Tetracyclines an Emerging Host Modulator in Chronic Periodontitis Patients: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Microb. Pathog. 2017, 110, 279–284. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- Wang, B.; Han, F.; You, R.; Chen, C.; Xie, H. Polyphenols Can Improve Resin-Dentin Bond Durability by Promoting Amorphous Calcium Phosphate Nanoparticles to Backfill the Dentin Matrix. Int. J. Nanomed. 2023, 18, 1491–1505. [Google Scholar] [CrossRef]
- Balalaie, A.; Rezvani, M.B.; Mohammadi Basir, M. Dual Function of Proanthocyanidins as Both MMP Inhibitor and Crosslinker in Dentin Biomodification: A Literature Review. Dent. Mater. J. 2018, 37, 173–182. [Google Scholar] [CrossRef]
- Brookes, Z.L.S.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current Uses of Chlorhexidine for Management of Oral Disease: A Narrative Review. J. Dent. 2020, 103, 103497. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, S.; Addy, M.; Wade, W. The Mechanism of Action of Chlorhexidine. A Study of Plaque Growth on Enamel Inserts In Vivo. J. Clin. Periodontol. 1988, 15, 415–424. [Google Scholar] [CrossRef]
- Manso, A.P.; Bedran-Russo, A.K.; Suh, B.; Pashley, D.H.; Carvalho, R.M. Mechanical Stability of Adhesives under Water Storage. Dent. Mater. 2009, 25, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Tjäderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.S.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.R.; Carvalho, R.M.; Tay, F.R.; et al. Optimizing Dentin Bond Durability: Control of Collagen Degradation by Matrix Metalloproteinases and Cysteine Cathepsins. Dent. Mater. 2013, 29, 116–135. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, Y.; Yoshiyama, M.; Wadgaonkar, B.; Breschi, L.; Mannello, F.; Mazzoni, A.; Carvalho, R.M.; Tjäderhane, L.; Tay, F.R.; Pashley, D.H. Activation of Gelatinolytic/Collagenolytic Activity in Dentin by Self-Etching Adhesives. Eur. J. Oral Sci. 2006, 114, 160–166. [Google Scholar] [CrossRef]
- Retana-Lobo, C.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; de Mendes Souza, B.D.; Reyes-Carmona, J. Non-Collagenous Dentin Protein Binding Sites Control Mineral Formation during the Biomineralisation Process in Radicular Dentin. Materials 2020, 13, 1053. [Google Scholar] [CrossRef] [PubMed]
- Retana-Lobo, C.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; de Mendes Souza, B.D.; Reyes-Carmona, J. Sodium Hypochlorite and Chlorhexidine Downregulate MMP Expression on Radicular Dentin. Med. Princ. Pract. 2021, 30, 470–476. [Google Scholar] [CrossRef]
- Zhou, J.; Tan, J.; Yang, X.; Xu, X.; Li, D.; Chen, L. MMP-Inhibitory Effect of Chlorhexidine Applied in a Self-Etching Adhesive. J. Adhes. Dent. 2011, 13, 111–115. [Google Scholar] [CrossRef]
- Gursoy, U.K.; Könönen, E.; Pradhan-Palikhe, P.; Tervahartiala, T.; Pussinen, P.J.; Suominen-Taipale, L.; Sorsa, T. Salivary MMP-8, TIMP-1, and ICTP as Markers of Advanced Periodontitis. J. Clin. Periodontol. 2010, 37, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hao, C. [Expression of miR-146a in saliva of chronic periodontitis patients and its influence on gingival crevicular inflammation and MMP-8/TIMP-1 levels]. Shanghai Kou Qiang Yi Xue = Shanghai J. Stomatol. 2018, 27, 309–312. [Google Scholar]
- Mohammed, H.A.; Abdulkareem, A.A.; Zardawi, F.M.; Gul, S.S. Determination of the Accuracy of Salivary Biomarkers for Periodontal Diagnosis. Diagnostics 2022, 12, 2485. [Google Scholar] [CrossRef]
- de Brouwer, P.; Bikker, F.J.; Brand, H.S.; Kaman, W.E. Is TIMP-1 a Biomarker for Periodontal Disease? A Systematic Review and Meta-analysis. J. Periodontal Res. 2022, 57, 235–245. [Google Scholar] [CrossRef] [PubMed]
MMPI | Action Mechanism | Ref. |
---|---|---|
Chlorhexidine | Ion chelation, interaction with sulfhydryl and cysteine groups in the active site of MMP-2, MMP-8, and MMP-9. | [55] |
Zinc Chelators | Inhibition of zinc-dependent metalloenzyme by replacing the coordinates of the water molecule with zinc at the catalytic site. | [56] |
Zinc niflumate | Inhibition of MMP-2 and MMP-9, related to the regulation of signaling pathways such as MAPK and COX-2. | [57] |
Thiolutin | Inhibition of MMP-2 and MMP-9, activated intracellularly in dithiol form, inhibits JAMM metalloenzymes (deubiquitinases). | [58] |
