Integration of Circulating miR-31-3p and miR-196a-5p as Liquid Biopsy Markers in HPV-Negative Primary Laryngeal Squamous Cell Carcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient and Control Groups
2.2. Plasma Samples
2.3. Histopathological and Clinical Characteristics
2.4. RNA Extraction
2.5. Reverse Transcription and Real-Time Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. Clinical and Pathological Features of the Primary LSCC Patient and Healthy Control Groups
3.2. Relative Expression of Circulating miR-31-3p and miR-196a-5p in Primary HPV-Negative Plasma LSCC Samples
3.3. Association Between miR-31-3p/miR-196a-5p Expression and Clinicopathological Features
3.4. Evaluation of the Diagnostic Potential of Circulating miR-31-3p and miR-196a-5p
3.5. Co-Expression of miR-31-3p and miR-196a-5p in LSCC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LSCC | Laryngeal squamous cell carcinoma |
HNC | Head and neck cancer |
HPV | Human papilloma virus |
RNAs | Ribonucleic acids |
miRNAs | microribonucleic acids |
miR-31-3p | Microribonucleic acid 31-3p |
miR-196a-5p | Microribonucleic acid 196a-5p |
ISUL | Institute for Specialization and Improvement of Doctors |
ENT | Ear, nose, and throat |
EDTA | Ethylenediaminetetraacetic acid |
FFPE | formalin-fixed, paraffin-embedded |
CDKN2A | cyclin-dependent kinase inhibitor 2A |
RNU6B | small nuclear RNA U6B |
LATS2 | Large tumor suppressor kinase 2 |
FIH | Hypoxia-inducible factor 1-alpha inhibitor ( |
RASA1 | p120-RasGAP |
RQ | Relative quantification |
ROC | Receiver operating characteristic |
EGFR | Epidermal growth factor receptor |
ZEB2 | Zinc Finger E-Box Binding Homeobox 2 |
HOX | Homeobox |
RT-qPCR | Reverse transcription-quantification polymerase chain reaction |
References
- Nachalon, Y.; Cohen, O.; Alkan, U.; Shvero, J.; Popovtzer, A. Characteristics and outcome of laryngeal squamous cell carcinoma in young adults. Oncol. Lett. 2017, 13, 1393–1397. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liberale, C.; Soloperto, D.; Marchioni, A.; Monzani, D.; Sacchetto, L. Updates on Larynx Cancer: Risk Factors and Oncogenesis. Int. J. Mol. Sci. 2023, 24, 12913. [Google Scholar] [CrossRef]
- Otouana Dzon, H.; Ngouoni, G.; Diembi, S.; Ondzotto, G.; Tsierie-Tsoba, A.; Itiere Odzili, F.; Ondzotto, G. HPV-Positive Laryngeal Carcinomas: Epidemiological, Virological and Progressive Features. Open Access Libr. J. 2020, 7, e6679. [Google Scholar] [CrossRef]
- Fernanda Santos, B.; Paola Lima, M.; Luis Fernando Garcia, J.; Ariana, C. Relationship of HPV with Laryngeal Cancer: A Systematic Review. J. Tumor Med. Prev. 2024, 4, 555640. [Google Scholar] [CrossRef]
- Chen, A.Y.; Fedewa, S.; Zhu, J. Temporal Trends in the Treatment of Early- and Advanced-Stage Laryngeal Cancer in the United States, 1985–2007. Arch. Otolaryngol. Head Neck Surg. 2011, 137, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Wistuba, I.I.; Swanton, C.; Peters, S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Miguel-Luken, M.J.; Chaves-Conde, M.; Carnero, A. A genetic view of laryngeal cancer heterogeneity. Cell Cycle 2016, 15, 1202–1212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dagogo-Jack, I.; Shaw, A. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Chakrabortty, A.; Patton, D.J.; Smith, B.F.; Agarwal, P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes 2023, 14, 1375. [Google Scholar] [CrossRef]
- Garo Kyurkchiyan, S.; Miroslavov Popov, T.; Stancheva, G.; Rangachev, J.; Ivanov Mitev, V.; Petrova Popova, D.; Petrova Kaneva, R. Novel insights into laryngeal squamous cell carcinoma from association study of aberrantly expressed miRNAs, lncRNAs and clinical features in Bulgarian patients. J. BUON 2020, 25, 357–366. [Google Scholar] [PubMed]
