Macro Patterns and Trends of U.S. Consumer Technological Innovation Diffusion Rates
Abstract
:1. Introduction
- Principal question: What bulk trends and patterns regarding diffusion rates can be extracted from the market sales diffusion data of U.S. technological innovations?
- Sub-question #1: What are the probabilistic characteristics of the rates of diffusion of U.S. technological innovations?
- Sub-question #2: What distributions best fit the diffusion rates of U.S. technological innovations?
2. Background
2.1. Diffusion Versus Adoption
2.2. Diffusion of Innovation and Innovation Diffusion
2.3. Rate of Innovation and Innovation Diffusion Rate
2.4. The Study of Innovation Diffusion
2.5. Diffusion Models
3. Research Methodology
3.1. Data Collection
3.2. Data Extraction
3.2.1. Logistic Model Fit Check
3.2.2. Extraction of Diffusion Rate and Trends
3.2.3. Determination of Distribution Fit and Dataset Trends
- If < −2, the population is very likely skewed negatively.
- If is between −2 and +2, no conclusion about the population skewness could be concluded.
- If > 2, the population is very likely skewed positively.
4. Results
4.1. Logistic Model Fit Results
4.2. Extraction of Diffusion Rate and Trend Results
4.3. Diffusion Rate Distribution Fit Results
5. Discussion
5.1. Characteristics of Technological Innovation Diffusion Rates
5.2. Diffusion Rate Distribution
5.3. Population Inferences, Assumptions, and Limitations
5.4. Practitioner Implications and Significance
5.4.1. Abandonment Optimization
5.4.2. Complexity Reduction
5.4.3. Proactive Abandonment Decisions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharlin, H.I.; Kelly, P.; Kranzberg, M. Technological Innovation: A Critical Review of Current Knowledge. Technol. Cult. 1981, 22, 349. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, M. Technological Innovation: Concept, Process, Typology and Implications in the Economy. Theor. Appl. Econ. 2011, 18, 10. [Google Scholar]
- OECD. The Measurement of Scientific and Technological Activities Oslo Manual Guidelines for Collecting and Interpreting Innovation Data, 3rd ed.; OECD Publishing: Paris, France, 2005. [Google Scholar]
- Parvin, A.J., Jr.; Beruvides, M.G. Technology abandonment and the time value of diffusion. In Proceedings of the 2019 IISE Annual Conference, Orlando, FL, USA, 18–21 May 2021; p. 10. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Onken, J.; Hastie, R.; Revelle, W. Individual Differences in the Use of Simplification Strategies in a Complex Deci-sion-Making Task. J. Exp. Psychol. Hum. Percept. Perform. 1985, 11, 14. [Google Scholar] [CrossRef]
- Choffray, J.M.; Lilien, G.L. A decision-support system for evaluating sales prospects and launch strategies for new products. Ind. Mark. Manag. 1986, 15, 75–85. [Google Scholar] [CrossRef]
- Stalk, G., Jr.; Hout, T.M. Competing Against Time. Res. Technol. Manag. 1990, 33, 19–24. [Google Scholar] [CrossRef]
- Bayus, B.L. Have diffusion rates been accelerating over time? Mark. Lett. 1992, 3, 215–226. [Google Scholar] [CrossRef]
- Parvin, A.J., Jr.; Beruvides, M.G. Product and technology (innovation) diffusion economics’ time relation to abandon-ment. In Proceedings of the International Annual Conference of the American Society for Engineering Management, Philadelphia, PA, USA, 23–26 October 2019; p. 10. [Google Scholar]
- Parvin, A.J., Jr.; Beruvides, M.G. The relationship between a technology’s diffusion rate (time) and its economical impact (money). In Proceedings of the International Annual Conference of the American Society for Engineering Management, Coeur d’Alene, ID, USA, 17–20 October 2018; p. 8. [Google Scholar]
