A Review of the CACNA Gene Family: Its Role in Neurological Disorders
Abstract
:1. Introduction
- CACNA1A: The CACNA1A gene, located on chromosome 19p13.1, encodes the alpha-1A subunit of VGCCs. This element is predominantly expressed in neurons, particularly in the cerebellum, where it plays an essential role in synaptic transmission, neuronal excitability, and motor coordination [4].
- CACNA1B: The CACNA1B gene, located on chromosome 9q34.3, encodes the alpha-1B subunit of VGCCs. This subunit is primarily found in neurons and is involved in regulating calcium influx at the presynaptic terminals, modulating neurotransmitter release and synaptic transmission [3].
- CACNA1C: The CACNA1C gene, located on chromosome 12p13.33, encodes the alpha-1C subunit which is widely expressed in various tissues, including the brain, heart, and smooth muscle. It contributes to the formation of L-type calcium channels, which play crucial roles in cardiac and neuronal excitability, muscle contraction, and synaptic plasticity [2].
- CACNA1D: The CACNA1D gene encodes the alpha-1D subunit of VGCCs and is located on chromosome 3p14.3. Similar to CACNA1C, alpha-1D contributes to the formation of L-type calcium channels and is expressed in neurons, cardiac muscle cells, and endocrine tissues. Dysregulation of CACNA1D has been implicated in various neurological disorders, including epilepsy and autism spectrum disorders [5].
- CACNA1E, CACNA1F, CACNA1S: Additional members of the CACNA gene family include CACNA1E, CACNA1F, and CACNA1S, each responsible for encoding distinct alpha subunits expressed in specific tissues and cell types. CACNA1E is predominantly expressed in the brain, where it plays a role in regulating neuronal excitability. Conversely, CACNA1F is primarily expressed in the retina and is crucial for visual signal transduction. CACNA1S encodes the alpha-1S subunit found in skeletal muscle, facilitating calcium influx during excitation–contraction coupling.
2. Clinical Consequences of CACNA Gene Variants
Gene | Location of Gene | Related Diseases | Variable Phenotypes |
---|---|---|---|
CACNA1A | chromosome 19p13.13 | Developmental and epileptic encephalopathy 42 (DEE42) [44] | Epileptic encephalopathy, seizures, developmental delay, intellectual disability, hyperreflexia, tremor, ataxia, athetosis, EEG abnormalities, abnormal eye movements, nystagmus [45] |
Episodic ataxia, type 2 (EA2) [44] | Ataxia, unsteadiness, vertigo, myotonia, dysarthria, migraine headache, weakness, paresthesias, interictal downbeat nystagmus, interictal vestibular dysfunction, EEG with paroxysmal activity, atrophy of cerebellar vermis, visual hallucinations, auditory hallucinations, anxiety attacks, paranoid psychosis [45] | ||
Migraine, familial hemiplegic (FHM1) [44] | Migraine, hemiparesis, hemiplegia, dysphasia, drowsiness, confusion, psychomotor agitation, dyscalculia, attention disturbances, impaired long-term verbal memory, cerebellar ataxia, cerebellar atrophy [45] | ||
Spinocerebellar ataxia 6 (SCA6) [44] | Cerebellar ataxia, dysarthria, dysphagia, cerebellar atrophy, selective loss of cerebellar Purkinje cells [45] | ||
CACNA1B | chromosome 9q34.3 | Neurodevelopmental disorder with seizures and nonepileptic hyperkinetic movements (NEDNEH) [46] | Developmental delay, epileptic encephalopathy, developmental regression, inability to walk, absent speech, seizures, hypsarrhythmia, hyperkinetic movements, myoclonus, dystonia, oromotor dyskinesia, choreoathetosis [47] |
CACNA1C | chromosome 12p13.33 | Neurodevelopmental disorder with hypotonia, language delay, and skeletal defects with or without seizures (NEDHLSS) [48] | Developmental delay, hypotonia, delayed walking, unsteady gait, inability to walk, speech delay, absent speech, impaired intellectual development, learning disabilities, seizures, EEG abnormalities, aggression [49] |
Timothy syndrome (TS) [48] | Developmental delay, hypotonia, impaired intellectual development, seizures, autism spectrum disorder [49] | ||
CACNA1D | chromosome 3p21.1 | Primary aldosteronism, seizures, and neurologic abnormalities (PASNA) [50] | Developmental delay, seizures, cerebral palsy, movement disorder [51] |
CACNA1E | chromosome 1q25.3 | Developmental and epileptic encephalopathy 69 (DEE69) [52] | Macrocephaly, poor or absent eye contact, nystagmus, roving eye movements, cortical visual impairment, arthrogryposis, congenital contractures, axial hypotonia, appendicular hypertonia, epileptic encephalopathy, globally impaired development, seizures, developmental regression after seizure onset, inability to walk, absent speech, impaired intellectual development, poor spontaneous movements, hyperkinetic movements, plastic quadriplegia, hyperreflexia, dystonia, myoclonus, EEG abnormalities, multifocal discharges, hypsarrhythmia, cortical, corpus callosum and white matter atrophy [53] |
CACNA1G | chromosome 17q21.33 | Spinocerebellar ataxia 42 (SCA42) [54] | Spinocerebellar ataxia, gait instability, dysarthria, cerebellar atrophy, nystagmus, diplopia, saccadic pursuit [54] |