- Lin, X.; Wu, W.; Ying, Y.; Luo, J.; Xu, X.; Zheng, L.; Wu, W.; Yang, S.; Zhao, S. MicroRNA-31: A pivotal oncogenic factor in oral squamous cell carcinoma. Cell Death Discov. 2022, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Manceau, G.; Imbeaud, S.; Thiébaut, R.; Liébaert, F.; Fontaine, K.; Rousseau, F.; Génin, B.; Le Corre, D.; Didelot, A.; Vincent, M.; et al. Hsa-miR-31-3p expression is linked to progression-free survival in patients with KRAS wild-type metastatic colorectal cancer treated with anti-EGFR therapy. Clin. Cancer Res. 2014, 20, 3338–3347. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Lee, C.; Chiu, C.; Chu, Y.; Cheng, H.; Hsu, J.; Tsou, Y.; Wu, R.; Chen, T.; Chang, N.; et al. Circulating microRNA-196a is an early gastric cancer biomarker. Oncotarget 2018, 9, 10317–10323. Available online: https://www.oncotarget.com/article/23126/text/ (accessed on 5 July 2025). [CrossRef]
- Li, Q.; Yang, Z.; Chen, M.; Liu, Y. Downregulation of microRNA-196a enhances the sensitivity of non-small cell lung cancer cells to cisplatin treatment. Int. J. Mol. Med. 2016, 37, 1067–1074. [Google Scholar] [CrossRef]
- Kyurkchiyan, S.G.; Popov, T.M.; Shakola, F.; Rangachev, J.; Mitev, V.I.; Kaneva, R. A pilot study reveals the potential of miR-31-3p and miR-196a-5p as non-invasive biomarkers in advanced laryngeal cancer. Folia Medica 2021, 63, 355–364. [Google Scholar] [CrossRef]
- Kyurkchiyan, S.G.; Popov, T.M.; Mitev, V.I.; Kaneva, R.P. The role of miRNAs and lncRNAs in laryngeal squamous cell carcinoma. Folia Medica 2020, 62, 244–252. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef]
- Gao, Y.; Yi, J.; Zhang, K.; Bai, F.; Feng, B.; Wang, R.; Chu, X.; Chen, L.; Song, H. Downregulation of MiR-31 stimulates expression of LATS2 via the hippo pathway and promotes epithelial-mesenchymal transition in esophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2017, 36, 161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Li, Y.; Wang, Q.; Su, B.; Xu, H.; Sun, Y.; Sun, P.; Li, R.; Peng, X.; Cai, J. Role of RASA1 in cancer: A review and update (Review). Oncol Rep. 2020, 44, 2386–2396. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.L.; Li, H.X.; Yang, Y.Y.; Su, Y.L.; Lian, J.S.; Li, T.; Xu, J.; Wang, X.N.; Jin, N.; Liu, X.F. MiR-31 is a potential biomarker for diagnosis of head and neck squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2018, 11, 4339–4345. [Google Scholar] [PubMed] [PubMed Central]
- Anandappa, G.; Lampis, A.; Cunningham, D.; Khan, K.H.; Kouvelakis, K.; Vlachogiannis, G.; Hedayat, S.; Tunariu, N.; Rao, S.; Watkins, D.; et al. miR-31-3p Expression and Benefit from Anti-EGFR Inhibitors in Metastatic Colorectal Cancer Patients Enrolled in the Prospective Phase II PROSPECT-C Trial. Clin Cancer Res. 2019, 25, 3830–3838. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Inagaki, K.; Kamimoto, T.; Ito, Y.; Sugita, T.; Nakajo, S.; Hirasawa, A.; Iwamaru, A.; Ishikura, T.; Hanaoka, H.; et al. MicroRNA-196a is a putative diagnostic biomarker and therapeutic target for laryngeal cancer. PLoS ONE 2013, 8, e71480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vojtechova, Z.; Sabol, I.; Salakova, M.; Smahelova, J.; Zavadil, J.; Turek, L.; Grega, M.; Klozar, J.; Prochazka, B.; Tachezy, R. Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones. BMC Cancer 2016, 16, 382. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Y.; Zhang, L.; Weakley, S.M.; Yao, Q. MicroRNA-196: Critical roles and clinical applications in development and cancer. J. Cell. Mol. Med. 2011, 15, 14–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, S.; Pan, J.; Lu, X.; Chi, P.; Lu, X.; Chi, P. Role of miR-196 and its target gene HoxB8 in the development and proliferation of human colorectal cancer and the impact of neoadjuvant chemotherapy with FOLFOX4 on their expression. Oncol. Lett. 2016, 12, 4041–4047. [Google Scholar] [CrossRef]
