John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis
Abstract
:1. Introduction
2. Biology and Pathobiology of JCPyV and PML
2.1. Biochemical Characteristics of JCPyV
2.2. Life Cycle and Presence of JCPyV
2.3. Neuropathobiology of PML
3. Epidemiology of JCPyV and PML
4. Diagnosis of PML
4.1. Clinical Manifestations of PML
4.2. Imaging Features of PML
4.3. Laboratory Data of PML/JCPyV
4.3.1. Blood and CSF Biomarkers
4.3.2. Molecular Diagnosis of JCPyV Nucleic Acid
4.3.3. Molecular Diagnosis of JCPyV Antigens and Anti-JCPyV Antibodies
5. The Expert Opinion—Demystifying JCPyV and PML
Funding
Conflicts of Interest
References
- Astrom, K.E.; Mancall, E.L.; Richardson, E.P. Progressive multifocal leuko-encephalopathy; a hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin’s disease. Brain J. Neurol. 1958, 81, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Padgett, B.L.; Walker, D.L.; ZuRhein, G.M.; Eckroade, R.J.; Dessel, B.H. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1971, 1, 1257–1260. [Google Scholar]
- Steiner, I.; Berger, J.R. Update on progressive multifocal leukoencephalopathy. Curr. Neurol. Neurosci. Rep. 2012, 12, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.B. 12—Progressive multifocal leukoencephalopathy. In Neuroradiology; Small, J.E., Noujaim, D.L., Ginat, D.T., Kelly, H.R., Schaefer, P.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–108. [Google Scholar] [CrossRef]
- Snopková, S.; Štourač, P.; Fašaneková, L.; Mihalčin, M.; Havlíčková, K.; Svačinka, R.; Volfová, P.; Snopek, P.; Husa, P. Progressive multifocal leukoencephalopathy—Epidemiology, immune response, clinical differences, treatment. Epidemiol. Mikrobiol. Imunol. 2019, 68, 24–31. [Google Scholar] [PubMed]
- Bartsch, T.; Rempe, T.; Leypoldt, F.; Riedel, C.; Jansen, O.; Berg, D.; Deuschl, G. The Spectrum of Progressive Multifocal Leukoencephalopathy: A Practical Approach. Eur. J. Neurol. 2019, 26, 566-e41. [Google Scholar] [CrossRef] [PubMed]
- Mouliou, D.S. The Deceptive COVID-19: Lessons from Common Molecular Diagnostics and a Novel Plan for the Prevention of the Next Pandemic. Diseases 2023, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Bag, A.K.; Curé, J.K.; Chapman, P.R.; Roberson, G.H.; Shah, R. JC virus infection of the brain. Am. J. Neuroradiol. 2010, 31, 1564–1576. [Google Scholar] [CrossRef]
- Berger, J.R.; Aksamit, A.J.; Clifford, D.B.; Davis, L.; Koralnik, I.J.; Sejvar, J.J.; Bartt, R.; Major, E.O.; Nath, A. PML diagnostic criteria: Consensus statement from the AAN Neuroinfectious Disease Section. Neurology 2013, 80, 1430–1438. [Google Scholar] [CrossRef]
- Cortese, I.; Reich, D.S.; Nath, A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat. Rev. Neurol. 2021, 17, 37–51. [Google Scholar] [CrossRef]
- Lanza Cariccio, V.; Bramanti, P.; Mazzon, E. Biomarkers identification for PML monitoring, during Natalizumab (Tysabri®) treatment in relapsing-remitting Multiple Sclerosis. Mult. Scler. Relat. Disord. 2018, 20, 93–99. [Google Scholar] [CrossRef]
- Swinnen, B.; Saegeman, V.; Beuselinck, K.; Wouters, A.; Cypers, G.; Meyfroidt, G.; Schrooten, M. Predictive value of JC virus PCR in cerebrospinal fluid in the diagnosis of PML. Diagn. Microbiol. Infect. Dis. 2019, 95, 114859. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.L.; Eid, T.; Bannykh, S.; Major, E. False negative PCR despite high levels of JC virus DNA in spinal fluid: Implications for diagnostic testing. J. Clin. Virol. 2008, 43, 247–249. [Google Scholar] [CrossRef]
- Shishido-Hara, Y. Progressive Multifocal Leukoencephalopathy (PML). In Encyclopedia of the Neurological Sciences, 2nd ed.; Aminoff, M.J., Daroff, R.B., Eds.; Academic Press: Oxford, UK, 2014; pp. 982–986. ISBN 9780123851581. [Google Scholar]
- Ahye, N.; Bellizzi, A.; May, D.; Wollebo, H.S. The role of the JC virus in central nervous system tumorigenesis. Int. J. Mol. Sci. 2020, 21, 6236. [Google Scholar] [CrossRef]
- Zheng, H.; Xue, H.; Zhang, C. The Oncogenic Roles of JC Polyomavirus in Cancer. Front. Oncol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Bofill-Mas, S.; Clemente-Casares, P.; Major, E.O.; Curfman, B.; Girones, R. Analysis of the excreted JC virus strains and their potential oral transmission. J. Neurovirol. 2003, 9, 498–507. [Google Scholar] [CrossRef]
- Shackelton, L.A.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. JC virus evolution and its association with human populations. J. Virol. 2006, 80, 9928–9933. [Google Scholar] [CrossRef] [PubMed]
- Wooding, S. Do Human and JC Virus Genes Show Evidence of Host–Parasite Codemography? Infect. Genet. Evol. 2001, 1, 3–12. [Google Scholar] [CrossRef]
- Zhai, S.; Brew, B.J. Chapter 10—Progressive Multifocal Leukoencephalopathy. In Handbook of Clinical Neurology; Brew, B.J., Ed.; The Neurology of HIV Infection; Elsevier: Amsterdam, The Netherlands, 2018; Volume 152, pp. 123–137. [Google Scholar]
- Frisque, R.J. JC and BK Viruses (Papovaviridae). In Encyclopedia of Virology, 2nd ed.; Granoff, A., Webster, R.G., Eds.; Elsevier: Oxford, UK, 1999; pp. 876–883. ISBN 9780122270307. [Google Scholar]