Spinocerebellar ataxia 42 (early-onset, severe with neurodevelopmental disorder) (SCA42ND) [54] | Delayed psychomotor development, intellectual disability, hypotonia (axial), hyperreflexia, spasticity, poor head control, inability to walk, seizures (early-onset), syndactyly, clinodactyly, oculomotor apraxia, dysmorphic features (face) [54] | ||
Episodic vestibulocerebellar ataxia type 10 (EVCA10) [35] | Episodes of transient dizziness, gait unsteadiness, a sensation of fall triggered by head movements, headache, cheek numbness, visual blurring, mental slowing and fatigue, reduced vestibulo-ocular reflex (VOR) [34] | ||
CACNA1H | chromosome 16p13.3 | Epilepsy (childhood absence, susceptibility to 6) [55] | Febrile seizures, myoclonic/astatic epilepsy, idiopathic generalized epilepsy, generalized epilepsy, childhood absence epilepsy, febrile seizures, temporal lobe epilepsy [56] |
Epilepsy (idiopathic generalized, susceptibility to 6) [57] | |||
Hyperaldosteronism (familial, type IV) (HALD4) [55] | Hypertension, microscopic hyperplasia of adrenal gland glomerulosa, elevated aldosterone levels, low renin levels [58] | ||
CACNA1I | chromosome 22q13.1 | Neurodevelopmental disorder with speech impairment and with or without seizures (NEDSIS) [59] | Short stature, cortical visual impairment, feeding difficulties, gastroesophageal reflux, tube feeding, global developmental delay (profound), hypotonia, inability to walk, delayed walking, impaired intellectual development (profound), absent speech, seizures, myoclonus, staring spells, hyperexcitability, EEG abnormalities, cortical atrophy, delayed myelination, hypogenesis of the corpus callosum [60] |
CACNA1S | chromosome 1q32.1 | Malignant hyperthermia susceptibility to, 5 (MHS5) [61] | Hyperthermia [62] |
Thyrotoxic periodic paralysis, susceptibility to, 1 (TTPP1) [61] | Tremor, hypo- or areflexia during attacks, muscle paralysis and weakness (episodic), muscle aches, cramps [62] | ||
Congenital myopathy 18 (CMYP18) [61] | Delayed motor development, hypotonia, generalized muscle weakness, muscle atrophy [62] |
3. CACNA Genes and Migraine
3.1. CACNA1A Gene in Migraine
3.2. Other CACNA Genes in Migraine
4. CACNA Gene Variants and the Development of Epilepsy
4.1. CACNA1A Gene in Epilepsy
4.2. Other CACNA Genes in Epilepsy
Gene | Genetic Variants | Protein Product | A Type of Epileptic Seizure | Cohort | References |
---|---|---|---|---|---|
CACNA1A | c.2963_2964insG c.3089 + 1G>A, c.4755 + 1G>T, c.6340-1G>A | p.Gly989Argfs*78 | Absence epilepsy Partial epilepsy Epileptic encephalopathy | 318 cases with partial epilepsy 150 cases with generalized epilepsy 296 healthy volunteers | [20] |
c.203G>T c.3965G>A c.5032C>T c.5393C>T | p.Arg68Leu p.Gly1322Glu p.Arg1678Cys p.Ser1798Leu | ||||
c.4891A>G c.5978C>T c.3233C>T c.6061G>A | p.Ile1631Val p.Pro1993Leu p.Ser1078Leu p.Glu2021Lys | ||||
CACNA1A | c.T677G | p.Leu226Trp | Juvenile myoclonic epilepsy | Family cases | [21] |
CACNA1A | c.301G>C c.653C>T c.2137G>A c.2137G>A c.4531G>T | p.Glu101Gln p.Ser218Leu p.Ala713Thr p.Ala713Thr | Epilepsy of infancy with migrating focal seizures Early-onset epileptic encephalopathy | 531 individuals | [100] |
CACNA1A | c.2137G>A c.4177G>A c.2039-2040del c.3968G>A c.2131G>A c.185A>G c.4177G>A c.2276T>C c.4406C>T c.4177G>A c.165A>C c.2053C>T c.6530-1G>C c.4177G>A c.889G>A c.4177G>A c.506G>A c.848A>G | p.A713T p.V1393M p.Gln680ArgfsTer100 p.G1323E p.A711T p.Y62C p.V1393M p.I759T p.S1469L p.V1393M p.R55S p.Q685X ---- p.V1393M p.G297R p.V1393M p.W169X p.N283S | Focal, Generalized tonic Clonic, Myoclonic Absence seizures Epileptic spasms Tonic seizures | Eighteen children | [101] |
CACNA1A | c.6975_6976insCAG | insertion at amino acid position 2326 | Progressive myoclonic epilepsy | Family cases | [105] |
CACNA1G | c.1709C>T c.3265G>T c.2968G>A | p.Ala570Val p.Ala1089Ser p. Asp980Asn | Juvenile myoclonic epilepsy | 123 patients with idiopathic generalized epilepsies | [110] |
CACNA1H | c.2626G>A c.2947G>A c.3175G>T c.3508G>A c.3792G>T c.4817C>T c.5113G>A c.5197A>G c.5675G>A | p.Ala876Thr p.Gly983Ser p.Ala1059Ser p.Glu1170Lys p.Gln1264His p.Thr1606Met p.Ala1705Thr p.Thr1733Ala p.Arg1892His | Childhood absence epilepsy Febrile seizures Temporal lobe epilepsy Myoclonic-astatic epilepsy Symptomatic generalized epilepsy Juvenile myoclonic epilepsy Idiopathic generalized epilepsy Juvenile absence epilepsy | 240 epilepsy patients 95 control subjects |
5. CACNA Genes and Cerebellar Ataxias
5.1. Episodic Ataxia Type 2 (EA2)
5.2. Spinocerebellar Ataxia Type 6 (SCA6)
5.3. Spinocerebellar Ataxia Type 42 (SCA42)
5.4. Episodic Vestibulocerebellar Ataxia
6. CACNA Genes and Cerebellar Atrophy and Other Neurological Diseases
Genetic Variants of CACNA1A
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bollimuntha, B.; Pani, B.; Singh, B.B. Neuronal store-operated Ca2+ signaling: An overview and its function. Adv. Exp. Med. Biol. 2017, 993, 535–556. [Google Scholar] [PubMed]
