# A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basics and Strengths of the ER Rule in Representing and Aggregating Uncertain Information

_{i}.

## 3. A Hierarchal Risk Assessment Model Using the ER Rule

#### 3.1. Formulation of Risk Assessment Hierarchy

#### 3.2. Representation of Both Qualitative and Quantitative Assessment Information

#### 3.3. Elicitation of Attribute Weights and Information Reliabilities

#### 3.4. Aggregation of Assessment Information Using the ER Rule

#### 3.5. Quantification and Ranking of Risks Using Utility-Based Transformation

## 4. A Case Study on the Fire/Explosion Risk Assessment of Marine Vessels

## 5. Concluding Remarks

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Curtis, P.; Carey, M. Risk Assessment in Practice; Committee of Sponsoring Organizations of the Treadway Commission: USA. Available online: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Governance-Risk-Compliance/dttl-grc-riskassessmentinpractice.pdf (accessed on 5 February 2017).
- Cox, L.A., Jr. Risk Analysis of Complex and Uncertain Systems; Springer: Berlin/Heidelberg, Germany, 2009; Volume 129. [Google Scholar]
- Rausand, M. Risk Assessment: Theory, Methods, and Applications; John Wiley & Sons: New York, NY, USA, 2013; p. 115. [Google Scholar]
- Paul, R.; Garvey, P.; Lansdowne, Z. Risk matrix: An approach for identifying, assessing, and ranking program risks. Air Force J. Logist.
**1998**, 22, 16–23. [Google Scholar] - Markowski, A.; Mannan, M. Fuzzy risk matrix. J. Hazard. Mater.
**2008**, 159, 152–157. [Google Scholar] [CrossRef] [PubMed] - Ni, H.; Chen, A.; Chen, N. Some extensions on risk matrix approach. Saf. Sci.
**2010**, 48, 1269–1278. [Google Scholar] [CrossRef] - Roy, B. Multicriteria Methodology for Decision Aiding; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Mayag, B.; Cailloux, O.; Mousseau, V. MCDA tools and risk analysis: The decision deck project. In Proceedings of the Advances in Safety, Reliability and Risk Management Conference (ESREL), Troyes, France, 18–22 September 2011; p. 377.
- Yang, J.B.; Singh, M.G. An evidential reasoning approach for multiple attribute decision making with uncertainty. IEEE Trans. Syst. Man Cybern.
**1994**, 24, 1–18. [Google Scholar] [CrossRef] - Xu, D.L. An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis. Ann. Oper. Res.
**2012**, 195, 163–187. [Google Scholar] [CrossRef] - Yang, J.B. Rule and utility based evidential reasoning approach for multiple attribute decision analysis under uncertainty. Eur. J. Oper. Res.
**2001**, 131, 31–61. [Google Scholar] [CrossRef] - Yang, J.B.; Xu, D.L. On the evidential reasoning algorithm for multiattribute decision analysis under uncertainty. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
**2002**, 32, 289–304. [Google Scholar] [CrossRef] - Wang, J.Q.; Nie, R.R.; Zhang, H.Y.; Chen, X.H. Intuitionistic fuzzy multi-criteria decision-making method based on evidential reasoning. Appl. Soft Comput.
**2013**, 13, 1823–1831. [Google Scholar] [CrossRef] - Dymova, L.; Sevastjanov, P. A new approach to the rule-base evidential reasoning in the intuitionistic fuzzy setting. Knowl. Based Syst.
**2014**, 61, 109–117. [Google Scholar] [CrossRef] - