Personalized Antenatal Corticosteroid Therapy and Central Nervous System Development: Reflections on the Gold Standard of Fetomaternal Therapy
Abstract
:1. Introduction
1.1. Endogenous Steroids and Fetal Brain
1.2. Exogenous Steroids and Fetal Brain-Experimental Discoveries
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Acronyms
References
- Fee, L.E.; Stock, J.S.; Kemp, W.M. Antenatal steroids: Benefits, risks, and new insights. J. Endocrinol. 2023, 258, e220306. [Google Scholar] [CrossRef] [PubMed]
- Liggins, G.C.; Howie, R.N. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972, 50, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Crowley, P.; Chalmers, I.; Kierse, M.J. The effects of corticosteroid administration before preterm delivery: An overview of the evidence from controlled trials. BJOG 1990, 97, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Fitzhardinge, P.M.; Eisen, A.; Lejtenyi, C.; Metrakos, K.; Ramsay, M. Sequelae of early steroid administration to the newborn infant. Pediatrics 1974, 53, 877–883. [Google Scholar] [CrossRef]
- Gupta, S.; Prasanth, K.; Chen, C.M.; Yeh, T.F. Postnatal corticosteroids for prevention and treatment of chronic lung disease in the preterm newborn. Int. J. Pediatr. 2012, 2012, 315642. [Google Scholar] [CrossRef]
- Crotty, K.C.; Ahronovich, M.D.; Baron, I.S.; Baker, R.; Erickson, K.; Litman, F.R. Neuropsychological and behavioral effects of postnatal dexamethasone in extremely low birth weight preterm children at early school age. J. Perinatol. 2012, 32, 139–146. [Google Scholar] [CrossRef]
- Um-Bergström, M.; Papadogiannakis, N.; Westgren, M.; Vinnars, M.-T. Antenatal corticosteroid treatment and placental pathology, with a focus on villous maturation. Acta Obstet. Gynecol. Scand. 2018, 97, 74–81. [Google Scholar] [CrossRef]
- Ishimoto, H.; Jaffe, R.B. Development and function of the human fetal adrenal cortex: A key component in the feto-placental unit. Endocr. Rev. 2011, 32, 317–355. [Google Scholar] [CrossRef]
- Rashid, S.; Lewis, G.F. The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues. Clin. Biochem. 2005, 38, 401–409. [Google Scholar] [CrossRef]
- Reynolds, R.M. Antenatal glucocorticoid treatment for preterm birth: Considerations for the developing fetus. Clin. Endocrinol. 2013, 78, 665–666. [Google Scholar] [CrossRef]
- Seckl, J.R. Prenatal glucocorticoids and long-term programming. Eur. J. Endocrinol. 2004, 151 (Suppl. S3), U49–U62. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, Y.J.; Chang, Y.P. Administration of dexamethasone to neonatal rats induces hypomyelination and changes in the morphology of oligodendrocyte precursors. Comp. Med. 2013, 63, 48–54. [Google Scholar] [PubMed]
- World Health Organization. WHO Recommendations on Antenatal Corticosteroids for Improving Preterm Birth Outcomes; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Committee on Obstetric Practice. Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet. Gynecol. 2017, 130, e102–e109. [Google Scholar] [CrossRef] [PubMed]
- Asztalos, E.; Willan, A.; Murphy, K.; Matthews, S.; Ohlsson, A.; Saigal, S.; Armson, A.; Kelly, E.; Delisle, M.F.; Gafni, A.; et al. MACS-5 Collaborative Group. Association between gestational age at birth, antenatal corticosteroids, and outcomes at 5 years: Multiple courses of antenatal corticosteroids for preterm birth study at 5 years of age (MACS-5). BMC Pregnancy Childbirth 2014, 14, 272. [Google Scholar] [CrossRef]
- Tsiarli, M.A.; Monaghan, P.A.; Defranco, D.B. Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo. Brain Res. 2013, 1523, 10–27. [Google Scholar] [CrossRef]
- Barker, D.J.P.; Thornburg, K.L. Placental programming of chronic diseases, cancer and lifespan: A review. Placenta 2014, 34, 841–845. [Google Scholar] [CrossRef]
- Carson, R.; Monaghan-Nichols, A.P.; De Franco, D.B.; Rudine, A.C. Effects of antenatal glucocorticoids on the developing brain. Steroids 2016, 114, 25–32. [Google Scholar] [CrossRef]
- Koutmani, Y.; Karalis, K.P. Neural stem cells respond to stress hormones: Distinguishing beneficial from detrimental stress. Front. Physiol. 2015, 6, 77. [Google Scholar] [CrossRef]