- Martino, J.P. Technological Forecasting for Decision Making, 2nd ed.; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Morlidge, S. Future Ready: How to Master Business Forecasting; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bulte, C.V.D. New Product Diffusion Acceleration: Measurement and Analysis. Mark. Sci. 2000, 19, 366–380. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 2010. [Google Scholar]
- Tyagi, C.; Kumar, A. Consumer Behaviour; Atlantic Publishers & Distributors: New Delhi, NY, USA, 2004. [Google Scholar]
- Huebner, J. A possible declining trend for worldwide innovation. Technol. Forecast. Soc. Chang. 2005, 72, 980–986. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, E. Technical Change and the Rate of Imitation. Econometrica 1961, 29, 741. [Google Scholar] [CrossRef] [Green Version]
- Silverberg, G.; Dosi, G.; Orsenigo, L. Innovation, Diversity and Diffusion: A Self-Organisation Model. Econ. J. 1988, 98, 1032. [Google Scholar] [CrossRef]
- Grübler, A. Time for a Change: On the Patterns of Diffusion of Innovation. Daedalus 1996, 125, 19–42. [Google Scholar]
- Jovanovic, B.; Lach, S. Product Innovation and the Business Cycle. Int. Econ. Rev. 1997, 38, 3–22. [Google Scholar] [CrossRef]
- Caselli, F.; Coleman, W.J. Cross-Country Technology Diffusion: The Case of Computers. Am. Econ. Rev. 2001, 91, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Manuelli, R.; Seshadri, A. Frictionless Technology Diffusion: The Case of Tractors. Am. Econ. Rev. 2014, 104, 1368–1391. [Google Scholar] [CrossRef]
- Comin, D.; Hobijn, B. An Exploration of Technology Diffusion. Am. Econ. Rev. 2010, 100, 2031–2059. [Google Scholar] [CrossRef] [Green Version]
- Comin, D.; Mestieri, M. Technology diffusion: Measurement, causes, and consequences. In Handbook of Economic Growth; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 565–622. [Google Scholar]
- Olshavsky, R.W. Time and the Rate of Adoption of Innovations. J. Consum. Res. 1980, 6, 425–428. [Google Scholar] [CrossRef]
- Fisher, J.; Pry, R. A simple substitution model of technological change. Technol. Forecast. Soc. Chang. 1971, 3, 75–88. [Google Scholar] [CrossRef]
- Qualls, W.; Olshavsky, R.W.; Michaels, R.E. Shortening of the PLC: An Empirical Test. J. Mark. 1981, 45, 76. [Google Scholar] [CrossRef]
- Clark, W.A.; Freeman, H.E.; Hanssens, D.M. Opportunities for revitalizing stagnant markets: An analysis of household appliances. J. Prod. Innov. Manag. 1984, 1, 242–254. [Google Scholar] [CrossRef]
- Kohli, R.; Lehmann, D.R.; Pae, J. Extent and Impact of Incubation Time in New Product Diffusion. J. Prod. Innov. Manag. 1999, 16, 134–144. [Google Scholar] [CrossRef]
- Kucharavy, D.; De Guio, R. Application of S-shaped curves. Procedia Eng. 2011, 9, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Intepe, G.; Koc, T. The Use of S Curves in Technology Forecasting and its Application On 3D TV Technology. Int. J. Ind. Manuf. Eng. 2012, 6, 2491–2495. [Google Scholar] [CrossRef]
- Geroski, A.P. Models of technology diffusion. Res. Policy 2000, 29, 603–625. [Google Scholar] [CrossRef]
- Griliches, Z. Hybrid Corn: An Exploration in the Economics of Technological Change. Econometrica 1957, 25, 501. [Google Scholar] [CrossRef] [Green Version]
- Kemp, R.; Volpi, M. The diffusion of clean technologies: A review with suggestions for future diffusion analysis. J. Clean. Prod. 2008, 16, S14–S21. [Google Scholar] [CrossRef]
- Gort, M.; Klepper, S. Time Paths in the Diffusion of Product Innovations. Econ. J. 1982, 92, 630. [Google Scholar] [CrossRef]
- Grubler, A.; Nakićenović, N. Growth to Limits: Long Waves and the Dynamics of Technology; Review (Fernand Braudel Center); Research Foundation of State University of New York: New York, NY, USA, 1991; Volume 14, pp. 313–343. [Google Scholar]
- Bengisu, M.; Nekhili, R. Forecasting emerging technologies with the aid of science and technology databases. Technol. Forecast. Soc. Chang. 2006, 73, 835–844. [Google Scholar] [CrossRef]