- Maginnis, M.S. Human Polyomaviruses (Papillomaviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Oxford, UK, 2021; pp. 518–527. ISBN 9780128145166. [Google Scholar]
- Humans, I.W.G. On the E. of C.R. to JC polyomavirus. In Malaria and Some Polyomaviruses (SV40, BK, JC, and Merkel Cell Viruses); International Agency for Research on Cancer: Lyon, France, 2013. [Google Scholar]
- Ferenczy, M.W.; Marshall, L.J.; Nelson, C.D.S.; Atwood, W.J.; Nath, A.; Khalili, K.; Major, E.O. Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy, the JC Virus-Induced Demyelinating Disease of the Human Brain. Clin. Microbiol. Rev. 2012, 25, 471–506. [Google Scholar] [CrossRef]
- Sunyaev, S.R.; Lugovskoy, A.; Simon, K.; Gorelik, L. Adaptive Mutations in the JC Virus Protein Capsid Are Associated with Progressive Multifocal Leukoencephalopathy (PML). PLoS Genet. 2009, 5, e1000368. [Google Scholar] [CrossRef] [PubMed]
- Morris-Love, J.; Gee, G.V.; O’Hara, B.A.; Assetta, B.; Atkinson, A.L.; Dugan, A.S.; Haley, S.A.; Atwood, W.J. JC Polyomavirus Uses Extracellular Vesicles to Infect Target Cells. mBio 2019, 10, e00379-19. [Google Scholar] [CrossRef]
- Morris-Love, J.; O’Hara, B.A.; Gee, G.V.; Dugan, A.S.; O’Rourke, R.S.; Armstead, B.E.; Assetta, B.; Haley, S.A.; Atwood, W.J. Biogenesis of JC Polyomavirus Associated Extracellular Vesicles. J. Extracell. Biol. 2022, 1, e43. [Google Scholar] [CrossRef]
- Sugimoto, C.; Kitamura, T.; Guo, J.; Al-Ahdal, M.N.; Shchelkunov, S.N.; Otova, B.; Ondrejka, P.; Chollet, J.-Y.; El-Safi, S.; Ettayebi, M.; et al. Typing of Urinary JC Virus DNA Offers a Novel Means of Tracing Human Migrations. Proc. Natl. Acad. Sci. USA 1997, 94, 9191–9196. [Google Scholar] [CrossRef]
- Richardson, E.P. Progressive Multifocal Leukoencephalopathy. N. Engl. J. Med. 1961, 265, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.B.; Greenbaum, D.; Marshall, A.H.E.; Rubinstein, L.J. Cerebral Demyelination Associated with Disorders of the Reticuloendothelial System. Lancet 1959, 274, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Shishido-Hara, Y.; Yazawa, T.; Nagane, M.; Higuchi, K.; Abe-Suzuki, S.; Kurata, M.; Kitagawa, M.; Kamma, H.; Uchihara, T. JC Virus Inclusions in Progressive Multifocal Leukoencephalopathy: Scaffolding Promyelocytic Leukemia Nuclear Bodies Grow with Cell Cycle Transition through an S-to-G2-like State in Enlarging Oligodendrocyte Nuclei. J. Neuropathol. Exp. Neurol. 2014, 73, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, M.; Zingaropoli, M.A.; D’Abramo, A.; Oliva, A.; Mastroianni, C.M.; Vullo, V.; Ciardi, M.R. HIV-Associated Progressive Multifocal Leukoencephalopathy: Current Perspectives. Neurobehav. HIV Med. 2016, 7, 43–52. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Suzuki, K.; Fujita, H.; Uzuka, T.; Matsuda, H.; Shishido-Hara, Y.; Arai, S.; Nakamura, T.; Kikuchi, S.; Nakamichi, K.; et al. Successful Treatment of Non-HIV Progressive Multifocal Leukoencephalopathy: Case Report and Literature Review. J. Neurol. 2020, 267, 731–738. [Google Scholar] [CrossRef]
- Ono, D.; Shishido-Hara, Y.; Mizutani, S.; Mori, Y.; Ichinose, K.; Watanabe, M.; Tanizawa, T.; Yokota, T.; Uchihara, T.; Fujigasaki, H. Development of Demyelinating Lesions in Progressive Multifocal Leukoencephalopathy (Pml): Comparison of Magnetic Resonance Images and Neuropathology of Post-mortem Brain. Neuropathology 2019, 39, 294–306. [Google Scholar] [CrossRef]
- Khoury, M.N.; Mittleman, M.A.; Koralnik, I.J. ABO Blood Groups and Risk for Progressive Multifocal Leukoencephalopathy. JAMA Neurol. 2013, 70, 1331–1332. [Google Scholar] [CrossRef]
- Wortman, M.J.; Krachmarov, C.P.; Kim, J.H.; Gordon, R.G.; Chepenik, L.G.; Brady, J.N.; Gallia, J.L.; Khalili, K.; Johnson, E.M. Interaction of HIV-1 Tat with Puralpha in nuclei of human glial cells: Characterization of RNA-mediated protein-protein binding. J. Cell. Biochem. 2000, 77, 65–74. [Google Scholar] [CrossRef]
- Post, M.J.; Thurnher, M.M.; Clifford, D.B.; Nath, A.; Gonzalez, R.G.; Gupta, R.K.; Post, K.K. CNS-immune reconstitution inflammatory syndrome in the setting of HIV infection, part 1: Overview and discussion of progressive multifocal leukoencephalopathy-immune reconstitution inflammatory syndrome and cryptococcal-immune reconstitution inflammatory syndrome. AJNR Am. J. Neuroradiol. 2013, 34, 1297–1307. [Google Scholar]
- Ortiz, J.; Paniagua, J.C.; Cavaco, I.; Rivas, R.; Jimenez, A.; Chinchilla, L.; Muñoz, E.; Ludeña, M.D. Pontocerebellar Progressive Multifocal Leukoencephalopathy. Radiological, Clinical, Histological and Immunohistochemical Findings in a Hematological Patient. Open J. Pathol. 2023, 13, 177–183. [Google Scholar] [CrossRef]