- Togher, K.L.; O’Keeffe, M.M.; Khashan, S.A.; Gutierrez, H.; Kenny Louise, C.L.; O’Keeffe, G.W. Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics 2014, 9, 816–822. [Google Scholar] [CrossRef]
- Buss, C.; Davis, E.P.; Shahbaba, B.; Pruessner, J.C.; Head, K.; Sandman, C.A. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl. Acad. Sci. USA 2012, 109, E1312–E1319. [Google Scholar] [CrossRef]
- McGowan, P.O.; Matthews, S.G. Prenatal stress, glucocorticoids, and developmental programming of the stress response. Endocrinology 2018, 159, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Ilg, L.; Kirschbaum, C.; Li, S.C.; Rosenlöcher, F.; Miller, R.; Alexander, N. Persistent effects of antenatal synthetic glucocorticoids on endocrine stress reactivity from childhood to adolescence. J. Clin. Endocrinol. Metab. 2019, 104, 827–834. [Google Scholar] [CrossRef]
- Finken, M.J.J.; Van der Voorn, B.; Hollanders, J.J.; Ruys, C.A.; de Waard, M.; van Goudoever, J.B.; Rotteveel, J. Programming of the axis by very preterm birth. Ann. Nutr. Metab. 2017, 70, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Lammertink, F.; Vinkers, C.H.; Tataranno, M.L.; Benders, M.J.N.L. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front. Psychiatry 2021, 11, 531–571. [Google Scholar] [CrossRef] [PubMed]
- Babović, I.; Radojičić, Z.; Plešinac, S.; Kastratović-Kotlica, B.; Sparić, R. Direct intramuscular fetal or maternal corticosteroid therapy: Short-time effects on fetal behavior and oxygenation. A comparative study. J. Matern. Fetal Neonat. Med. 2016, 29, 3213–3217. [Google Scholar] [CrossRef]
- Edelmann, M.N.; Sandman, C.A.; Glynn, L.M.; Wing, D.A.; Davis, E.P. Antenatal glucocorticoid treatment is associated with diurnal cortisol regulation in term-born children. Psychoneuroendocrinology 2016, 72, 106–112. [Google Scholar] [CrossRef]
- Van den Bergh, B.R.H.; van den Heuvel, M.I.; Lahti, M.; Braeken, M.; de Rooij, S.R.; Entringer, S.; Hoyer, D.; Roseboom, T.; Räikkönen, K.; King, S.; et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. 2020, 117, 26–64. [Google Scholar] [CrossRef]
- Braun, T.; Challis, J.R.; Newnham, J.P.; Sloboda, D.M. Early-life glucocorticoid exposure: The hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr. Rev. 2013, 34, 885–916. [Google Scholar] [CrossRef]
- Miranda, A.; Sousa, N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018, 8, e00920. [Google Scholar] [CrossRef]
- Anderson, S.; Vanderhaeghen, P. Cortical neurogenesis from pluripotent stem cells: Complexity emerging from simplicity. Curr. Opin. Neurobiol. 2015, 27, 151–157. [Google Scholar] [CrossRef]
- Xu, Y.J.; Sheng, H.; Wu, T.W.; Bao, Q.Y.; Zheng, Y.; Zhang, Y.M.; Gong, Y.X.; Lu, J.Q.; You, Z.D.; Xia, Y.; et al. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations. FASEB J. 2018, 32, 4258–4269. [Google Scholar] [CrossRef] [PubMed]
- Elwany, E.; Omar, S.; Ahmed, A.; Heba, G.; Atef, D. Antenatal dexamethasone effect on Doppler blood flow velocity in women at risk for preterm birth: Prospective case series. Afr. Health Sci. 2018, 18, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Henry, A.; Mahajan, A.; Crowther, C.A.; Lainchbury, A.; Roberts, L.; Shand, W.A.; Welsh, W.A.W. Short-Term Effects of Dexamethasone versus Betamethasone on Ultrasonic Measures of Fetal Well-Being: Cohort from a Blinded, Randomized Trial. Fetal Diagn. Ther. 2021, 48, 526–540. [Google Scholar] [CrossRef]
- Vafaei, H.; Baghbahadorani, F.K.; Asadi, N.; Kasraeian, M.; Faraji, A.; Roozmeh, S.; Zare, M.; Bazrafshan, K. The impact of betamethasone on fetal pulmonary, umbilical and middle cerebral artery Doppler velocimetry and its relationship with neonatal respiratory distress syndrome. BMC Pregnancy Childbirth 2021, 21, 188. [Google Scholar] [CrossRef] [PubMed]
- Szabo, I.; Cosmi, E.V. New developments in antenatal steroid therapy: In utero administration of corticosteroids directly to the fetus. Prenat. Neonat. Med. 2001, 6, 60–61. [Google Scholar]
- Babović, I.; Opalić, J.; Plešinac, S.; Radojičić, Z.; Pilić, I.; Pervulov, M.; Radunović, N.; Ljubić, A. Intramuscular fetal corticosteroid therapy short-term effect on maternal-fetal doppler velocimetry. Clin. Exp. Obstet. Gynecol. 2009, 36, 248–250. [Google Scholar]