- Adamuthe, A.C.; Thampi, G.T. Technology forecasting: A case study of computational technologies. Technol. Forecast. Soc. Chang. 2019, 143, 181–189. [Google Scholar] [CrossRef]
- Meade, N.; Islam, T. Technological Forecasting—Model Selection, Model Stability, and Combining Models. Manag. Sci. 1998, 44, 1115–1130. [Google Scholar] [CrossRef]
- Teng, J.; Grover, V.; Guttler, W. Information technology innovations: General diffusion patterns and its relationships to innovation characteristics. IEEE Trans. Eng. Manag. 2002, 49, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Michalakelis, C.; DeDe, G.; Varoutas, D.; Sphicopoulos, T. Impact of cross-national diffusion process in telecommunications demand forecasting. Telecommun. Syst. 2008, 39, 51–60. [Google Scholar] [CrossRef]
- Yu, J.R.; Dong, Y.W.; Chang, Y.H.; Tseng, F.-M. Comparison of innovation diffusion models: A case study on the DRAM industry. In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012; pp. 1–7. [Google Scholar]
- Naseri, M.B.; Elliott, G. The diffusion of online shopping in Australia: Comparing the Bass, Logistic and Gompertz growth models. J. Mark. Anal. 2013, 1, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.; Saha, D. Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models. Technol. Forecast. Soc. Chang. 2020, 152, 119885. [Google Scholar] [CrossRef]
- Wu, F.-S.; Chu, W.-L. Diffusion models of mobile telephony. J. Bus. Res. 2010, 63, 497–501. [Google Scholar] [CrossRef]
- Meade, N.; Islam, T. Modelling and forecasting the diffusion of innovation—A 25-year review. Int. J. Forecast. 2006, 22, 519–545. [Google Scholar] [CrossRef]
- Ostojic, I. Bass Innovation Diffusion Model and Its Application in Policy Analysis for Adoption of Renewable Energy Technologies; Swiss Federal Institute of Technology: Zürich, Switzerland, 2010. [Google Scholar]
- Grubler, A. The Rise and Fall of Infrastructures: Dynamics of Evolution and Technological Change in Transport; Physica-Verlag: Heidelberg, Germany, 1990. [Google Scholar]
- Meade, N.; Islam, T. Forecasting with growth curves: An empirical comparison. Int. J. Forecast. 1995, 11, 199–215. [Google Scholar] [CrossRef]
- Kim, N.; Chang, D.R.; Shocker, A.D. Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry. Manag. Sci. 2000, 46, 496–512. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kim, H. Innovation diffusion of telecommunications: General patterns, diffusion clusters and differences by technological attribute. Int. J. Innov. Manag. 2004, 8, 223–241. [Google Scholar] [CrossRef]
- Botelho, A.; Pinto, L.g.C. The Diffusion of Cellular Phones in Portugal. Telecommun. Policy 2004, 28, 427–437. [Google Scholar] [CrossRef]
- Suriñac, J.; Autant-Bernard, C.; Manca, F.; Massard, N.; Moreno, R. The Diffusion/Adoption of Innovation in the Internal Market; European Commission: Directorate General Economic and Financial Affairs (DG ECFIN), European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Kijek, A.; Kijek, T. Modelling of Innovation Diffusion. Oper. Res. Decis. 2010, 20, 53–68. [Google Scholar]
- Devore, J.L.; Berk, K.N. Modern Mathematical Statistics with Applications; Brooks/Cole: Belmont, CA, USA, 2007. [Google Scholar]
- Kenneth, D.; Ronald, K. Advances in Business and Management Forecasting; Emerald Books: Bingley, UK, 1982. [Google Scholar]
- Kros, J.F. Forecasting New Products with a Non-Cumulative Logistic Growth Model: A Case Study of Modem Technology. J. Bus. Forecast. 2005, 1, 23–32. [Google Scholar]
- Chandrasekaran, D.; Tellis, G.J. A Critical Review of Marketing Research on Diffusion of New Products. Rev. Mark. Res. 2007, 3, 39–80. [Google Scholar] [CrossRef] [Green Version]
- Bass, F.M. A New Product Growth for Model Consumer Durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- Norton, J.A.; Bass, F.M. A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products. Manag. Sci. 1987, 33, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