- Harrison, P.J.; Husain, S.M.; Lee, H.; De Los Angeles, A.; Colbourne, L.; Mould, A.; Hall, N.A.L.; Haerty, W.; Tunbridge, E.M. CACNA1C (CaV1.2) and other L-type calcium channels in the pathophysiology and treatment of psychiatric disorders: Advances from functional genomics and pharmacoepidemiology. Neuropharmacology 2022, 220, 109262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, W.; Zhang, S.; Wang, X.; Tang, Z.; Gu, J.; Li, J.; Huang, J. CACNA1B (Cav2.2) Overexpression and its association with clinicopathologic characteristics and unfavorable prognosis in non-small cell lung cancer. Dis. Markers 2017, 2017, 6136401. [Google Scholar] [CrossRef] [PubMed]
- Correa, B.H.M.; Moreira, C.R.; Hildebrand, M.E.; Vieira, L.B. The Role of voltage-gated calcium channels in basal ganglia neurodegenerative disorders. Curr. Neuropharmacol. 2023, 21, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Ortner, N.J.; Kaserer, T.; Copeland, J.N.; Striessnig, J. De novo CACAN1D Ca2+ channelopathies: Clinical phenotypes and molecular mechanism. Pflug. Arch. 2020, 472, 755–773. [Google Scholar] [CrossRef]
- Heck, J.; Palmeira Do Amaral, A.C.; Weißbach, S.; El Khallouqi, A.; Bikbaev, A.; Heine, M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation. Channels 2021, 15, 322–338. [Google Scholar] [CrossRef]
- Tigaret, C.M.; Lin, T.-C.E.; Morrell, E.; Sykes, L.; O’Donovan, M.C.; Owen, M.J.; Wilkinson, L.S.; Jones, M.W.; Thomas, K.L.; Hall, J. Neurotrophin receptor activation rescues cognitive and synaptic abnormalities caused by mutation of the psychiatric risk gene Cacna1c. Mol. Psychiatry 2021, 26, 1748–1760. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Majidi, M.; Koraei, M.; Vasef, S. The inflammation/NF-κB and BDNF/TrkB/CREB pathways in the cerebellum are implicated in the changes in spatial working memory after both morphine dependence and withdrawal in rat. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef]
- Li, W.; Zheng, N.Z.; Yuan, Q.; Xu, K.; Yang, F.; Gu, L.; Zheng, G.Y.; Luo, G.J.; Fan, C.; Ji, G.J.; et al. NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation. J. Mol. Med. 2017, 94, 993–1002. [Google Scholar] [CrossRef]
- van Loo, K.M.J.; Schaub, C.; Pernhorst, K.; Yaari, Y.; Beck, H.; Schoch, S.; Becker, A.J. Transcriptional regulation of T-type calcium channel CaV3.2: Bi-directionality by early growth response 1 (Egr1) and repressor element 1 (RE-1) protein -silencing transcription factor (REST)*. J. Biol. Chem. 2012, 287, 15489–15501. [Google Scholar] [CrossRef]
- González-Ramírez, R.; Felix, R. Transcriptional regulation of voltage-gated Ca2+ channels. Acta Physiol. 2018, 222, e12883. [Google Scholar] [CrossRef]
- Lipscombe, D.; Andrade, A.; Allen, S.E. Alternative splicing: Functional diversity among voltage-gated calcium channels and behavioral consequences. Biochim. Biophys. Acta 2013, 1828, 1522–1529. [Google Scholar] [CrossRef]
- Jurkat-Rott, K.; Lehmann-Horn, F. The impact of splice isoforms on voltage-gated calcium channel alpha1 subunits. J. Physiol. 2004, 554, 609–619. [Google Scholar] [CrossRef]
- Morton, S.U.; Sefton, C.R.; Zhang, H.; Dai, M.; Turner, D.L.; Uhler, M.D.; Agrawal, P.B. microRNA-mRNA profile of skeletal muscle differentiation and relevance to congenital myotonic dystrophy. Int. J. Mol. Sci. 2021, 22, 2692. [Google Scholar] [CrossRef]
- Zamponi, G.W.; Bourinet, E.; Nelson, D.; Nargeot, J.; Snutch, T.P. Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature 1997, 385, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Scheuer, T.; Catterall, W.A. Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J. Neurosci. 2000, 20, 6830. [Google Scholar] [CrossRef]
- Zhang, L.; Wen, Y.; Zhang, Q.; Chen, Y.; Wang, J.; Shi, K.; Du, L.; Bao, X. CACNA1A gene variants in eight Chinese patients with a wide range of phenotypes. Front. Pediatr. 2020, 8, 577544. [Google Scholar] [CrossRef]
- Kessi, M.; Chen, B.; Pang, N.; Yang, L.; Peng, J.; He, F.; Yin, F. The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: A small case series and literature reviews. Front. Mol. Neurosci. 2023, 16, 1222321. [Google Scholar] [CrossRef] [PubMed]
- Grieco, G.S.; Gagliardi, S.; Ricca, I.; Pansarasa, O.; Neri, M.; Gualandi, F.; Nappi, G.; Ferlini, A.; Cereda, C. New CACNA1A deletions are associated to migraine phenotypes. J. Headache Pain. 2018, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Li, Z.J.; Liang, X.Y.; Liu, D.T.; Jiang, M.; Di Gao, L.; Li, H.; Tang, X.Q.; Shi, Y.W.; Li, B.M.; et al. CACNA1A mutations associated with epilepsies and their molecular sub-regional implications. Front. Mol. Neurosci. 2022, 15, 860662. [Google Scholar] [CrossRef]
- Alehabib, E.; Kokotović, T.; Ranji-Burachaloo, S.; Tafakhori, A.; Ramshe, S.M.; Esmaeilizadeh, Z.; Darvish, H.; Movafagh, A.; Nagy, V. Leu226Trp CACNA1A variant associated with juvenile myoclonic epilepsy with and without intellectual disability. Clin. Neurol. Neurosurg. 2022, 213, 107108. [Google Scholar] [CrossRef]