- Liggins, G.C. Adrenocortical-related maturational events in the fetus. Am. J. Obstet. Gynecol. 1976, 126, 931–941. [Google Scholar] [CrossRef]
- Wood, C.E.; Keller-Wood, M. The critical importance of the fetal hypothalamus-pituitary-adrenal axis. F1000Research 2016, 5, 115. [Google Scholar] [CrossRef]
- Virgintino, D.; Errede, M.; Girolamo, F.; Capobianco, C.; Robertson, D.; Vimercati, A.; Serio, G.; Benedetto, D.A.; Yonekawa, Y.; Frei, K.; et al. Fetal Blood-Brain Barrier P-Glycoprotein Contributes to Brain Protection During Human Development. J. Neuropathol. Exp. Neurol. 2018, 67, 50–61. [Google Scholar] [CrossRef]
- Moisiadis, V.G.; Matthews, S.G. Glucocorticoids and fetal programming part 1: Outcomes. Nat. Rev. Endocrinol. 2014, 10, 402. [Google Scholar] [CrossRef]
- Wyrwoll, C.S.; Holmes, M.C. Prenatal excess glucocorticoid exposure and adult affective disorders: A role for serotonergic and catecholamine pathways. Neuroendocrinology 2012, 95, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Borges, S.; Coimbra, B.; Soares-Cunha, C.; Ventura-Silva, A.P.; Pinto, L.; Carvalho, M.M.; Pêgo, J.M.; Rodrigues, A.J.; Sousa, N. Glucocorticoid programing of the mesopontine cholinergic system. Front. Endocrinol. 2013, 4, 190. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, S.; Tachibana, M. Chapter Seven—Role of epigenetic regulation in mammalian sex determination. In Current Topics in Developmental Biology; Blanche, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 195–221. [Google Scholar]
- Dunn, G.A.; Morgan, C.P.; Bale, T.L. Sex-specificity in transgenerational epigenetic programming. Horm. Behav. 2011, 59, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.E.; Hannah, M.E.; Willan, A.R.; Hewson, S.A.; Ohlsson, A.; Kelly, E.N.; Matthews, S.G.; Saigal, S.; Asztalos, E.; Ross, S.; et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): A randomised controlled trial. Lancet 2008, 372, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Babovic, I.R.; Dotlic, J.R.; Jovandaric, M.Z.; Sparic, R.M.; Bila, J.S.; Nejkovic, L.V.; Stulic, J.M.; Tinelli, A. Neurological outcomes of antenatal corticosteroid therapy. Int. J. Clin. Pract. 2021, 75, e14936. [Google Scholar] [CrossRef]
- Keller, C. Fetal Programming. In Embryo Project Encyclopedia (2020-11-03); ASU Library: Glendale, AZ, USA, 2020; ISSN 1940-5030. Available online: https://hdl.handle.net/10776/13180 (accessed on 11 December 2024).
| Context-specific recommendation |
| Context-specific recommendation |
| Context-specific recommendation |
| Not recommended |
| Not recommended |
| Not recommended |
| Context-specific recommendation |
| Context-specific recommendation |
| Context-specific recommendation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babović, I.R.; Sparić, R.; Plešinac, S.D.; Belović, D.M.K.; Plešinac, J.D.; Akšam, S.S.; Plešinac, V.D.; Pecorella, G.; Tinelli, A. Personalized Antenatal Corticosteroid Therapy and Central Nervous System Development: Reflections on the Gold Standard of Fetomaternal Therapy. Diseases 2024, 12, 336. https://doi.org/10.3390/diseases12120336
Babović IR, Sparić R, Plešinac SD, Belović DMK, Plešinac JD, Akšam SS, Plešinac VD, Pecorella G, Tinelli A. Personalized Antenatal Corticosteroid Therapy and Central Nervous System Development: Reflections on the Gold Standard of Fetomaternal Therapy. Diseases. 2024; 12(12):336. https://doi.org/10.3390/diseases12120336
Chicago/Turabian StyleBabović, Ivana R., Radmila Sparić, Snežana D. Plešinac, Dušica M. Kocijančić Belović, Jovana D. Plešinac, Slavica S. Akšam, Vera D. Plešinac, Giovanni Pecorella, and Andrea Tinelli. 2024. "Personalized Antenatal Corticosteroid Therapy and Central Nervous System Development: Reflections on the Gold Standard of Fetomaternal Therapy" Diseases 12, no. 12: 336. https://doi.org/10.3390/diseases12120336
APA StyleBabović, I. R., Sparić, R., Plešinac, S. D., Belović, D. M. K., Plešinac, J. D., Akšam, S. S., Plešinac, V. D., Pecorella, G., & Tinelli, A. (2024). Personalized Antenatal Corticosteroid Therapy and Central Nervous System Development: Reflections on the Gold Standard of Fetomaternal Therapy. Diseases, 12(12), 336. https://doi.org/10.3390/diseases12120336