Examining Romosozumab Adherence and Side Effects in Osteoporotic Patients After Surgical Fracture Fixation: A Comparative, Descriptive, and Hypothesis-Generating Study with Non-Fractured Controls
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Borgström, F.; Karlsson, L.; Ortsäter, G.; Norton, N.; Halbout, P.; Cooper, C.; Lorentzon, M.; McCloskey, E.V.; Harvey, N.C.; Javaid, M.K.; et al. Fragility fractures in Europe: Burden, management and opportunities. Arch. Osteoporos. 2020, 15, 59. [Google Scholar] [CrossRef]
- Kanis, J.A.; Norton, N.; Harvey, N.C.; Jacobson, T.; Johansson, H.; Lorentzon, M.; McCloskey, E.V.; Willers, C.; Borgström, F. SCOPE 2021: A new scorecard for osteoporosis in Europe. Arch. Osteoporos. 2021, 16, 82. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, A.; Zhang, J.; Chen, L.; Wenkert, D.; Daigle, S.G.; Grauer, A.; Curtis, J.R. Risk of subsequent fracture after prior fracture among older women. Osteoporos. Int. 2019, 30, 79–92. [Google Scholar] [CrossRef]
- Huntjens, K.M.; Kosar, S.; van Geel, T.A.; Geusens, P.P.; Willems, P.; Kessels, A.; Winkens, B.; Brink, P.; van Helden, S. Risk of subsequent fracture and mortality within 5 years after a non-vertebral fracture. Osteoporos. Int. 2010, 21, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo, B.J.; Unnanuntana, A.; Lane, J.M. A comprehensive approach to fragility fractures. J. Orthop. Trauma. 2011, 25, 566–573. [Google Scholar] [CrossRef]
- Danazumi, M.S.; Lightbody, N.; Dermody, G. Effectiveness of fracture liaison service in reducing the risk of secondary fragility fractures in adults aged 50 and older: A systematic review and meta-analysis. Osteoporos. Int. 2024, 35, 1133–1151. [Google Scholar] [CrossRef]
- Li, N.; Hiligsmann, M.; Boonen, A.; van Oostwaard, M.M.; de Bot, R.; Wyers, C.E.; Bours, S.P.G.; van den Bergh, J.P. The impact of fracture liaison services on subsequent fractures and mortality: A systematic literature review and meta-analysis. Osteoporos. Int. 2021, 32, 1517–1530. [Google Scholar] [CrossRef]
- González-Quevedo, D.; Rubia-Ortega, C.; Sánchez-Delgado, A.; Moriel-Garceso, D.; Sánchez-Siles, J.-M.; Bravo-Bardají, M.; García-de-Quevedo, D.; Tamimi, I. Secondary osteoporosis prevention: Three-year outcomes from a Fracture Liaison Service in elderly hip fracture patients. Aging Clin. Exp. Res. 2024, 36, 103. [Google Scholar] [CrossRef]
- Migliorini, F.; Giorgino, R.; Hildebrand, F.; Spiezia, F.; Peretti, G.M.; Alessandri-Bonetti, M.; Eschweiler, J.; Maffulli, N. Fragility Fractures: Risk Factors and Management in the Elderly. Medicina 2021, 57, 1119. [Google Scholar] [CrossRef]
- Miller, S.A.; St Onge, E.L.; Whalen, K.L. Romosozumab: A Novel Agent in the Treatment for Postmenopausal Osteoporosis. J. Pharm. Technol. 2021, 37, 45–52. [Google Scholar] [CrossRef]