- Arikkath, J.; Kevin, P. Campbell. Auxiliary subunits: Essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 2003, 13, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, A.C. Voltage-gated calcium channels and their auxiliary subunits: Physiology and pathophysiology and pharmacology. J. Physiol. 2016, 594, 5369–5390. [Google Scholar] [CrossRef] [PubMed]
- Alehabib, E.; Zahra, E.; Sakineh, R.-B.; Abbas, T.; Hossein, D.; Abolfazl, M. Clinical and molecular spectrum of P/Q type calcium channel Cav2.1 in epileptic patients. Orphanet J. Rare Dis. 2021, 16, 461. [Google Scholar] [CrossRef] [PubMed]
- Hommersom, M.P.; Teije, H.; van Prooije, T.H.; Pennings, M.; Schouten, M.I.; van Bokhoven, H.; Kamsteeg, E.J.; van de Warrenburg, B.P. The complexities of CACNA1A in clinical neurogenetics. J. Neurol. 2022, 269, 3094–3108. [Google Scholar] [CrossRef] [PubMed]
- Kabir, Z.D.; Martínez-Rivera, A.; Rajadhyaksha, A.M. From gene to behavior: L-type calcium channel mechanisms underlying neuropsychiatric symptoms. Neurotherapeutics 2017, 14, 588–613. [Google Scholar] [CrossRef] [PubMed]
- Pallone, T.L.; Sandeep, K.; Chunhua, C. Voltage-gated calcium channels: Structure and function (CACNA). In Encyclopedia of Signaling Molecules; Choi, S., Ed.; Springer: New York, NY, USA, 2012; pp. 1984–1992. [Google Scholar]
- Kessi, M.; Chen, B.; Peng, J.; Yan, F.; Yang, L.; Yin, F. Calcium channelopathies and intellectual disability: A systematic review. Orphanet J. Rare Dis. 2021, 16, 219. [Google Scholar] [CrossRef]
- Zhu, D.; Yin, J.; Liang, C.; Luo, X.; Lv, D.; Dai, Z.; Xiong, S.; Fu, J.; Li, Y.; Lin, J.; et al. CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: An updated meta-analysis. Brain Behav. 2019, 9, 01292. [Google Scholar] [CrossRef]
- Indelicato, E.; Boesch, S. CACNA1A-related channelopathies: Clinical manifestations and treatment options. Handb. Exp. Pharmacol. 2023, 279, 227–248. [Google Scholar]
- Groen, J.L.; Andrade, A.; Ritz, K.; Jalalzadeh, H.; Haagmans, M.; Bradley, T.E.; Jongejan, A.; Verbeek, D.; Nürnberg, P.; Denome, S.; et al. CACNA1B mutation is linked to unique myoclonus-dystonia syndrome. Hum. Mol. Genet. 2015, 24, 987–993. [Google Scholar] [CrossRef]
- Pinggera, A.; Striessnig, J. Cav 1.3 (CACNA1D) L-type Ca2+ channel dysfunction in CNS disorders. J. Physiol. 2016, 594, 5839–5849. [Google Scholar] [CrossRef]
- Villela, D.; Suemoto, C.K.; Pasqualucci, C.A.; Grinberg, L.T.; Rosenberg, C. Do copy number changes in CACNA2D2, CACNA2D3, and CACNA1D constitute a predisposing risk factor for Alzheimer’s disease? Front. Genet. 2016, 7, 107. [Google Scholar] [CrossRef]
- Helbig, K.L.; Lauerer, R.J.; Bahr, J.C.; Souza, I.A.; Myers, C.T.; Uysal, B.; Schwarz, N.; Gandini, M.A.; Huang, S.; Keren, B.; et al. De novo pathogenic variants in CACNA1E Cause developmental and epileptic encephalopathy with contractures, macrocephaly, and dyskinesias. Am. J. Hum. Genet. 2018, 103, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Gazulla, J. Gabapentin relieves vertigo of periodic vestibulocerebellar ataxia: 3 Cases and possible mechanism. Mov. Disord. 2021, 36, 1990. [Google Scholar] [CrossRef] [PubMed]
- Maksemous, N.; Blayney, C.D.; Sutherland, H.G.; Smith, R.A.; Lea, R.A.; Tran, K.N.; Ibrahim, O.; McArthur, J.R.; Haupt, L.M.; Cader, M.Z.; et al. Investigation of CACNA1I Cav3.3 Dysfunction in Hemiplegic Migraine. Front. Mol. Neurosci. 2022, 15, 892820. [Google Scholar] [CrossRef]
- Barresi, S.; Dentici, M.L.; Manzoni, F.; Bellacchio, E.; Agolini, E.; Pizzi, S.; Ciolfi, A.; Tarnopolsky, M.; Brady, L.; Garone, G.; et al. Infantile-onset syndromic cerebellar ataxia and CACNA1G mutations. Pediatr. Neurol. 2020, 104, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Dinh, H.A.; Stölting, G.; Scholl, U.I. CaV3.2 (CACNA1H) in primary aldosteronism. Handb. Exp. Pharmacol. 2023, 279, 249–262. [Google Scholar]
- Nanba, K.; Blinder, A.R.; Rege, J.; Hattangady, N.G.; Else, T.; Liu, C.J.; Tomlins, S.A.; Vats, P.; Kumar-Sinha, C.; Giordano, T.J.; et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension 2020, 75, 645–649. [Google Scholar] [CrossRef]
- Di Stefano, V.; Rispoli, M.G.; Pellegrino, N.; Graziosi, A.; Rotondo, E.; Napoli, C.; Pietrobon, D.; Brighina, F.; Parisi, P. Diagnostic and therapeutic aspects of hemiplegic migraine. J. Neurol. Neurosurg. Psychiatry 2020, 91, 764–771. [Google Scholar] [CrossRef]
- Beam, T.A.; Loudermilk, E.F.; Kisor, D.F. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia. Physiol. Genom. 2017, 49, 81–87. [Google Scholar] [CrossRef]
- Marinella, G.; Orsini, A.; Scacciati, M.; Costa, E.; Santangelo, A.; Astrea, G.; Frosini, S.; Pasquariello, R.; Rubegni, A.; Sgherri, G.; et al. Congenital myopathy as a phenotypic expression of CACNA1S gene mutation: Case report and systematic review of the literature. Genes 2023, 14, 1363. [Google Scholar] [CrossRef]
- Kung, A.W.; Lau, K.S.; Fong, G.C.; Chan, V. Association of novel single nucleotide polymorphisms in the calcium channel alpha 1 subunit gene (Ca(v)1.1) and thyrotoxic periodic paralysis. J. Clin. Endocrinol. Metab. 2004, 89, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.omim.org/entry/607904?search=607904&highlight=607904 (accessed on 2 February 2024).