- Çetintepe, T.; Gediz, F.; Akyar, I.; Çetintepe, L.; Koç, A.M. Progressive Multifocal Leukoencephalopathy Among Ibrutinib Treatment In Chronic Lymphocytic Leukemia. J. Oncol. Pharm. Pract. 2022, 28, 1249–1253. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Banda, R.W.; Daabil, R.A.; Dawamneh, M.F. Progressive Multifocal Leukoencephalopathy (PML) in a Patient with Lymphoma Treated with Rituximab: A Case Report and Literature Review. J. Infect. Public Health 2015, 8, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.S.; Koralnik, I.J. Beyond Progressive Multifocal Leukoencephalopathy: Expanded Pathogenesis of JC Virus Infection in the Central Nervous System. Lancet Neurol. 2010, 9, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Gheuens, S.; Wüthrich, C.; Koralnik, I.J. Progressive Multifocal Leukoencephalopathy: Why Gray and White Matter. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 189–215. [Google Scholar] [CrossRef] [PubMed]
- Bozic, C.; Subramanyam, M.; Richman, S.; Plavina, T.; Zhang, A.; Ticho, B. Anti- JC Virus (JCV) Antibody Prevalence in the JCV Epidemiology in MS (JEMS) Trial. Eur. J. Neurol. 2014, 21, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Hanaei, S.; Sahraian, M.A.; Mohammadifar, M.; Ramagopalan, S.V.; Ghajarzadeh, M.; Ghajarzadeh, M. Prevalence of Anti-JC Virus Antibody Seropositivity in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Intervirology 2020, 62, 169–173. [Google Scholar] [CrossRef]
- Vilibic-Cavlek, T.; Bogdanic, M.; Peric, T.; Radmanic, L.; Antolasic, L.; Milasincic, L.; Zidovec-Lepej, S. Prevalence of JC Polyomavirus in Patients with Neuroinvasive Disease of Unknown Etiology in Croatia. Medicina 2024, 60, 69. [Google Scholar] [CrossRef]
- Makvandi, M.; Mombeini, H.; Haghighi, S.B.; Dastoorpoor, M.; Khodadad, N.; Babaahmadi, M.K.; Tabasi, M.; Pirmoradi, R. Molecular Epidemiology of JC Polyomavirus in HIV-Infected Patients and Healthy Individuals from Iran. Braz. J. Microbiol. 2019, 51, 37–43. [Google Scholar] [CrossRef]
- Prado, J.C.M.; Monezi, T.A.; Amorim, A.T.; Lino, V.; Paladino, A.; Boccardo, E. Human Polyomaviruses and Cancer: An Overview. Clinics 2018, 73, e558s. [Google Scholar] [CrossRef] [PubMed]
- Joly, M.; Conte, C.; Cazanave, C.; Le Moing, V.; Tattevin, P.; Delobel, P.; Sommet, A.; Martin-Blondel, G. Progressive multifocal leukoencephalopathy: Epidemiology and spectrum of predisposing conditions. Brain 2023, 146, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Mayr, P.; Lutz, M.; Hoeppner, J.; Liesche-Starnecker, F.; Schlegel, J.; Gaedcke, J.; Claus, R. Progressive Multifocal Leukoencephalopathy Associated with Chemotherapy Induced Lymphocytopenia in Solid Tumors—Case Report of an Underestimated Complication. Front. Oncol. 2022, 12, 905103. [Google Scholar] [CrossRef] [PubMed]
- Baena-Álvarez, B.; Rodríguez-Jorge, F.; Beltrán-Corbellini, Á.; Cortés-Salgado, A.; De la Puente, C.; Corral, Í. Progressive Multifocal Leukoencephalopathy, Advanced Ductal Breast Carcinoma, Systemic Sclerosis, and Checkpoint Inhibitors: A Therapeutic Dilemma. J. Neurovirol. 2023, 29, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulos, P.T.; Kalopisis, K.; Tsatsou, A.; Efthymiou, A.; Giannakopoulou, N.; Hatzidavid, S.; Viniou, N. Progressive Multifocal Leukoencephalopathy in the Context of Newer Therapies in Hematology and Review of New Treatment Strategies. Eur. J. Haematol. 2022, 108, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Ragonese, P.; Banco, M.A.; Realmuto, S.; Vazzoler, G.; Portera, E.; La Tona, G.; Salemi, G. Four Cases of Progressive Multifocal Leukoencephalopathy in Iatrogenic Immunocompromised Patients. eNeurologicalSci 2020, 19, 100243. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Kodama, D.; Yamadera, M.; Sugiyama, Y.; Tsuji, H.; Nishida, F.; Ooka, Y.; Nakamichi, K.; Hashikawa, K.; Yanagihara, T. Progressive multifocal leukoencephalopathy in a patient with rheumatoid arthritis under salazosulfapyridine treatment. Rinsho Shinkeigaku 2021, 61, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, M.; Watanabe, S.; Nishiyama, Y.; Takahashi, K.; Nakamichi, K.; Suzuki, M.; Nawata, T.; Komai, K.; Gono, T.; Takeno, M.; et al. Infratentorial Onset of Progressive Multifocal Leukoencephalopathy in a Patient with Systematic Lupus Erythematosus Complicated with Lymphoma: A Case Report. Mod. Rheumatol. Case Rep. 2021, 5, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, T.; Mahadeshwar, P.; Hui-Yuen, J.; Quinnies, K.; Tatonetti, N.; Gartshteyn, Y.; Guo, C.; Geraldino-Pardilla, L.; Askanase, A.D. Prevalence of Progressive Multifocal Leukoencephalopathy (PML) in Adults and Children with Systemic Lupus Erythematosus. Lupus Sci. Med. 2020, 7, e000388. [Google Scholar] [CrossRef]
- Anada, M.; Tohyama, M.; Oda, Y.; Kamoshima, Y.; Amino, I.; Nakano, F.; Miyazaki, Y.; Akimoto, S.; Minami, N.; Kikuchi, S.; et al. Progressive Multifocal Leukoencephalopathy during Tocilizumab Treatment for Rheumatoid Arthritis. Intern. Med. 2020, 59, 2053–2059. [Google Scholar] [CrossRef]