- Prather, C.; Adams, E.; Zentgraf, W. Romosozumab: A first-in-class sclerostin inhibitor for osteoporosis. Am. J. Health Syst. Pharm. 2020, 77, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M.; Dinavahi, R.V.; Lazaretti-Castro, M.; Ebeling, P.R.; Adachi, J.D.; Miyauchi, A.; Gielen, E.; Milmont, C.E.; Libanati, C.; Grauer, A. One Year of Romosozumab Followed by Two Years of Denosumab Maintains Fracture Risk Reductions: Results of the FRAME Extension Study. J. Bone Miner. Res. 2019, 34, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef]
- McClung, M.R.; Betah, D.; Deignan, C.; Shi, Y.; Timoshanko, J.; Cosman, F. Romosozumab Efficacy in Postmenopausal Women With No Prior Fracture Who Fulfill Criteria for Very High Fracture Risk. Endocr. Pract. 2023, 29, 716–722. [Google Scholar] [CrossRef]
- Singh, S.; Dutta, S.; Khasbage, S.; Kumar, T.; Sachin, J.; Sharma, J.; Varthya, S.B. A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis. Osteoporos. Int. 2022, 33, 1–12. [Google Scholar] [CrossRef]
- Le, H.V.; Van, B.W.; Shahzad, H.; Teng, P.; Punatar, N.; Agrawal, G.; Wise, B. Fracture liaison service—A multidisciplinary approach to osteoporosis management. Osteoporos. Int. 2024, 35, 1719–1727. [Google Scholar] [CrossRef]
- Tarantino, U.; Greggi, C.; Visconti, V.V.; Cariati, I.; Bonanni, R.; Gasperini, B.; Iundusi, R.; Gasbarra, E.; Tranquilli Leali, P.; Brandi, M.L. Fracture liaison service model: Project design and accreditation. Osteoporos. Int. 2023, 34, 339–348. [Google Scholar] [CrossRef]
- Dimai, H.P.; Fahrleitner-Pammer, A. Osteoporosis and Fragility Fractures: Currently available pharmacological options and future directions. Best. Pract. Res. Clin. Rheumatol. 2022, 36, 101780. [Google Scholar] [CrossRef]
- Mantila, K.M.; Pasmooij, A.M.G.; Hallgreen, C.E.; Mol, P.G.M.; van Boven, J.F.M. Medication Adherence Measurement Methods in Registration Trials Supporting the Approval of New Medicines: A Cross-Sectional Analysis of Centralized Procedures in the European Union 2010-2020. Clin. Pharmacol. Ther. 2022, 112, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Siris, E.S.; Selby, P.L.; Saag, K.G.; Borgström, F.; Herings, R.M.C.; Silverman, S.L. Impact of Osteoporosis Treatment Adherence on Fracture Rates in North America and Europe. Am. J. Med. 2009, 122, S3–S13. [Google Scholar] [CrossRef] [PubMed]
- LeBoff, M.S.; Greenspan, S.L.; Insogna, K.L.; Lewiecki, E.M.; Saag, K.G.; Singer, A.J.; Siris, E.S. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 2022, 33, 2049–2102. [Google Scholar] [CrossRef] [PubMed]
- Baryakova, T.H.; Pogostin, B.H.; Langer, R.; McHugh, K.J. Overcoming barriers to patient adherence: The case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 2023, 22, 387–409. [Google Scholar] [CrossRef]
- Shigenobu, K.; Hashimoto, T.; Kanayama, M.; Ohha, H.; Yamane, S. The efficacy of osteoporotic treatment in patients with new spinal vertebral compression fracture pain, ADL, QOL, bone metabolism and fracture-healing—In comparison with weekly teriparatide with bisphosphonate. Bone Rep. 2019, 11, 100217. [Google Scholar] [CrossRef]