- Tsoularis, A.; Wallace, J. Analysis of logistic growth models. Math. Biosci. 2002, 179, 21–55. [Google Scholar] [CrossRef] [Green Version]
- Islam, R. Transfer, Adoption and Diffusion of Technology for Small and Cottage Industries; International Labour Organization: Geneva, Switzerland, 1992. [Google Scholar]
- Kucharavy, D.; De Guio, R. Logistic substitution model and technological forecasting. Procedia Eng. 2011, 9, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Sokele, M. Growth Models for the Forecasting of New Product Market Adoption. Telektronikk 2008, 104, 144–154. [Google Scholar]
- Meyer, P.S.; Yung, J.W.; Ausubel, J.H. A Primer on Logistic Growth And Substitution: The Mathematics of the Loglet Lab Software. Technol. Forecast. Soc. Chang. 1999, 61, 247–271. [Google Scholar] [CrossRef]
- Comin, D.A.; Hobijn, B. The CHAT Dataset. SSRN Electron. J. 2009. [Google Scholar] [CrossRef] [Green Version]
- Dediu, H. Diffusion Data; Clayton Christensen Institute: Lexington, MA, USA, 2017; Available online: [email protected] (accessed on 15 January 2018).
- Comin, D.; Hobijn, B. Cross-Country Technology Adoption: Making the Theories Face the Facts. J. Monet. Econ. 2004, 51, 39–83. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, H.; Roser, M. Technology Diffusion & Adoption; Our World in Data (OurWorldInData.org): Oxford, UK, 2017. [Google Scholar]
- Cox, W.M.; Alm, R. Time Well Spent: The Declining Real Cost of Living in America. Annu. Rep. Fed. Reserve Bank Dallas 1997, 1, 2–24. [Google Scholar]
- Watanabe, C. Managing Innovation in Japan: The Role Institutions Play in Helping or Hindering How Companies Develop Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Salkind, N.J. Encyclopedia of Research Design; SAGE Publication Inc.: London, UK, 2010. [Google Scholar] [CrossRef]
- Kelley, K.; Lai, K. Accuracy in Parameter Estimation for the Root Mean Square Error of Approximation: Sample Size Planning for Narrow Confidence Intervals. Multivar. Behav. Res. 2011, 46, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Khemlani, S.; Trafton, G. Percentile Analysis for Goodness-Of-Fit Comparisons of Models to Data. In Proceedings of the Annual Meeting of the Cognitive Science Society, Quebec, QC, Canada, 23–26 July 2014. [Google Scholar]
- Bain, L.J.; Engelhardt, M. Introduction to Probability and Mathematical Statistics; Brooks/Cole: Belmont, CA, USA, 1987. [Google Scholar]
- Seltman, H.J. Experimental Design and Analysis; Carnegie Mellon University: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Lane, D.M.; Scott, D.; Hebl, M.; Guerra, R.; Osherson, D.; Zimmer, H. An Introduction to Statistics; Rice University: Houston, TX, USA, 2017. [Google Scholar]
- Meeker, W.Q.; Escobar, L.A. Stastical Methods for Reliability Data; John Wiley & Sons Inc.: Hoboken NJ, USA, 1998. [Google Scholar]
- Hendry, D.F.; Nielsen, B. Econometric Modeling: A Likelihood Approach; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Chambers, R.L.; Steel, D.G.; Wang, S.; Welsh, A. Maximum Likelihood Estimation for Sample Surveys; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Cramer, D. Basic Statistics for Social Research: Step-by-Step Calculations & Computer Techniques Using Minitab; Routledge: Boca Raton, FL, USA, 2002. [Google Scholar]
- Oliveira, A.; Oliveira, T.A.; Seijas-Macias, A. The influence of ratios and combined ratios on the distribution of the product of two independent gaussian random variables. In Proceedings of the 59th World Statistics Congress of the International Statistical Institute, Hong Kong, China, 25–30 August 2013. [Google Scholar]
- Brown, S. Measures of Shape: Skewness and Kurtosis. Available online: https://brownmath.com/stat/shape.htm#Skew_Infer (accessed on 6 November 2018).