- Yu, T.; Yang, C. Multifocal Leukoencephalopathy in a Patient Medicated with Etanercept and Methotrexate for Rheumatoid Arthritis. Z. Rheumatol. 2023, 83, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Tawara, T.; Kai, H.; Kageyama, M.; Akiyama, T.; Matsunaga, T.; Sakuma, A.; Ishii, R.; Tsunoda, R.; Kawamura, T.; Fujita, A.; et al. A Case Report of Progressive Multifocal Leukoencephalopathy during Steroid Treatment for ANCA-Associated Renal Vasculitis. CEN Case Rep. 2020, 9, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Gomathy, S.; Panigrahi, B.; Tirlangi, P.K.; Wig, N.; Brijwal, M.; Sharma, M.C.; Garg, A.; Tripathi, M.; Mohta, S.; Doddamani, R.; et al. Progressive Multifocal Leukoencephalopathy in a Patient with Systemic Lupus Erythematosus and Autoimmune Hepatitis. Int. J. Rheum Dis. 2022, 25, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Möhn, N.; Grote-Levi, L.; Hopfner, F.; Eiz-Vesper, B.; Maecker-Kolhoff, B.; Warnke, C.; Sühs, K.-W.; Wattjes, M.P.; Höglinger, G.U.; Skripuletz, T. Innovative Therapeutic Concepts of Progressive Multifocal Leukoencephalopathy. J. Neurol. 2022, 269, 2403–2413. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, H.; Hunter, R.; Boyle, S. Pos1468 Progressive Multifocal Leukoencephalopathy in a Patient with a Background of Lupus Nephritis and Cerebral Lupus. Ann. Rheum. Dis. 2022, 81, 1080. [Google Scholar] [CrossRef]
- Rimkus, C.M.; Schoeps, V.A.; Boaventura, M.; Godoy, L.F.; Apostolos-Pereira, S.L.; Calich, A.L.; Callegaro, D.; Lucato, L.T.; Rovira, A.; Sastre-Garriga, J.; et al. Drug-Related Demyelinating Syndromes: Understanding Risk Factors, Pathophysiological Mechanisms and Magnetic Resonance Imaging Findings. Mult. Scler. Relat. Disord. 2021, 55, 103146. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.H.; Khan, E.; Chaudhary, D.; Sriwastava, S. Progressive Multifocal Leukoencephalopathy in Immunocompetent a Case Report and Review of Literature (P12-12.002). Neurology 2022, 98, 1823. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, S.; Agasti, N.; Guha, G.; Ghosh, S.; Mohanty, B.; Ngullie, P.S.; Mukherjee, J. Hepatitis B Virus-Induced CD4 Lymphocytopenia: A Rare Cause of Progressive Multifocal Leukoencephalopathy. Asian J. Med. Sci. 2022, 13, 288–292. [Google Scholar] [CrossRef]
- McEntire, C.R.S.; Fletcher, A.; Toledano, M.; Epstein, S.; White, E.; Tan, C.S.; Mao-Draayer, Y.; Banks, S.A.; Aksamit, A.J.; Gelfand, J.M.; et al. Characteristics of Progressive Multifocal Leukoencephalopathy Associated With Sarcoidosis Without Therapeutic Immune Suppression. JAMA Neurol. 2023, 80, 624–633. [Google Scholar] [CrossRef]
- Jeantin, L.; Shor, N.; Coustans, M.; Roos-Weil, D.; Quintin-Roué, I.; Bellanger, A.; Le Garff-Tavernier, M.; Ben Jemaa, R.; Thabut, D.; Pourcher, V.; et al. Progressive Multifocal Leukoencephalopathy in Patients with Chronic Liver Disease Successfully Treated with Pembrolizumab. J. Neurol. 2023, 271, 2119–2124. [Google Scholar] [CrossRef]
- Meylor, J.; Artunduaga, D.C.; Mendoza, M.; Hooshmand, S.I.; Obeidat, A.Z. Progressive Multifocal Leukoencephalopathy in Patients with Chronic Kidney Disease. Neurol. Sci. 2023, 45, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Baldassari, L.E.; Wattjes, M.P.; Cortese, I.C.M.; Gass, A.; Metz, I.; Yousry, T.; Reich, D.S.; Richert, N. The Neuroradiology of Progressive Multifocal Leukoencephalopathy: A Clinical Trial Perspective. Brain 2022, 145, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Yamazaki, K.; Miyakawa, T.; Takahashi, H.; Ikuta, F.; Arai, H. Progressive Multifocal Leukoencephalopathy Showing Extensive Spinal Cord Involvement in a Patient with Lymphocytopenia. Neuropathology 2009, 29, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Brew, B.J.; Davies, N.W.S.; Cinque, P.; Clifford, D.B.; Nath, A. Progressive Multifocal Leukoencephalopathy and Other Forms of JC Virus Disease. Nat. Rev. Neurol. 2010, 6, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Hakamifard, A.; Shayganfar, A.; Khorvash, F.; Shaygannejad, V.; Tayeri, K.; Khorzoughi, A.T. Progressive Multifocal Leukoencephalopathy as the First Manifestation of AIDS: A Rare Case Report. Arch. Clin. Infect. Dis. 2020, 15, e85447. [Google Scholar] [CrossRef]
- Verhagen, T.O.; Rappel, E.; Schippers, E.F.; Koopman, J.P. An Exceptional Cause of Unilateral Sensorineural Hearing Loss: Progressive Multifocal Leukoencephalopathy. Otolaryngol. Case Rep. 2023, 27, 100531. [Google Scholar] [CrossRef]
- Johansen, K.K.; Torp, S.H.; Rydland, J.; Aasly, J.O. Progressive Multifocal Leukoencephalopathy in an Immunocompetent Patient? Case Rep. Neurol. 2013, 5, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Bolton, C.F.; Rozdilsky, B. Primary Progressive Multifocal Leukoencephalopathy: A Case Report. Neurology 1971, 21, 72. [Google Scholar] [CrossRef]
- Fermaglich, J.; Hardman, J.M.; Earle, K.M. Spontaneous Progressive Multifocal Leukoencephalopathy. Neurology 1970, 20, 479. [Google Scholar] [CrossRef]
- Major, E.O.; Yousry, T.A.; Clifford, D.B. Pathogenesis of Progressive Multifocal Leukoencephalopathy and Risks Associated with Treatments for Multiple Sclerosis: A Decade of Lessons Learned. Lancet Neurol. 2018, 17, 467–480. [Google Scholar] [CrossRef]