- Available online: https://www.omim.org/clinicalSynopsis/table?mimNumber=617106,108500,141500,141500,183086 (accessed on 2 February 2024).
- Available online: https://www.omim.org/entry/601012 (accessed on 2 February 2024).
- Available online: https://omim.org/clinicalSynopsis/618497 (accessed on 2 February 2024).
- Available online: https://www.omim.org/entry/114205 (accessed on 10 February 2024).
- Available online: https://www.omim.org/clinicalSynopsis/table?mimNumber=611875,618447,620029,601005 (accessed on 10 February 2024).
- Available online: https://www.omim.org/entry/114206 (accessed on 16 February 2024).
- Available online: https://www.omim.org/clinicalSynopsis/table?mimNumber=615474,614896 (accessed on 16 February 2024).
- Available online: https://www.omim.org/entry/601013?search=CACNA1E&highlight=cacna1e (accessed on 4 February 2024).
- Available online: https://www.omim.org/entry/618285 (accessed on 4 February 2024).
- Available online: https://www.omim.org/clinicalSynopsis/table?mimNumber=616795,618087 (accessed on 20 February 2024).
- Available online: https://www.ncbi.nlm.nih.gov/gene/8911 (accessed on 4 February 2024).
- Available online: https://www.omim.org/entry/611942 (accessed on 4 February 2024).
- Available online: https://www.omim.org/entry/611942?search=cacna1h&highlight=cacna1h (accessed on 20 February 2024).
- Available online: https://www.omim.org/clinicalSynopsis/table?mimNumber=611942,611942,617027 (accessed on 20 February 2024).
- Kamal, N.; Khamirani, H.J.; Mohammadi, S.; Dastgheib, S.A.; Dianatpour, M.; Tabei, S.M.B. ZNF142 mutation causes neurodevelopmental disorder with speech impairment and seizures: Novel variants and literature review. Eur. J. Med. Genet. 2022, 65, 104522. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.omim.org/clinicalSynopsis/620114 (accessed on 20 February 2024).
- Available online: https://www.omim.org/entry/114208 (accessed on 18 February 2024).
- Available online: https://www.omim.org/clinicalSynopsis/table?mimNumber=601887,188580,620246,170400 (accessed on 18 February 2024).
- Amiri, P.; Kazeminasab, S.; Nejadghaderi, S.A.; Mohammadinasab, R.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.A.; Safiri, S. Migraine: A Review on Its History, Global Epidemiology, Risk Factors, and Comorbidities. Front. Neurol. 2022, 12, 800605. [Google Scholar] [CrossRef] [PubMed]
- Woldeamanuel, Y.W.; Cowan, R.P. Migraine affects 1 in 10 people worldwide featuring recent rise: A systematic review and meta-analysis of community-based studies involving 6 million participants. J. Neurol. Sci. 2017, 372, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.F.; Tumminello, A.; Marconi, M.; Gualano, M.R.; Santoro, P.E.; Malorni, W.; Moscato, U. Sex and gender differences in migraines: A narrative review. Neurol. Sci. 2022, 9, 5729–5734. [Google Scholar] [CrossRef] [PubMed]
- Buse, D.C.; Manack, A.; Serrano, D.; Turkel, C.; Lipton, R.B. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J. Neurol. Neurosurg. Psychiatry 2010, 81, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2018, 38, 629–808. [Google Scholar]
- Dodick, D.W. Migraine. Lancet 2018, 391, 1315–1330. [Google Scholar] [CrossRef]
- felt-Hansen, P.C. History of migraine with aura and cortical spreading depression from 1941 and onwards. Cephalalgia 2010, 30, 780–792. [Google Scholar] [CrossRef]
- Kowalska, M.; Prendecki, M.; Piekut, T.; Kozubski, W.; Dorszewska, J. Migraine: Calcium channels and glia. Int. J. Mol. Sci. 2021, 22, 2688. [Google Scholar] [CrossRef]
- Charles, A.; Brennan, K. Cortical spreading depression-new insights and persistent questions. Cephalalgia 2009, 29, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Tottene, A.; Zarin Zadeh, M.; Brennan, K.C.; Pietrobon, D. Mechanisms of initiation of cortical spreading depression. J. Headache Pain 2023, 24, 105. [Google Scholar] [CrossRef] [PubMed]
- Tottene, A.; Urbani, A.; Pietrobon, D. Role of different voltage-gated Ca2+ channels in cortical spreading depression: Specific requirement of P/Q-type Ca2+ channels. Channels 2011, 14, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Burstein, R.; Noseda, R.; Borsook, D. Migraine: Multiple processes, complex pathophysiology. J. Neurosci. 2015, 35, 6619–6629. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, H.; Speckmann, E.J.; Gorji, A. Familial hemiplegic migraine and spreading depression. Iran. J. Child Neurol. 2014, 8, 6–11. [Google Scholar] [PubMed]
- Ducros, A.; Denier, C.; Joutel, A.; Cecillon, M.; Lescoat, C.; Vahedi, K.; Darcel, F.; Vicaut, E.; Bousser, M.G.; Tournier-Lasserve, E. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N. Engl. J. Med. 2001, 345, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Pietrobon, D. Familial hemiplegic migraine. Neurotherapeutics 2007, 4, 274–284. [Google Scholar] [CrossRef]