- Wegner, T. Applied Business Statistics: Methods and Excel-Based Applications; Juta and Company Ltd.: Johannesburg, South Africa, 2010. [Google Scholar]
- Von Hippel, P.T. Mean, Median, and Skew: Correcting a Textbook Rule. J. Stat. Educ. 2005, 13. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Doane, D.P.; Seward, L.E. Measuring Skewness: A Forgotten Statistic? J. Stat. Educ. 2011, 19, 1–18. [Google Scholar] [CrossRef]
- Joanes, D.N.; Gill, C.A. Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. Ser. D 1998, 47, 183–189. [Google Scholar] [CrossRef]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser. A 1922, 222, 309–368. [Google Scholar] [CrossRef] [Green Version]
- White, H. Maximum Likelihood Estimation of Misspecified Models. Econometrica 1982, 50, 1–25. [Google Scholar] [CrossRef]
- Shanmugam, B.; Nielson, B.G.; Prevatt, D.O. Statistical and analytical models for roof components in existing light-framed wood structures. Eng. Struct. 2009, 31, 2607–2616. [Google Scholar] [CrossRef]
- Bass, F.M. The Relationship between Diffusion Rates, Experience Curves, and Demand Elasticities for Consumer Durable Technological Innovations. J. Bus. 1980, 53, S51–S67. [Google Scholar] [CrossRef]
- Takada, H.; Jain, D. Cross-National Analysis of Diffusion of Consumer Durables. J. Mark. 1991, 55. [Google Scholar] [CrossRef]
- Rao, A.G.; Yamada, M. Forecasting with a Repeat Purchase Diffusion Model. Manag. Sci. 1988, 34, 734–752. [Google Scholar] [CrossRef]
- Agarwal, R.; Bayus, B.L. The Market Evolution and Sales Takeoff of Product Innovations. Manag. Sci. 2002, 48, 1024–1041. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, J.; Libai, B.; Muller, E. Riding the Saddle: How Cross-Market Communications Can Create a Major Slump in Sales. J. Mark. 2002, 66, 1–16. [Google Scholar] [CrossRef]
- Bass, F.M. Comments on a New Product Growth for Model Consumer Durables. Manag. Sci. 2004, 50, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
- Golder, P.N.; Tellis, G.J. Growing, Growing, Gone: Cascades, Diffusion, and Turning Points in the Product Life Cycle. Mark. Sci. 2004, 23, 207–218. [Google Scholar] [CrossRef]
- McDade, S.; Oliva, T.A.; Thomas, E. Forecasting Organizational Adoption of High-Technology Product Innovations Sep-arated by Impact: Are Traditional Macro-Level Diffusion Models Appropriate? Ind. Mark. Manag. 2010, 39, 298–307. [Google Scholar] [CrossRef]
- Sundqvist, S.; Frank, L.; Puumalainen, K. The effects of country characteristics, cultural similarity and adoption timing on the diffusion of wireless communications. J. Bus. Res. 2005, 58, 107–110. [Google Scholar] [CrossRef]
- Kohli, A.K. From the Editor: Reflections on the Review Process. J. Market. 2011, 75, 1–4. [Google Scholar] [CrossRef]
- Greenwood, B.N.; Agarwal, R.; Agarwal, R.; Gopal, A. The When and Why of Abandonment: The Role of Organizational Differences in medical technology life cycles. Manag. Sci. 2016, 63, 2948–2966. [Google Scholar] [CrossRef] [Green Version]
- Parvin, A.J., Jr.; Beruvides, M.G. Forecasting technology obsolescence: Assessing the existing literature, a systematic review. In Proceedings of the International Annual Conference of the American Society for Engineering Management, Huntsville, AL, USA, 18–21 October 2017; pp. 1–13. [Google Scholar]