- Åström, K.E.; Stoner, G.L. Early Pathological Changes in Progressive Multifocal Leukoencephalopathy: A Report of Two Asymptomatic Cases Occurring Prior to the AIDS Epidemic. Acta Neuropathol. 1994, 88, 93–105. [Google Scholar] [CrossRef] [PubMed]
- On behalf of the MAGNIMS Study Group. MAGNIMS Consensus Guidelines on the Use of MRI in Multiple Sclerosis—Establishing Disease Prognosis and Monitoring Patients. Nat. Rev. Neurol. 2015, 11, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Metz, I.; Radue, E.-W.; Oterino, A.; Kümpfel, T.; Wiendl, H.; Schippling, S.; Kuhle, J.; Sahraian, M.A.; Gray, F.; Jakl, V.; et al. Pathology of Immune Reconstitution Inflammatory Syndrome in Multiple Sclerosis with Natalizumab-Associated Progressive Multifocal Leukoencephalopathy. Acta Neuropathol. 2012, 123, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Emmanouilidou, E.; Kosmara, D.; Papadaki, E.; Mastorodemos, V.; Constantoulakis, P.; Repa, A.; Christopoulou, G.; Kalpadakis, C.; Avgoustidis, N.; Thomas, K.; et al. Progressive Multifocal Leukoencephalopathy in Systemic Lupus Erythematosus: A Consequence of Patient-Intrinsic or -Extrinsic Factors? J. Clin. Med. 2023, 12, 6945. [Google Scholar] [CrossRef] [PubMed]
- Alleg, M.; Solis, M.; Baloglu, S.; Cotton, F.; Kerschen, P.; Bourre, B.; Ahle, G.; Pruvo, J.-P.; Leclerc, X.; Vermersch, P.; et al. Progressive Multifocal Leukoencephalopathy: MRI Findings in HIV-Infected Patients Are Closer to Rituximab- than Natalizumab-Associated PML. Eur. Radiol. 2021, 31, 2944–2955. [Google Scholar] [CrossRef] [PubMed]
- Wattjes, M.P.; Wijburg, M.T.; van Eijk, J.; Frequin, S.; Uitdehaag, B.M.J.; Barkhof, F.; Warnke, C.; Killestein, J. Inflammatory Natalizumab-Associated PML: Baseline Characteristics, Lesion Evolution and Relation with PML-IRIS. J. Neurol. Neurosurg. Psychiatry 2018, 89, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Maas, R.P.P.W.M.; Muller-Hansma, A.H.G.; Esselink, R.A.J.; Murk, J.-L.; Warnke, C.; Killestein, J.; Wattjes, M.P. Drug-Associated Progressive Multifocal Leukoencephalopathy: A Clinical, Radiological, and Cerebrospinal Fluid Analysis of 326 Cases. J. Neurol. 2016, 263, 2004–2021. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmidt-DeMasters, B.K.; Miravalle, A.; Schowinsky, J.; Corboy, J.; Vollmer, T. Update on PML and PML-IRIS Occurring in Multiple Sclerosis Patients Treated with Natalizumab. J. Neuropathol. Exp. Neurol. 2012, 71, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Yousry, T.A.; Major, E.O.; Ryschkewitsch, C.; Fahle, G.; Fischer, S.; Hou, J.; Curfman, B.; Miszkiel, K.; Mueller-Lenke, N.; Sanchez, E.; et al. Evaluation of Patients Treated with Natalizumab for Progressive Multifocal Leukoencephalopathy. N. Engl. J. Med. 2006, 354, 924–933. [Google Scholar] [CrossRef]
- Huang, D.; Cossoy, M.; Li, M.; Choi, D.; Taege, A.; Staugaitis, S.M.; Rehm, S.; Ransohoff, R.M. Inflammatory Progressive Multifocal Leukoencephalopathy in Human Immunodeficiency Virus–Negative Patients. Ann. Neurol. 2007, 62, 34–39. [Google Scholar] [CrossRef]
- Umino, M.; Maeda, M.; Ii, Y.; Tomimoto, H.; Sakuma, H. Low-Signal-Intensity Rim on Susceptibility-Weighted Imaging Is Not a Specific Finding to Progressive Multifocal Leukoencephalopathy. J. Neurol. Sci. 2016, 362, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Engsig, F.N.; Hansen, A.-B.E.; Omland, L.H.; Kronborg, G.; Gerstoft, J.; Laursen, A.L.; Pedersen, C.; Mogensen, C.B.; Nielsen, L.; Obel, N. Incidence, Clinical Presentation, and Outcome of Progressive Multifocal Leukoencephalopathy in HIV-Infected Patients during the Highly Active Antiretroviral Therapy Era: A Nationwide Cohort Study. J. Infect. Dis. 2009, 199, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.N.; Ferrari, R.; Macedo, A.C.; Marcusso, R.M.N.; Fernandes, R.d.A.; Vidal, J.E. Acquired Immunodeficiency Syndrome-Related Progressive Multifocal Leukoencephalopathy-Immune Reconstitution Inflammatory Syndrome: Prevalence, Main Characteristics, and Outcomes in a Brazilian Center. Arq. Neuro-Psiquiatr. 2023, 81, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Perkins, M.R.; Ryschkewitsch, C.; Liebner, J.C.; Monaco, M.C.G.; Himelfarb, D.; Ireland, S.; Roque, A.; Edward, H.L.; Jensen, P.N.; Remington, G.; et al. Changes in JC Virus-Specific T Cell Responses during Natalizumab Treatment and in Natalizumab-Associated Progressive Multifocal Leukoencephalopathy. PLoS Pathog. 2012, 8, e1003014. [Google Scholar] [CrossRef] [PubMed]
- Gheuens, S.; Ngo, L.; Wang, X.; Alsop, D.C.; Lenkinski, R.E.; Koralnik, I.J. Metabolic Profile of PML Lesions in Patients with and without IRIS: An Observational Study. Neurology 2012, 79, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Aminzadeh, Z. May New Biomarkers Help Us to Predict Progressive Multifocal Leukoencephalopathy in HIV Positive People? Int. J. Prev. Med. 2012, 3, 515–516. [Google Scholar] [PubMed]