- Suh, Y.E.; Raulf, N.; Gäken, J.; Lawler, K.; Urbano, T.G.; Bullenkamp, J.; Gobeil, S.; Huot, J.; Odell, E.; Tavassoli, M. MicroRNA-196a promotes an oncogenic effect in head and neck cancer cells by suppressing annexin A1 and enhancing radioresistance. Int J. Cancer 2015, 137, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Schimanski, C.C.; Frerichs, K.; Rahman, F.; Berger, M.; Lang, H.; Galle, P.R.; Moehler, M.; Gockel, I. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J. Gastroenterol. 2009, 15, 2089–2096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maruyama, T.; Nishihara, K.; Umikawa, M.; Arasaki, A.; Nakasone, T.; Nimura, F.; Matayoshi, A.; Takei, K.; Nakachi, S.; Kariya, K.I.; et al. MicroRNA-196a-5p is a potential prognostic marker of delayed lymph node metastasis in early-stage tongue squamous cell carcinoma. Oncol. Lett. 2018, 15, 2349–2363. [Google Scholar] [CrossRef]
- Bao, M.; Pan, S.; Yang, W.; Chen, S.; Shan, Y.; Shi, H. Serum miR-10a-5p and miR-196a-5p as non-invasive biomarkers in non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 2018, 11, 773–780. [Google Scholar] [PubMed] [PubMed Central]
- Bazyari, M.J.; Aghaee-Bakhtiari, S.H. MiRNA target enrichment analysis of co-expression network modules reveals important miRNAs and their roles in breast cancer progression. J. Integr. Bioinform. 2024, 21, 20220036. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Features | LSCC Patients n (%) | Healthy Controls n (%) |
---|---|---|
Gender | ||
Female | 9 (19) | 4 (20) |
Male | 41 (81) | 16 (80) |
Age | ||
≤60 | 24 (48) | 9 (45) |
>60 | 26 (52) | 11 (55) |
Tobacco | ||
Yes | 50 (100) | 17 (85) |
No | 0 (0) | 3 (15) |
Alcohol | ||
Yes | 50 (100) | 17 (85) |
No | 0 (0) | 3 (15) |
Work exposure | ||
Yes | 21 (42) | 5 (25) |
No | 29 (58) | 11 (75) |
Family history | ||
Yes | 8 (16) | 3 (15) |
No | 42 (84) | 17 (85) |
Tumor stage | ||
T1 | 10 (21) | |
T2 | 16 (34) | |
T3 | 13 (22.5) | |
T4 | 11(22.5) | |
Nodal stage | ||
N0 | 36 (75) | |
N1–3 | 14 (25) | |
G stage | ||
G1 | 20 (40) | |
G2 | 24 (48) | |
G3 | 6 (12) | |
HPV (p16 staining) | ||
Positive | 0 (0) | |
Negative | 50 (100) |
Clinicopathological Features | LSCC Patients n (%) | miR-31-3p RQ (Mean ± SD) | miR-196a-5p RQ (Mean ± SD) |
---|---|---|---|
Gender | |||
Female | 9 (19) | 6.45 (4.75) | 4.02 (5.41) |
Male | 41 (81) | 5.24 (5.98) p = 0.272 | 2.42 (2.20) p = 0.599 |
Age | |||
≤60 | 24 (48) | 4.49 (4.08) | 4.50 (6.71) |
>60 | 26 (52) | 6.44 (6.98) p = 0.187 | 2.94 (2.17) p = 0.697 |
Tumor stage | |||
T1 | 10 (21) | 3.10 (1.94) | 2.63 (3.11) |
T2 | 16 (34) | 2.12 (1.61) | 4.76 (8.12) |
T3 | 13 (22.5) | 9.57 (7.69) | 3.67 (2.17) |
T4 | 11(22.5) | 10.30 (9.37) p < 0.001 | 3.05 (1.60) p = 0.223 |
Nodal stage | |||
N0 | 36 (75) | 3.78 (3.20) | 3.98 (5.68) |
N1–3 | 14 (25) | 10.53 (8.43) p = 0.009 | 2.92 (1.65) p = 0.860 |
G stage | |||
G1 | 20 (40) | 4.08 (4.01) | 3.89 (5.63) |
G2 | 24 (48) | 5.80 (5.68) | 3.86 (5.16) |
G3 | 6 (12) | 8.55 (9.52) p = 0.293 | 2.64 (1.21) p = 0.910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stancheva, G.; Kyurkchiyan, S.; Stancheva, I.; Rangachev, J.; Dobriyanova, V.; Popova, D.; Kaneva, R.; Popov, T.M. Integration of Circulating miR-31-3p and miR-196a-5p as Liquid Biopsy Markers in HPV-Negative Primary Laryngeal Squamous Cell Carcinoma. Diseases 2025, 13, 279. https://doi.org/10.3390/diseases13090279
Stancheva G, Kyurkchiyan S, Stancheva I, Rangachev J, Dobriyanova V, Popova D, Kaneva R, Popov TM. Integration of Circulating miR-31-3p and miR-196a-5p as Liquid Biopsy Markers in HPV-Negative Primary Laryngeal Squamous Cell Carcinoma. Diseases. 2025; 13(9):279. https://doi.org/10.3390/diseases13090279
Chicago/Turabian StyleStancheva, Gergana, Silva Kyurkchiyan, Iglika Stancheva, Julian Rangachev, Venera Dobriyanova, Diana Popova, Radka Kaneva, and Todor M Popov. 2025. "Integration of Circulating miR-31-3p and miR-196a-5p as Liquid Biopsy Markers in HPV-Negative Primary Laryngeal Squamous Cell Carcinoma" Diseases 13, no. 9: 279. https://doi.org/10.3390/diseases13090279
APA StyleStancheva, G., Kyurkchiyan, S., Stancheva, I., Rangachev, J., Dobriyanova, V., Popova, D., Kaneva, R., & Popov, T. M. (2025). Integration of Circulating miR-31-3p and miR-196a-5p as Liquid Biopsy Markers in HPV-Negative Primary Laryngeal Squamous Cell Carcinoma. Diseases, 13(9), 279. https://doi.org/10.3390/diseases13090279