- Snyder, S. The Simple, the Complicated, and the Complex: Educational Reform through the Lens of Complexity Theory; OECD Education Working Paper; OCED: Paris, France, 2013. [Google Scholar] [CrossRef]
- LaPorte, T.R.; Consolini, P.M. Working in Practice but Not in Theory: Theoretical Challenges of “High-Reliability Organizations”. Crisis Manag. 1991, 1, 57. [Google Scholar]
- Pauchant, T.C.; Mitroff, I.I.; Weldon, D.N.; Ventolo, G.F. The ever-expanding scope of industrial crises: A systemic study of the Hinsdale telecommunications outage. Ind. Crisis Q. 1990, 4, 243–261. [Google Scholar] [CrossRef]
- Lin, Z.; Carley, K.M. Proactive or Reactive: An Analysis of the Effect of Agent Style on Organizational Decision-making Performance. Intell. Syst. Account. Financ. Manag. 1993, 2, 271–287. [Google Scholar] [CrossRef] [Green Version]
- Barreca, S.L. Technology Life-Cycles and Technological Obsolescence; BCRI Inc.: Birmingham, UK, 2000. [Google Scholar]
- Ulusoy, G.; Özgür, A.; Bilgiç, T.; Kaylan, A.R.; Payzın, E. A Study on Technology Management Process: The Parts and Components Suppliers in the Turkish Automotive Industry. Technol. Manag. 2001, 5, 245–260. [Google Scholar]
- Deming, W.E. The New Economics for Industry, Government, Education; The MIT Press: Cabridge, MA, USA, 2018. [Google Scholar]
- Abernathy, W.J.; Clark, K.B. Innovation: Mapping the winds of creative destruction. Res. Policy 1985, 14, 3–22. [Google Scholar] [CrossRef]
- Ortt, J.R.; Egyedi, T.M. The Effect of Pre-Existing Standards and Regulations on the Development and Diffusion of Radically New Innovations. Int. J. IT Stand. Stand. Res. 2014, 12, 17–37. [Google Scholar] [CrossRef] [Green Version]
Author(s) | Determined Best-Fit Model | Area of Innovations Examined |
---|---|---|
Grubler [49] | Logistic Model | Transportation |
Meade and Islam [50] | Gompertz and Logistic Model | Telecommunication Innovations |
Kim et al. [51] | Dynamic Model | Telecommunication Innovations |
Kim and Kim [52] | Bass Model | Telecommunication Innovations |
Botelho and Pinto [53] | Logistic Model | Telecommunication Innovations |
Adamuthe and Thampi [39] * | Gompertz and Logistic Model | Computer Innovation |
Sources |
---|
The Cross-country Historical Adoption of Technology (CHAT) Dataset. No. w15319. National Bureau of Economic Research, 2009. [67] Discovered via Horace Dediu, Clayton Christensen Institute [68]. Note: Only U.S. data were extracted and used. |
Comin, D.A., & Hobijn, B. (2004). Cross-country technology adoption: making the theories face the facts. Journal of Monetary Economics 51.1 (2004): 39–83. [69] Discovered via Ritchie, H., & Roser, M. (2017). Technology Diffusion & Adoption. [70] Note: Only U.S. data were extracted and used. |
Cox, W.M., & Alm, R. (1997). Time Well Spent: The Declining Real Cost of Living in America. Annual Report Federal Reserve Bank of Dallas, pages 2–24 [71] Derived and built from the American Association of Home Appliance Manufacturers; Cellular Telephone Industry Association; Electrical Merchandising, various issues; Information Please Almanac; Public Roads Administration; Television Bureau of Advertising; U.S. Bureau of the Census (Census of Housing; Current Population Reports; Historical Statistics of the United States, Colonial Times to 1970; Statistical Abstract of the United States); U.S. Department of Energy; U.S. Department of Transportation. |