1H10 | Zinc chelator and AMPK inhibitor; MMP-9 inhibitor. | [59] |
Bisphosphonates | Calcium and zinc chelator; high affinity for hydroxyapatite crystals; inhibits osteoclast and MMP activity. | [60] |
Clodronate | It acts as a cation-chelator. Inhibitor of MMP-1, -2, -3, -7, -8, -9, -12, -13, -14. | [61,62] |
Zoledronate | Inhibition of MMP-2/-9 expression, related to the Ras/Raf/ERK and PI3K/AKT pathways and DDR tyrosine kinase receptors. | [63] |
Tiludronate | Up-regulates tissue inhibitors of MMP in periodontal ligament cells. | [64] |
Peptide mimetic Ac2-26 (annexin a1 mimetic peptide) | Inhibition of MMP-1 and MMP-8 promotes the synthesis of collagen type I (COL1A1), and has an anti-inflammatory effect. Reduces the expression of MMP-13 and ADAMTS-4 induced by TNF-α, which are involved in cellular senescence. | [65] |
6kapoep (apolipoprotein E peptide mimetic | Decreases MMP-9 expression by activating the low-density lipoprotein receptor-associated protein-1 (LRP1 receptor); inhibits the Cyclophilin A/NF-κB pathway. | [66] |
Annexin A1 (ANAXA1) | Anti-inflammatory effect through the FPR2 receptor, reducing periodontal inflammation and bone resorption. | [67] |
Synthetic cationic antimicrobial peptide (NAL-p-113) | Permeabilize bacterial cytoplasmic membranes, preventing biofilm formation. | [68] |
Specific targeted antimicrobial peptides (STAMPs) | Pore formation in bacterial membranes. | [69] |
N-Acetyl-Cysteine (NAC) | Inhibition of MMP-9/RAGE (receptor for advanced glycation end products) pathway activation in a rat model of neuropathic pain and patients with psychosis. | [70] |
Modulation of antioxidant pathways (Keap1/Nrf2) and promotion of osteogenesis in a mouse model of periodontitis. | [71] | |
Inhibition of inflammation mediated by the TLR4/NF-κB signaling pathway and proinflammatory cytokines in an experimental mouse model of periodontitis. | [72] | |
NSAIDs | ||
Naproxen | Decreased MMP-13 expression in osteoarthritis models; regulation of inflammation. | [73] |
Naproxen, Indomethacin, and Meloxicam | Inhibition of MMP-1 and MMP-3 expression and activity in IL-1-stimulated chondrocytes. | [74] |
Ibuprofen | MMP-1, MMP-8, MMP-9, and MMP-13 expression is increased in a dose-dependent manner. | [75] |
Doxycycline | Decreased MMP expression and activity. Immunomodulatory and anti-inflammatory effects, stimulation of tissue regeneration. Photosensitivity has been reported as an adverse reaction. | [76] |
Proanthocyanidins (PACs) | ||
Synthetic naringenin | Increases the synthesis of natural MMP inhibitors. | [77] |
Cranberry PACs | Inhibitor of MMP-1, -9, inhibition of the NF-κB signaling pathway, and decreases in biofilm formation. | [78] |
Blueberry PACs | Reduction in inflammation and bacterial biofilm, as well as inhibition of the NF-κB signaling pathway. | [79] |
Collagen hydrogels-PACs | Decreased MMP-3 in the saliva of patients with periodontitis. | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Juárez, D.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, A.J.; Madrigal-Santillán, E.O.; Velázquez-González, C.; Izquierdo-Vega, J.A. Matrix Metalloproteinase Inhibitors and Their Potential Clinical Application in Periodontitis. Diseases 2025, 13, 296. https://doi.org/10.3390/diseases13090296
Mendoza-Juárez D, Sánchez-Gutiérrez M, Izquierdo-Vega AJ, Madrigal-Santillán EO, Velázquez-González C, Izquierdo-Vega JA. Matrix Metalloproteinase Inhibitors and Their Potential Clinical Application in Periodontitis. Diseases. 2025; 13(9):296. https://doi.org/10.3390/diseases13090296
Chicago/Turabian StyleMendoza-Juárez, Daniela, Manuel Sánchez-Gutiérrez, Aleli Julieta Izquierdo-Vega, Eduardo Osiris Madrigal-Santillán, Claudia Velázquez-González, and Jeannett Alejandra Izquierdo-Vega. 2025. "Matrix Metalloproteinase Inhibitors and Their Potential Clinical Application in Periodontitis" Diseases 13, no. 9: 296. https://doi.org/10.3390/diseases13090296
APA StyleMendoza-Juárez, D., Sánchez-Gutiérrez, M., Izquierdo-Vega, A. J., Madrigal-Santillán, E. O., Velázquez-González, C., & Izquierdo-Vega, J. A. (2025). Matrix Metalloproteinase Inhibitors and Their Potential Clinical Application in Periodontitis. Diseases, 13(9), 296. https://doi.org/10.3390/diseases13090296