- Schneider-Hohendorf, T.; Philipp, K.; Husstedt, I.W.; Wiendl, H.; Schwab, N. Specific Loss of Cellular L-Selectin on CD4+ T Cells Is Associated with Progressive Multifocal Leukoencephalopathy Development during HIV Infection. AIDS 2014, 28, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Schwab, N.; Schneider-Hohendorf, T.; Posevitz, V.; Breuer, J.; Göbel, K.; Windhagen, S.; Brochet, B.; Vermersch, P.; Lebrun-Frenay, C.; Posevitz-Fejfár, A.; et al. l-Selectin Is a Possible Biomarker for Individual PML Risk in Natalizumab-Treated MS Patients. Neurology 2013, 81, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, L.; Zeng, W.; Plavina, T.; Singh, C.; Otipoby, K.; Loh, C.; Gorelik, L.; Cahir McFarland, E. CD62L (L-Selectin) Is Not a Reliable Biomarker for Predicting Risk of Progressive Multifocal Leukoencephalopathy in Natalizumab-Treated Multiple Sclerosis Patients (P4.039). Neurology 2015, 84, P4.039. [Google Scholar] [CrossRef]
- Fissolo, N.; Pignolet, B.; Matute-Blanch, C.; Triviño, J.C.; Miró, B.; Mota, M.; Perez-Hoyos, S.; Sanchez, A.; Vermersch, P.; Ruet, A.; et al. Matrix Metalloproteinase 9 Is Decreased in Natalizumab-treated Multiple Sclerosis Patients at Risk for Progressive Multifocal Leukoencephalopathy. Ann. Neurol. 2017, 82, 186–195. [Google Scholar] [CrossRef]
- Valentino, P.; Malucchi, S.; Bava, C.; Martire, S.; Capobianco, M.; Malentacchi, M.; Sperli, F.; Oggero, A.; Di Sapio, A.; Bertolotto, A. Serum Neurofilaments Are a Reliable Biomarker to Early Detect PML in Multiple Sclerosis Patients. Mult. Scler. Relat. Disord. 2023, 77, 104893. [Google Scholar] [CrossRef] [PubMed]
- Antoniol, C.; Stankoff, B. Immunological Markers for PML Prediction in MS Patients Treated with Natalizumab. Front. Immunol. 2015, 5, 668. [Google Scholar] [CrossRef] [PubMed]
- Möhn, N.; Luo, Y.; Skripuletz, T.; Schwenkenbecher, P.; Ladwig, A.; Warnke, C.; Meuth, S.G.; Wiendl, H.; Gross, C.C.; Schröder, C.; et al. Cerebrospinal Fluid Analysis in 108 Patients with Progressive Multifocal Leukoencephalopathy. Fluids Barriers CNS 2020, 17, 65. [Google Scholar] [CrossRef]
- Nakamichi, K.; Inoue, N.; Shimokawa, T.; Kurane, I.; Lim, C.-K.; Saijo, M. Detection of Human Herpesviruses in the Cerebrospinal Fluid from Patients Diagnosed with or Suspected of Having Progressive Multifocal Leukoencephalopathy. BMC Neurol. 2013, 13, 200. [Google Scholar] [CrossRef]
- Matsiota-Bernard, P.; De Truchis, P.; Gray, F.; Flament-Saillour, M.; Voyatzakis, E.; Nauciel, C.Y. JC virus detection in the cerebrospinal fluid of AIDS patients with progressive multifocal leucoencephalopathy and monitoring of the antiviral treatment by a PCR method. J. Med. Microbiol. 1997, 46, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Mouliou, D.S. Managing Viral Emerging Infectious Diseases via Current Molecular Diagnostics in the Emergency Department: Be The Tricky Cases. Expert Rev. Anti-Infect. Ther. 2022, 20, 1163–1169. [Google Scholar] [CrossRef]
- Del Valle, L.; Piña-Oviedo, S. Human Polyomavirus JCPyV and Its Role in Progressive Multifocal Leukoencephalopathy and Oncogenesis. Front. Oncol. 2019, 9, 711. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.; Giovannoni, G. Natalizumab-Associated Progressive Multifocal Leucoencephalopathy: A Practical Approach to Risk Profiling and Monitoring. Pract. Neurol. 2012, 12, 25–35. [Google Scholar] [CrossRef]
- Ryschkewitsch, C.F.; Jensen, P.N.; Major, E.O. Multiplex qPCR Assay for Ultra Sensitive Detection of JCV DNA with Simultaneous Identification of Genotypes That Discriminates Non-Virulent from Virulent Variants. J. Clin. Virol. 2013, 57, 243–248. [Google Scholar] [CrossRef]
- HumqPCR-Realtime™ JC Virus BioinGentech. Available online: https://kitpcr.com/Files/Real-Time/manual/Polyomavirus_JC_Real-Time_manual.pdf (accessed on 22 November 2021).
- LiferiverTM JCPYV Real Time PCR Kit User Manual for In Vitro Diagnostic Use Only. Available online: https://www.biosb.com/wp-content/uploads/OD-0230-02-JCPYV-Real-Time-PCR-Kit.pdf (accessed on 22 November 2021).
- Mouliou, D.S.; Gourgoulianis, K.I. False-Positive and False-Negative COVID-19 Cases: Respiratory Prevention and Management Strategies, Vaccination, and Further Perspectives. Expert Rev. Respir. Med. 2021, 15, 993–1002. [Google Scholar] [CrossRef]
- White, F.A.; Ishaq, M.; Stoner, G.L.; Frisque, R.J. JC virus DNA is present in many human brain samples from patients without progressive multifocal leukoencephalopathy. J. Virol. 1992, 66, 5726–5734. [Google Scholar] [CrossRef] [PubMed]
- Babi, M.-A.; Pendlebury, W.; Braff, S.; Waheed, W. JC virus PCR detection is not infallible: A fulminant case of progressive multifocal leukoencephalopathy with false-negative cerebrospinal fluid studies despite progressive clinical course and radiological findings. Case Rep. Neurol. Med. 2015, 2015, e643216. [Google Scholar] [CrossRef] [PubMed]
- Artus JCPYV RG PCR Kit Handbook—QIAGEN. Available online: https://www.qiagen.com/ie/resources/resourcedetail?id=2294b42c-e746-449f-9305-00fd1bfb86b6&lang=en (accessed on 22 November 2021).