# | Technological Innovations | Initial Condition Constant (a) | Growth Rate Constant (r) | Carrying Capacity (C) |
---|---|---|---|---|
1 | Air Conditioning | 21.549 | 0.100 | 89 |
2 | Automatic Transmission | 11.880 | 0.181 | 100 |
3 | Automobile | 8.985 | 0.063 | 92 |
4 | Automobile Air Conditioning | 273.459 | 0.318 | 100 |
5 | Automobile Disk Brakes | 35.762 | 0.646 | 100 |
6 | Automobile Electronic Ignition | 1401.264 | 1.387 | 100 |
7 | Automobile Fuel Injection | 108.391 | 0.532 | 100 |
8 | Blast Oxygen Furnace | 22.935 | 0.456 | 100 |
9 | Broadband Internet | 13.007 | 0.459 | 73 |
10 | Cellular Phone | 6.655 | 0.268 | 92 |
11 | Chlorine-Free Paper Production | 14.018 | 0.432 | 99 |
12 | Color Television | 24.436 | 0.243 | 99 |
13 | Diesel Locomotive | 38.619 | 0.369 | 100 |
14 | Digital Camera | 35.141 | 0.492 | 85 |
15 | Digital Computer | 66.463 | 0.230 | 83.8 |
16 | Digital Versatile Disc (DVD) | 42.170 | 0.639 | 95 |
17 | Digital Video Recorder (DVR) | 356.398 | 0.586 | 94.8 |
18 | Electric Clothes Dryer | 10.251 | 0.109 | 81.3 |
19 | Electric Clothes Washer | 13.348 | 0.076 | 84.9 |
20 | Electric Dishwasher | 12.547 | 0.083 | 67.5 |
21 | Front-Wheel Drive | 17.866 | 0.392 | 88 |
22 | Gas Range/Stove | 21.002 | 0.083 | 100 |
23 | High Definition Television (HDTV) | 6.917 | 0.757 | 89 |
24 | Internet | 6.744 | 0.225 | 88 |
25 | Lockup Automatic Transmission | 3.665 | 0.248 | 89 |
26 | Medical MRI Unit | 13.182 | 0.164 | 78.9 |
27 | Microwave Oven | 37.505 | 0.256 | 98.4 |
28 | Mobile Personal Computer (PC) | 33.717 | 0.273 | 68 |
29 | MPEG Audio Layer-3 (MP3) Player | 3.735 | 1.068 | 46 |
30 | Multi-Valve Engine (% of cars equipped) | 4.879 | 0.169 | 97 |
31 | Power Steering | 11.525 | 0.220 | 100 |
32 | Radial Tire | 21.437 | 0.862 | 100 |
33 | Refrigerator | 43.651 | 0.179 | 100 |
34 | Residential Electric power | 7.105 | 0.111 | 99 |
35 | Smart Meter | 20.175 | 0.668 | 54 |
36 | Smartphone | 10.397 | 0.550 | 77 |
37 | Tablet | 8.305 | 0.908 | 51 |
38 | Telephone (Landline) | 6.561 | 0.055 | 95 |
39 | Television (TV) | 4.348 | 0.372 | 99 |
40 | Vacuum Cleaner | 15.752 | 0.097 | 98.9 |
41 | Variable-Valve Timing Automobile | 53.556 | 0.291 | 92 |
42 | Video Cassette Recorder (VCR) | 5.157 | 0.370 | 88 |
Base Function (Logistic equation) | |
1st derivative | |
2nd derivative |
Count | Mean RMSE | Standard Deviation | Median RMSE | Min RMSE | Max RMSE | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
42 | 0.786 | 0.145 | 0.802 | 0.450 | 1.086 | −0.250 | −0.574 |
# | Technological Innovation | Max Diffusion Rate |
---|---|---|
38 | Telephone (Landline) | 1.317 |
20 | Electric Dishwasher | 1.397 |
3 | Automobile | 1.439 |
19 | Electric Clothes Washer | 1.604 |
22 | Gas Range/Stove | 2.086 |
18 | Electric Clothes Dryer | 2.21 |
1 | Air Conditioning | 2.22 |
40 | Vacuum Cleaner | 2.395 |
34 | Residential Electric power | 2.742 |
26 | Medical MRI Units | 3.226 |
30 | Multi-Valve Engine (% of cars equipped) | 4.107 |
33 | Refrigerator | 4.487 |
2 | Automatic Transmission | 4.53 |
28 | Mobile PC | 4.636 |
15 | Digital Computer | 4.824 |
24 | Internet | 4.956 |
31 | Power Steering | 5.494 |
25 | Lockup Automatic Transmission | 5.52 |