- Tottene, A.; Conti, R.; Fabbro, A.; Vecchia, D.; Shapovalova, M.; Santello, M.; van den Maagdenberg, A.M.; Ferrari, M.D.; Pietrobon, D. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 2009, 61, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Weyrer, C.; Turecek, J.; Niday, Z.; Liu, P.W.; Nanou, E.; Catterall, W.A.; Bean, B.P.; Regehr, W.G. The Role of CaV2.1 Channel Facilitation in Synaptic Facilitation. Cell Rep. 2019, 26, 2289–2297. [Google Scholar] [CrossRef]
- van den Maagdenberg, A.M.; Pizzorusso, T.; Kaja, S.; Terpolilli, N.; Shapovalova, M.; Hoebeek, F.E.; Barrett, C.F.; Gherardini, L.; van de Ven, R.C.; Todorov, B.; et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann. Neurol. 2010, 67, 85–98. [Google Scholar] [CrossRef]
- Grangeon, L.; Lange, K.S.; Waliszewska-Prosół, M.; Onan, D.; Marschollek, K.; Wiels, W.; Mikulenka, P.; Farham, F.; Gollion, C.; Ducros, A.; et al. Genetics of migraine: Where are we now? J. Headache Pain 2023, 24, 12. [Google Scholar] [CrossRef]
- Ducros, A.; Denier, C.; Joutel, A.; Vahedi, K.; Michel, A.; Darcel, F.; Madigand, M.; Guerouaou, D.; Tison, F.; Julien, J.; et al. Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am. J. Hum. Genet. 1999, 64, 89–98. [Google Scholar] [CrossRef]
- Melliti, K.; Grabner, M.; Seabrook, G.R. The familial hemiplegic migraine mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (Ca(V)2.1) calcium channels expressed in human embryonic kidney cells. J. Physiol. 2003, 546, 337–347. [Google Scholar] [CrossRef]
- Kors, E.E.; Terwindt, G.M.; Vermeulen, F.L.; Fitzsimons, R.B.; Jardine, P.E.; Heywood, P.; Love, S.; van den Maagdenberg, A.M.; Haan, J.; Frants, R.R.; et al. Delayed cerebral edema and fatal coma after minor head trauma: Role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann. Neurol. 2001, 49, 753–760. [Google Scholar] [CrossRef]
- Maksemous, N.; Harder, A.V.E.; Ibrahim, O.; Vijfhuizen, L.S.; Sutherland, H.; Pelzer, N.; de Boer, I.; Terwindt, G.M.; Lea, R.A.; van den Maagdenberg, A.M.J.M.; et al. Whole exome sequencing of hemiplegic migraine patients shows an increased burden of missense variants in CACNA1H and CACNA1I genes. Mol. Neurobiol. 2023, 60, 3034–3043. [Google Scholar] [CrossRef]
- Rasmussen, A.H.; Kogelman, L.J.A.; Kristensen, D.M.; Chalmer, M.A.; Olesen, J.; Hansen, T.F. Functional gene networks reveal distinct mechanisms segregating in migraine families. Brain J. Neurol. 2020, 143, 2945–2956. [Google Scholar] [CrossRef]
- Ambrosini, A.; D’Onofrio, M.; Buzzi, M.G.; Arisi, I.; Grieco, G.S.; Pierelli, F.; Santorelli, F.M.; Schoenen, J. Possible involvement of the CACNA1E gene in migraine: A search for single nucleotide polymorphism in different clinical phenotypes. Headache 2017, 57, 1136–1144. [Google Scholar] [CrossRef]
- Kürtüncü, M.; Kaya, D.; Zuliani, L.; Erdağ, E.; Içöz, S.; Uğurel, E.; Cavuş, F.; Ayşit, N.; Birişik, O.; Vincent, A.; et al. CACNA1H antibodies associated with headache with neurological deficits and cerebrospinal fluid lymphocytosis (HaNDL). Cephalalgia 2013, 33, 123–129. [Google Scholar] [CrossRef]
- Fisher, R.S.; van Emde Boas, W.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2016: A Systematic analysis for the global burden of disease study 2016. Lancet Neurol 2019, 18, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Akamatsu, N.; Shouzaki, T.; Toyota, T.; Yamano, M.; Nakagawa, M.; Tsuji, S. Clinical characteristics and treatment responses in new-onset epilepsy in the elderly. Seizure 2013, 22, 772–775. [Google Scholar] [CrossRef]
- Cloyd, J.; Hauser, W.; Towne, A.; Ramsay, R.; Mattson, R.; Gilliam, F.; Walczak, T. Epidemiological and medical aspects of epilepsy in the elderly. Epilepsy Res. 2006, 68 (Suppl. 1), S39–S48. [Google Scholar] [CrossRef]
- Aaberg, K.M.; Surén, P.; Søraas, C.L.; Bakken, I.J.; Lossius, M.I.; Stoltenberg, C.; Chin, R. Seizures, syndromes, and etiologies in childhood epilepsy: The International League Against Epilepsy 1981, 1989, and 2017 Classifications used in a population-based cohort. Epilepsia 2017, 58, 1880–1891. [Google Scholar] [CrossRef]
- Bosak, M.; Słowik, A.; Kacorzyk, R.; Turaj, W. Implementation of the new ILAE Classification of epilepsies into clinical practice—A cohort study. Epilepsy Behav. 2019, 96, 28–32. [Google Scholar] [CrossRef]
- Liu, S.; Yu, W.; Lü, Y. The causes of new-onset epilepsy and seizures in the elderly. Neuropsychiatr. Dis. Treat. 2016, 12, 1425–1434. [Google Scholar] [CrossRef]
- Jouvenceau, A.; Eunson, L.H.; Spauschus, A.; Ramesh, V.; Zuberi, S.M.; Kullmann, D.M.; Hanna, M.G. Human epilepsy associated with dysfunction of the brain P/Q-Type calcium channel. Lancet 2001, 358, 801–807. [Google Scholar] [CrossRef]
- Lipman, A.R.; Fan, X.; Shen, Y.; Chung, W.K. Clinical and genetic characterization of CACNA1A-related disease. Clin. Genet. 2022, 102, 288–295. [Google Scholar] [CrossRef]