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar] [CrossRef] [PubMed]
- Sidstedt, M.; Hedman, J.; Romsos, E.L.; Waitara, L.; Wadsö, L.; Steffen, C.R.; Vallone, P.M.; Rådström, P. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal. Bioanal. Chem. 2018, 410, 2569–2583. [Google Scholar] [CrossRef] [PubMed]
- Sidstedt, M.; Rådström, P.; Hedman, J. PCR inhibition in qPCR, dPCR and MPS—Mechanisms and solutions. Anal. Bioanal. Chem. 2020, 412, 2009–2023. [Google Scholar] [CrossRef] [PubMed]
- Kuffel, A.; Gray, A.; Daeid, N.N. Impact of metal ions on PCR inhibition and RT-PCR efficiency. Int. J. Leg. Med. 2021, 135, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Link, H.; Huang, Y.-M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: An update on methodology and clinical usefulness. J. Neuroimmunol. 2006, 180, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Skagervik, I.; Tumani, H.; Petzold, A.; Wick, M.; Kühn, H.-J.; Uhr, M.; Regeniter, A.; Brettschneider, J.; Otto, M.; et al. Cerebrospinal fluid analyses for the diagnosis of subarachnoid haemorrhage and experience from a Swedish study. What method is preferable when diagnosing a subarachnoid haemorrhage? Clin. Chem. Lab. Med. 2013, 51, 2073–2086. [Google Scholar] [CrossRef]
- Mouliou, D.S.; Pantazopoulos, I.; Gourgoulianis, K.I. COVID-19 Smart Diagnosis in the Emergency Department: All-in in Practice. Expert Rev. Respir. Med. 2022, 16, 263–272. [Google Scholar] [CrossRef]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef]
- Nakamichi, K.; Kawamoto, M.; Ishii, J.; Saijo, M. Improving detection of JC virus by ultrafiltration of cerebrospinal fluid before polymerase chain reaction for the diagnosis of progressive multifocal leukoencephalopathy. BMC Neurol. 2019, 19, 252. [Google Scholar] [CrossRef]
- Palma, J.; Tokarz-Deptuła, B.; Deptuła, J.; Deptuła, W. Natural antibodies—Facts known and unknown. Cent. Eur. J. Immunol. 2018, 43, 466–475. [Google Scholar] [CrossRef]
- Taneja, V. Sex hormones determine immune response. Front. Immunol. 2018, 9, 1931. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.; Ward, G. Interferences in immunoassay. Clin. Biochem. Rev. 2004, 25, 105–120. [Google Scholar]
- Bolstad, N.; Warren, D.J.; Nustad, K. Heterophilic antibody interference in immunometric assays. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.M.; Bozorgi, S. Investigating the presence of human anti-mouse antibodies (Hama) in the blood of laboratory animal care workers. J. Lab. Med. 2019, 43, 87–91. [Google Scholar] [CrossRef]
- Andersen, D.C.; Koch, C.; Jensen, C.H.; Skjødt, K.; Brandt, J.; Teisner, B. High prevalence of human anti-bovine igg antibodies as the major cause of false positive reactions in two-site immunoassays based on monoclonal antibodies. J. Immunoass. Immunochem. 2004, 25, 17–30. [Google Scholar] [CrossRef]
- Hennig, C.; Rink, L.; Kirchner, H. Evidence for presence of IgG4 anti-immunoglobulin autoantibodies in all human beings. Lancet 2000, 355, 1617–1618. [Google Scholar] [CrossRef]
- Mouliou, D.S. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023, 11, 132. [Google Scholar] [CrossRef]
- STRATIFY JCPYV™ DxSelect™—Focus Diagnostics. Available online: https://www.focusdx.com/pdfs/pi/US/EL1950-5.pdf (accessed on 22 November 2021).
- Hsia, J. False-positive ELISA for human immunodeficiency virus after influenza vaccination. J. Infect. Dis. 1993, 167, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Sedel, F.; Bernard, D.; Mock, D.M.; Tourbah, A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 2016, 110, 644–653. [Google Scholar] [CrossRef]
- Espiritu, A.I.; Remalante-Rayco, P.P.M. High-dose biotin for multiple sclerosis: A systematic review and meta-analyses of randomized controlled trials. Mult. Scler. Relat. Disord. 2021, 55, 103159. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayana Rao, T.S.; Christopher, R.; Andrade, C. Biotin supplements and laboratory test results in neuropsychiatric practice and research. Indian J. Psychiatry 2017, 59, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Biotin (Vitamin B7): Safety Communication—May Interfere with Lab Tests. Available online: www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm586641.htm (accessed on 4 December 2021).
- AACC Guidance Document on Biotin Interference in Laboratory Tests|AACC.org [WWW Document], n.d. Available online: https://www.aacc.org/science-and-research/aacc-academy-guidance/biotin-interference-in-laboratory-tests (accessed on 12 December 2021).
- Kabiri, P.; Weiskirchen, R.; van Helden, J. The biotin interference within interference suppressed immunoassays. J. Clin. Lab. Anal. 2021, 35, e23940. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Hohendorf, T.; Schulte-Mecklenbeck, A.; Ostkamp, P.; Janoschka, C.; Pawlitzki, M.; Luessi, F.; Zipp, F.; Meuth, S.G.; Klotz, L.; Wiendl, H.; et al. High Anti-JCPyV Serum Titers Coincide with High CSF Cell Counts in RRMS Patients. Mult. Scler. 2021, 27, 1491–1496. [Google Scholar] [CrossRef] [PubMed]
- Mouliou, D.S.; Pantazopoulos, I.; Gourgoulianis, K. COVID-19 Diagnosis in the Emergency Department: Seeing the Tree but Losing the Forest. Emerg. Med. J. 2022, 39, 563. [Google Scholar] [CrossRef]
- Hennes, E.M.; Kornek, B.; Huppke, P.; Reindl, M.; Rostasy, K.; Berger, T. Age-Dependent Seroprevalence of JCPYV Antibody in Children. Neuropediatrics 2016, 47, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.R.; Cree, B.A.; Greenberg, B.; Hemmer, B.; Ward, B.J.; Dong, V.M.; Merschhemke, M. Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology 2018, 90, e1815–e1821. [Google Scholar] [CrossRef]
- Berger, J.R.; Malik, V.; Lacey, S.; Brunetta, P.; Lehane, P.B. Progressive multifocal leukoencephalopathy in rituximab-treated rheumatic diseases: A rare event. J. Neurovirol. 2018, 24, 323–331. [Google Scholar] [CrossRef]
- Raffel, J.; Gafson, A.R.; Malik, O.; Nicholas, R. Anti-JC Virus Antibody Titers Increase over Time with Natalizumab Treatment. Mult. Scler. 2015, 21, 1833–1838. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Mehndiratta, M.M.; Wasay, M.; Garg, D. Environmental Toxins and Brain: Life on Earth Is in Danger. Ann. Indian Acad. Neurol. 2022, 25, S15–S21. [Google Scholar] [CrossRef] [PubMed]