12 | Color Television | 6.025 |
10 | Cellular Phone | 6.156 |
27 | Microwave Oven | 6.292 |
41 | Variable-Valve Timing Automobile | 6.686 |
4 | Automobile Air Conditioning | 7.943 |
42 | VCR | 8.144 |
9 | Broadband Internet | 8.372 |
21 | Front Wheel Drive | 8.622 |
35 | Smart Meter | 9.011 |
39 | TV | 9.204 |
13 | Diesel Locomotive | 9.216 |
14 | Digital Camera | 10.45 |
36 | Smartphone | 10.59 |
11 | Chlorine-Free Paper Production | 10.703 |
8 | Blast Oxygen Furnace | 11.39 |
37 | Tablet | 11.575 |
29 | MP3 Player | 12.287 |
7 | Automobile Fuel Injection | 13.312 |
17 | DVR | 13.89 |
16 | DVD | 15.166 |
5 | Automobile Disk Brakes | 16.144 |
23 | HDTV | 16.851 |
32 | Radial Tire | 21.55 |
6 | Automobile Electronic Ignition | 34.672 |
Count | Mean Diffusion Rate | Standard Deviation | Median Diffusion Rate | Min Diffusion Rate | Max Diffusion Rate | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
42 | 8.177 | 6.383 | 6.489 | 1.317 | 34.67 | 1.999 | 6.212 |
Distribution Density Function Fit | Q-Q Plot MLE Analysis Fit | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Distribution | Location | Shape | Scale | Location | Shape | Scale | Log-Likelihood | Anderson–Darling | p-Value | Akaike Information Criterion (AIC) |
1 | Exponential—Two Parameter | 1.317 | - | 0.146 | - | - | 6.860 | −122.9 | 0.555 | 0.378 | 249.8 |
2 | Gamma—Three Parameter | 1.317 | 0.874 | 7.077 | - | 0.849 | 8.086 | −122.5 | 0.747 | 0.065 | 251.0 |
3 | LogNormal | 1.820 | 0.784 | 1.820 | - | 0.784 | −125.8 | 0.466 | 0.240 | 255.6 | |
4 | Gamma | - | 1.641 | 4.982 | - | 1.927 | 4.244 | −125.8 | 0.233 | >0.25 | 255.7 |
5 | Weibull | - | 1.513 | 8.478 | - | 1.404 | 9.028 | −126.6 | 0.271 | >0.25 | 257.2 |
6 | LogLogistic | - | 2.115 | 5.917 | 1.859 | - | 0.456 | −126.7 | 0.450 | 0.221 | 257.4 |
7 | LogNormal—Three Parameter | 1.877, −0.271 | - | 0.740 | 1.877 | - | 0.740 | −125.8 | 0.409 | 0.330 | 257.6 |
8 | LogLogistic—Three Parameter | 0.159 | 2.119 | 6.226 | 1.829 | - | 0.472 | −126.7 | 0.477 | 0.191 | 259.4 |
9 | Largest Extreme Value | - | - | - | 5.574 | - | 4.165 | −128.2 | 0.367 | >0.25 | 260.4 |
10 | Exponential | - | - | 0.122 | - | - | 8.177 | −130.3 | 1.673 | 0.019 | 262.5 |
11 | Logistic | 8.177 | - | 3.519 | 7.406 | - | 3.169 | −133.3 | 0.702 | 0.039 | 270.6 |
12 | Normal | 8.177 | - | 6.383 | 8.177 | - | 6.306 | −136.9 | 1.334 | 0.002 | 277.9 |
13 | Smallest Extreme Value | - | - | - | 11.82 | - | 9.219 | −151.9 | 4.092 | <0.01 | 307.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvin, A.J., Jr.; Beruvides, M.G. Macro Patterns and Trends of U.S. Consumer Technological Innovation Diffusion Rates. Systems 2021, 9, 16. https://doi.org/10.3390/systems9010016
Parvin AJ Jr., Beruvides MG. Macro Patterns and Trends of U.S. Consumer Technological Innovation Diffusion Rates. Systems. 2021; 9(1):16. https://doi.org/10.3390/systems9010016
Chicago/Turabian StyleParvin, Albert Joseph, Jr., and Mario G. Beruvides. 2021. "Macro Patterns and Trends of U.S. Consumer Technological Innovation Diffusion Rates" Systems 9, no. 1: 16. https://doi.org/10.3390/systems9010016
APA StyleParvin, A. J., Jr., & Beruvides, M. G. (2021). Macro Patterns and Trends of U.S. Consumer Technological Innovation Diffusion Rates. Systems, 9(1), 16. https://doi.org/10.3390/systems9010016