- Rajakulendran, S.; Graves, T.D.; Labrum, R.W.; Kotzadimitriou, D.; Eunson, L.; Davis, M.B.; Davies, R.; Wood, N.W.; Kullmann, D.M.; Hanna, M.G.; et al. Genetic and functional characterization of the P/Q calcium channel in episodic ataxia with epilepsy. J. Physiol. 2010, 588, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Epi4K Consortium. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am. J. Hum. Genet. 2016, 99, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Yang, Y.; Chen, Y.; Cheng, M.; Liu, M.; Ding, C.; Tian, X.; Yang, Z.; Jiang, Y.; Zhang, Y. Genotype-phenotype correlation of CACNA1A variants in children with epilepsy. Dev. Med. Child Neurol. 2022, 64, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Bomben, V.C.; Aiba, I.; Qian, J.; Mark, M.D.; Herlitze, S.; Noebels, J.L. Isolated P/Q calcium channel deletion in layer VI corticothalamic neurons generates absence epilepsy. J. Neurosci. 2016, 36, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Mark, M.D.; Maejima, T.; Kuckelsberg, D.; Yoo, J.W.; Hyde, R.A.; Shah, V.; Gutierrez, D.; Moreno, R.L.; Kruse, W.; Noebels, J.L.; et al. Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J. Neurosci. 2011, 31, 4311–4326. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sharma, D. Ameliorative effect of curcumin on altered expression of CACNA1A and GABRD in the pathogenesis of FeCl3-induced epilepsy. Mol. Biol. Rep. 2020, 47, 5699–5710. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wang, Z.; Liu, C.; Cui, L. Identification of a novel CACNA1A mutation in a chinese family with autosomal recessive progressive myoclonic epilepsy. Neuropsychiatr. Dis. Treat. 2017, 13, 2631–2636. [Google Scholar] [CrossRef] [PubMed]
- Wong-Spracklen, V.M.Y.; Kolesnik, A.; Eck, J.; Sabanathan, S.; Spasic-Boskovic, O.; Maw, A.; Baker, K. Biallelic CACNA1A variants: Review of literature and report of a child with drug-resistant epilepsy and developmental delay. Am. J. Med. Genet. A 2022, 188, 3306–3311. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, M.; Barth, M.; Gueden, S.; Desbordes de Cepoy, P.; Aeby, A.; Vilain, C.; Hirsch, E.; de Saint Martin, A.; des Portes, V.; Lesca, G.; et al. CACNA1A-associated epilepsy: Electroclinical findings and treatment response on seizures in 18 patients. Eur. J. Paediatr. Neurol. 2021, 33, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Mayo, S.; Gómez-Manjón, I.; Marco-Hernández, A.V.; Fernández-Martínez, F.J.; Camacho, A.; Martínez, F. N-type Ca channel in epileptic syndromes and epilepsy: A systematic review of its genetic variants. Int. J. Mol. Sci. 2023, 24, 6100. [Google Scholar] [CrossRef] [PubMed]
- Ernst, W.L.; Zhang, Y.; Yoo, J.W.; Ernst, S.J.; Noebels, J.L. Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J. Neurosci. 2009, 29, 1615–1625. [Google Scholar] [CrossRef]
- Singh, B.; Monteil, A.; Bidaud, I.; Sugimoto, Y.; Suzuki, T.; Hamano, S.; Oguni, H.; Osawa, M.; Alonso, M.E.; Delgado-Escueta, A.V.; et al. Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Mutation in Brief #962. Online. Hum. Mutat. 2007, 28, 524–525. [Google Scholar]
- Heron, S.E.; Khosravani, H.; Varela, D.; Bladen, C.; Williams, T.C.; Newman, M.R.; Scheffer, I.E.; Berkovic, S.F.; Mulley, J.C.; Zamponi, G.W. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann. Neurol. 2007, 62, 560–568. [Google Scholar] [CrossRef]
- Cárdenas-Rodríguez. N.; Carmona-Aparicio, L.; Pérez-Lozano, D.L.; Ortega-Cuellar, D.; Gómez-Manzo, S.; Ignacio-Mejía, I. Genetic variations associated with pharmacoresistant epilepsy (Review). Mol. Med. Rep. 2020, 21, 1685–1701. [Google Scholar]
- Calhoun, J.D.; Huffman, A.M.; Bellinski, I.; Kinsley, L.; Bachman, E.; Gerard, E.; Kearney, J.A.; Carvill, G.L. CACNA1H variants are not a cause of monogenic epilepsy. Hum. Mutat. 2020, 41, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Coutelier, M.; Hammer, M.B.; Stevanin, G.; Monin, M.L.; Davoine, C.S.; Mochel, F.; Labauge, P.; Ewenczyk, C.; Ding, J.; Gibbs, J.R.; et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018, 75, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Indelicato, E.; Boesch, S. From genotype to phenotype: Expanding the clinical spectrum of CACNA1A variants in the era of next generation sequencing. Front. Neurol. 2021, 12, 639994. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A. Episodic ataxias: Primary and secondary etiologies, treatment, and classification approaches. Tremor. Other. Hyperkinet. Mov. 2023, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Jen, J.C.; Graves, T.D.; Hess, E.J.; Hanna, M.G.; Griggs, R.C.; Baloh, R.W.; CINCH investigators. Primary episodic ataxias: Diagnosis, pathogenesis and treatment. Brain 2007, 130, 2484–2493. [Google Scholar] [CrossRef] [PubMed]