- Papaioannou, A.; Kennedy, C.C.; Ioannidis, G.; Gao, Y.; Sawka, A.M.; Goltzman, D.; Tenenhouse, A.; Pickard, L.; Olszynski, W.P.; Davison, K.S.; et al. The osteoporosis care gap in men with fragility fractures: The Canadian Multicentre Osteoporosis Study. Osteoporos. Int. 2008, 19, 581–587. [Google Scholar] [CrossRef]
- Papaioannou, A.; Kennedy, C.C.; Dolovich, L.; Lau, E.; Adachi, J.D. Patient adherence to osteoporosis medications: Problems, consequences and management strategies. Drugs Aging 2007, 24, 37–55. [Google Scholar] [CrossRef]
- Bianchi, M.L.; Duca, P.; Vai, S.; Guglielmi, G.; Viti, R.; Battista, C.; Scillitani, A.; Muscarella, S.; Luisetto, G.; Camozzi, V.; et al. Improving adherence to and persistence with oral therapy of osteoporosis. Osteoporos. Int. 2015, 26, 1629–1638. [Google Scholar] [CrossRef]
- Lewiecki, E.M.; Blicharski, T.; Goemaere, S.; Lippuner, K.; Meisner, P.D.; Miller, P.D.; Miyauchi, A.; Maddox, J.; Chen, L.; Horlait, S. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men With Osteoporosis. J. Clin. Endocrinol. Metab. 2018, 103, 3183–3193. [Google Scholar] [CrossRef]
- Cosman, F.; Crittenden, D.B.; Ferrari, S.; Khan, A.; Lane, N.E.; Lippuner, K.; Matsumoto, T.; Milmont, C.E.; Libanati, C.; Grauer, A. FRAME Study: The Foundation Effect of Building Bone With 1 Year of Romosozumab Leads to Continued Lower Fracture Risk After Transition to Denosumab. J. Bone Miner. Res. 2018, 33, 1219–1226. [Google Scholar] [CrossRef]
- Takada, J.; Dinavahi, R.; Miyauchi, A.; Hamaya, E.; Hirama, T.; Libanati, C.; Nakamura, Y.; Milmont, C.E.; Grauer, A. Relationship between P1NP, a biochemical marker of bone turnover, and bone mineral density in patients transitioned from alendronate to romosozumab or teriparatide: A post hoc analysis of the STRUCTURE trial. J. Bone Miner. Metab. 2020, 38, 310–315. [Google Scholar] [CrossRef]
- Ebina, K.; Hirao, M.; Tsuboi, H.; Nagayama, Y.; Kashii, M.; Kaneshiro, S.; Miyama, A.; Nakaya, H.; Kunugiza, Y.; Okamura, G.; et al. Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. Bone 2020, 140, 115574. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kawasaki, K.; Inagaki, K. Successful treatment of humeral shaft nonunion with romosozumab: A case report. Trauma. Case Rep. 2022, 37, 100595. [Google Scholar] [CrossRef] [PubMed]
- Schwab, P.E.; Dessain, A.; Milby, J. Monoclonal antibody anti-sclerostin for treatment of pelvic insufficiency fractures in adult hypophosphatasia: A case report. Trauma. Case Rep. 2024, 53, 101077. [Google Scholar] [CrossRef]
- Schemitsch, E.H.; Miclau, T.; Karachalios, T.; Nowak, L.L.; Sancheti, P.; Poolman, R.W.; Caminis, J.; Daizadeh, N.; Dent-Acosta, R.E.; Egbuna, O.; et al. A Randomized, Placebo-Controlled Study of Romosozumab for the Treatment of Hip Fractures. J. Bone Jt. Surg. 2020, 102, 693–702. [Google Scholar] [CrossRef] [PubMed]
Surgical Group | CTRL Group | p Value | ||
---|---|---|---|---|
Number of Patients | 12 | 13 | - | |
Age (years) | 67.3 ± 14.9 | 76.4 ± 7.9 | >0.05 | |