- McKinney, A.M.; Kieffer, S.A.; Paylor, R.T.; SantaCruz, K.S.; Kendi, A.; Lucato, L. Acute Toxic Leukoencephalopathy: Potential for Reversibility Clinically and on MRI With Diffusion-Weighted and FLAIR Imaging. Am. J. Roentgenol. 2009, 193, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Wells, E.M.; Kennedy, C.R. 134—Posttreatment Neurologic Sequelae of Pediatric Central Nervous System Tumors. In Swaiman’s Pediatric Neurology, 6th ed.; Swaiman, K.F., Ashwal, S., Ferriero, D.M., Schor, N.F., Finkel, R.S., Gropman, A.L., Pearl, P.L., Shevell, M.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1021–1027. ISBN 9780323371018. [Google Scholar]
- Van Ghelue, M.; Khan, M.T.H.; Ehlers, B.; Moens, U. Genome Analysis of the New Human Polyomaviruses. Rev. Med. Virol. 2012, 22, 354–377. [Google Scholar] [CrossRef] [PubMed]
- Maginnis, M.S.; Atwood, W.J. JCV: An Oncogenic Virus in Animals and Humans? Semin. Cancer Biol. 2009, 19, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Anzivino, E.; Zingaropoli, M.A.; Iannetta, M.; Pietropaolo, V.A.; Oliva, A.; Iori, F.; Ciardi, A.; Rodio, D.M.; Antonini, F.; Fedele, C.G.; et al. Archetype and Rearranged Non-Coding Control Regions in Urothelial Bladder Carcinoma of Immunocompetent Individuals. CGP 2016, 13, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, R.; Sol, C.; van der Noordaa, J. The Complete Nucleotide Sequence of Bovine Polyomavirus. J. Gen. Virol. 1990, 71, 1723–1735. [Google Scholar] [CrossRef] [PubMed]
- Sanabria, D.J.; Mojsiejczuk, L.N.; Torres, C.; Meyer, A.G.; Mbayed, V.A.; Liotta, D.J.; Campos, R.H.; Schurr, T.G.; Badano, I. Genetic Diversity of the JC Polyomavirus (JCPyV) and Mitochondrial DNA Ancestry in Misiones, Argentina. Infect. Genet. Evol. 2019, 75, 104011. [Google Scholar] [CrossRef]
- Mouliou, D.S.; Gourgoulianis, K.I. COVID-19 “asymptomatic” Patients: An Old Wives’ Tale. Expert Rev. Respir. Med. 2022, 16, 399–407. [Google Scholar] [CrossRef]
- Agnihotri, S.P.; Wuthrich, C.; Dang, X.; Nauen, D.; Karimi, R.; Viscidi, R.; Bord, E.; Batson, S.; Troncoso, J.; Koralnik, I.J. A Fatal Case of JC Virus Meningitis Presenting with Hydrocephalus in an HIV-Seronegative Patient. Ann. Neurol. 2014, 76, 140–147. [Google Scholar] [CrossRef]
- Bialasiewicz, S.; Hart, G.; Oliver, K.; Agnihotri, S.P.; Koralnik, I.J.; Viscidi, R.; Nissen, M.D.; Sloots, T.P.; Burke, M.T.; Isbel, N.M.; et al. A Difficult Decision: Atypical JC Polyomavirus Encephalopathy in a Kidney Transplant Recipient. Transplantation 2017, 101, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy Subramanian, R.; Horakova, D.; Vaneckova, M.; Lorincz, B.; Krasensky, J.; Kubala Havrdova, E.; Uher, T. Natalizumab Induces Changes of Cerebrospinal Fluid Measures in Multiple Sclerosis. Diagnostics 2021, 11, 2230. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.; Zakharov, A.; Papaiconomou, C.; Salmasi, G.; Armstrong, D. Evidence of Connections between Cerebrospinal Fluid and Nasal Lymphatic Vessels in Humans, Non-Human Primates and Other Mammalian Species. Cerebrospinal. Fluid Res. 2004, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Mouliou, D.S.; Kotsiou, O.S.; Gourgoulianis, K.I. Estimates of COVID-19 Risk Factors among Social Strata and Predictors for a Vulnerability to the Infection. Int. J. Environ. Res. Public Health 2021, 18, 8701. [Google Scholar] [CrossRef]
- Sokołowski, W.; Barszcz, K.; Kupczyńska, M.; Czubaj, N.; Skibniewski, M.; Purzyc, H. Lymphatic Drainage of Cerebrospinal Fluid in Mammals—Are Arachnoid Granulations the Main Route of Cerebrospinal Fluid Outflow? Biologia 2018, 73, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Da Mesquita, S.; Fu, Z.; Kipnis, J. The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron 2018, 100, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Park, J.; Choi, Y.K. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.A.; Louveau, A. Meningeal Lymphatics: An Immune Gateway for the Central Nervous System. Cells 2021, 10, 3385. [Google Scholar] [CrossRef] [PubMed]
- Vigiser, I.; Piura, Y.; Kolb, H.; Shiner, T.; Komarov, I.; Karni, A.; Regev, K. JCV Seroconversion Rate during the SARS COVID-19 Pandemic. Mult. Scler. Relat. Disord. 2022, 68, 104244. [Google Scholar] [CrossRef]
- Pradhan, P.; Pandey, A.K.; Mishra, A.; Gupta, P.; Tripathi, P.K.; Menon, M.B.; Gomes, J.; Vivekanandan, P.; Kundu, B. Uncanny Similarity of Unique Inserts in the 2019-nCoV Spike Protein to HIV-1 Gp120 and Gag. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wu Zhang, X.; Leng Yap, Y. Structural Similarity between HIV-1 Gp41 and SARS-CoV S2 Proteins Suggests an Analogous Membrane Fusion Mechanism. Theochem 2004, 677, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Salih, R.Q.; Salih, G.A.; Abdulla, B.A.; Ahmed, A.D.; Mohammed, H.R.; Kakamad, F.H.; Salih, A.M. False-Positive HIV in a Patient with SARS-CoV-2 Infection; a Case Report. Ann. Med. Surg. 2021, 71, 103027. [Google Scholar] [CrossRef] [PubMed]
- Illanes-Álvarez, F.; Márquez-Ruiz, D.; Márquez-Coello, M.; Cuesta-Sancho, S.; Girón-González, J.A. Similarities and Differences between HIV and SARS-CoV-2. Int. J. Med. Sci. 2021, 18, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Mouliou, D.S.; Dardiotis, E. Current Evidence in SARS-CoV-2 mRNA Vaccines and Post-Vaccination Adverse Reports: Knowns and Unknowns. Diagnostics 2022, 12, 1555. [Google Scholar] [CrossRef]
- Murray, A.; Major, I.; Nestor, N.; Sblendorio, D. SARS-CoV-2 Induced Lymphopenia Leading to Novel PML Infection. Neuroimmunol. Rep. 2022, 2, 100115. [Google Scholar] [CrossRef]
PML | Clinical Manifestations | Imaging Features | CSF PCR Test |
---|---|---|---|
Definite | + | + | + |
Probable | + − | − + | + + |
Possible | + | + | + |
Negative | + − | − + | − − |
PML | Histopathologic Triad | JCPyV PCR | Immunohistochemistry/ Electron Microscopy |
---|---|---|---|
Definite | + | + | + |
Probable | + | ||
Possible | + | ||
Negative | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouliou, D.S. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases 2024, 12, 100. https://doi.org/10.3390/diseases12050100
Mouliou DS. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases. 2024; 12(5):100. https://doi.org/10.3390/diseases12050100
Chicago/Turabian StyleMouliou, Dimitra S. 2024. "John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis" Diseases 12, no. 5: 100. https://doi.org/10.3390/diseases12050100
APA StyleMouliou, D. S. (2024). John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases, 12(5), 100. https://doi.org/10.3390/diseases12050100