- Ophoff, R.A.; Terwindt, G.M.; Vergouwe, M.N.; van Eijk, R.; Oefner, P.J.; Hoffman, S.M.; Lamerdin, J.E.; Mohrenweiser, H.W.; Bulman, D.E.; Ferrari, M.; et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Serra, M.; Fernández-Fernández, J.M.; Serrano, M. Rare CACNA1A mutations leading to congenital ataxia. Pflug. Arch. 2020, 472, 791–809. [Google Scholar] [CrossRef] [PubMed]
- Rentiya, Z.; Hutnik, R.; Mekkam, Y.Q.; Bae, J. The pathophysiology and clinical manifestations of spinocerebellar ataxia type 6. Cerebellum 2020, 19, 459–464. [Google Scholar] [CrossRef]
- Solodkin, A.; Gomez, C.M. Spinocerebellar ataxia type 6. Handb. Clin. Neurol. 2012, 103, 461–473. [Google Scholar]
- Zhuchenko, O.; Bailey, J.; Bonnen, P.; Ashizawa, T.; Stockton, D.W.; Amos, C.; Dobyns, W.B.; Subramony, S.H.; Zoghbi, H.Y.; Lee, C.C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat. Genet. 1997, 15, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Morino, H.; Matsuda, Y.; Muguruma, K.; Miyamoto, R.; Ohsawa, R.; Ohtake, T.; Otobe, R.; Watanabe, M.; Maruyama, H.; Hashimoto, K.; et al. A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol. Brain 2015, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Gazulla, J.; Izquierdo-Alvarez, S.; Ruiz-Fernández, E.; Lázaro-Romero, A.; Berciano, J. Episodic vestibulocerebellar ataxia associated with a CACNA1G missense variant. Case Rep. Neurol. 2021, 13, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Ibdali, M.; Hadjivassiliou, M.; Grünewald, R.A.; Shanmugarajah, P.D. Cerebellar degeneration in epilepsy: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 473. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ninds.nih.gov/health-information/disorders/cerebellar-degeneration (accessed on 17 February 2024).
- Tzvi, E.; Zimmermann, C.; Bey, R.; Münte, T.F.; Nitschke, M.; Krämer, U.M. Cerebellar degeneration affects cortico-cortical connectivity in motor learning networks. Neuroimage Clin. 2017, 16, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://rarediseases.org/rare-diseases/cerebellar-degeneration-subacute (accessed on 17 February 2024).
- Gandini, M.A.; Souza, I.A.; Khullar, A.; Gambeta, E.; Zamponi, G.W. Regulation of CaV3.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers. Arch. 2022, 474, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Gandini, M.A.; Souza, I.A.; Ferron, L.; Innes, A.M.; Zamponi, G.W. The de novo CACNA1A pathogenic variant Y1384C associated with hemiplegic migraine, early onset cerebellar atrophy and developmental delay leads to a loss of Cav2. 1 channel function. Mol. Brain 2021, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Pohl, K.; Malik, M.; Siddiqui, A.; Josifova, D. Early-Onset Cerebellar Atrophy Associated with Mutation in the CACNA1A Gene. Pediatr. Neurol. 2011, 45, 328–330. [Google Scholar] [CrossRef]
- Fuerte-Hortigón, A.; Pérez-Noguera, R.; Dotor García-Soto, J.; Royo Boronat, I.; Álvarez de Andrés, S.; García-Moreno, J.M. Novel CACNA1A variant may cause cervical dystonia and cerebellar ataxia syndrome. J. Neurol. Sci. 2020, 415, 116909. [Google Scholar] [CrossRef]
- Stampfl, B.; Fee, D. Novel mutation in CACNA1A associated with activity-induced dystonia, cervical dystonia, and mild ataxia. Case Rep. Neurol. Med. 2021, 2021, 7797770. [Google Scholar] [CrossRef]
- Sintas, C.; Carreño, O.; Fernàndez-Castillo, N.; Corominas, R.; Vila-Pueyo, M.; Toma, C.; Cuenca-León, E.; Barroeta, I.; Roig, C.; Volpini, V.; et al. Mutation Spectrum in the CACNA1A Gene in 49 Patients with Episodic Ataxia. Sci. Rep. 2017, 1, 2514. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymanowicz, O.; Drużdż, A.; Słowikowski, B.; Pawlak, S.; Potocka, E.; Goutor, U.; Konieczny, M.; Ciastoń, M.; Lewandowska, A.; Jagodziński, P.P.; et al. A Review of the CACNA Gene Family: Its Role in Neurological Disorders. Diseases 2024, 12, 90. https://doi.org/10.3390/diseases12050090
Szymanowicz O, Drużdż A, Słowikowski B, Pawlak S, Potocka E, Goutor U, Konieczny M, Ciastoń M, Lewandowska A, Jagodziński PP, et al. A Review of the CACNA Gene Family: Its Role in Neurological Disorders. Diseases. 2024; 12(5):90. https://doi.org/10.3390/diseases12050090
Chicago/Turabian StyleSzymanowicz, Oliwia, Artur Drużdż, Bartosz Słowikowski, Sandra Pawlak, Ewelina Potocka, Ulyana Goutor, Mateusz Konieczny, Małgorzata Ciastoń, Aleksandra Lewandowska, Paweł P. Jagodziński, and et al. 2024. "A Review of the CACNA Gene Family: Its Role in Neurological Disorders" Diseases 12, no. 5: 90. https://doi.org/10.3390/diseases12050090
APA StyleSzymanowicz, O., Drużdż, A., Słowikowski, B., Pawlak, S., Potocka, E., Goutor, U., Konieczny, M., Ciastoń, M., Lewandowska, A., Jagodziński, P. P., Kozubski, W., & Dorszewska, J. (2024). A Review of the CACNA Gene Family: Its Role in Neurological Disorders. Diseases, 12(5), 90. https://doi.org/10.3390/diseases12050090