Follow-up (days) | 374.22 ± 102.31 | 386.73 ± 90.60 | - | |
Doses administered | 100% (12) | 100% (12) | - | |
TST * | 12.4 ± 3.0 | 6.42 ± 1.6 | <0.001 | |
Vit. D (ng/mL) | ||||
Pre op | 22.7 ± 3.9 | 23.7 ± 4.0 | - | |
Post op | 37.9 ± 3.8 | 36.2 ± 3.1 | - | |
PTH | ||||
Pre op | 78.1 ± 29.6 | 59.8 ± 14.4 | - | |
Post op | 65.8 ± 13.4 | 60.4 ± 14.0 | - | |
T-score femoral neck | ||||
Pre op | −2.9 ± 0.3 | −2.8 ± 0.3 | - | |
Post op | 2.6 ± 0.3 | −2.5 ± 0.4 | - | |
T-score L1-L4 | ||||
Pre op | −2.9 ± 0.3 | −2.8 ± 0.3 | - | |
Post op | −2.8 ± 0.4 | −2.5 ± 0.4 | - | |
FRAX | 29.5 ± 3.1 | 28.7 ± 2.6 | - |
Surgical Group | Conservative | ||
---|---|---|---|
Previous antiosteoporotic therapy | |||
No therapy | 7 | 6 | |
Vit. D + calcium | 3 | 5 | |
Bisphosphonate | 1 | 2 | |
Denosumab | 1 | - | |
Theripathide | - | - | |
Other | - | - | |
Type of fracture | |||
Femoral | 9 | - | |
Proximal humerus | 2 | 3 | |
Distal radius | 1 | 3 | |
Tibia and fibula | 1 | - | |
Vertebral | - | 6 | |
Metatarsal | - | 2 | |
Comorbidities | |||
Hyperthention | 7 | 8 | |
Diabeties | 4 | 6 | |
Tumor | 2 | 3 | |
Dyslipidemia | 3 | 4 | |
Others | 2 | 3 |
Surgical Group | CTRL Group | |
---|---|---|
Nasopharyngitis | - | 2 |
Arthralgia | 4 | 3 |
Headaches | 2 | 1 |
Myalgia | 3 | 2 |
Hypocalcemia | - | - |
Stroke | - | - |
Myocardial infarction | - | - |
Others | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smakaj, A.; Tarantino, U.; Iundusi, R.; Chiavoghilefu, A.; Abbondante, L.; Salvati, C.; Greggi, C.; Gasbarra, E. Examining Romosozumab Adherence and Side Effects in Osteoporotic Patients After Surgical Fracture Fixation: A Comparative, Descriptive, and Hypothesis-Generating Study with Non-Fractured Controls. Diseases 2025, 13, 148. https://doi.org/10.3390/diseases13050148
Smakaj A, Tarantino U, Iundusi R, Chiavoghilefu A, Abbondante L, Salvati C, Greggi C, Gasbarra E. Examining Romosozumab Adherence and Side Effects in Osteoporotic Patients After Surgical Fracture Fixation: A Comparative, Descriptive, and Hypothesis-Generating Study with Non-Fractured Controls. Diseases. 2025; 13(5):148. https://doi.org/10.3390/diseases13050148
Chicago/Turabian StyleSmakaj, Amarildo, Umberto Tarantino, Riccardo Iundusi, Angela Chiavoghilefu, Lorenzo Abbondante, Chiara Salvati, Chiara Greggi, and Elena Gasbarra. 2025. "Examining Romosozumab Adherence and Side Effects in Osteoporotic Patients After Surgical Fracture Fixation: A Comparative, Descriptive, and Hypothesis-Generating Study with Non-Fractured Controls" Diseases 13, no. 5: 148. https://doi.org/10.3390/diseases13050148
APA StyleSmakaj, A., Tarantino, U., Iundusi, R., Chiavoghilefu, A., Abbondante, L., Salvati, C., Greggi, C., & Gasbarra, E. (2025). Examining Romosozumab Adherence and Side Effects in Osteoporotic Patients After Surgical Fracture Fixation: A Comparative, Descriptive, and Hypothesis-Generating Study with Non-Fractured Controls. Diseases, 13(5), 148. https://doi.org/10.3390/diseases13050148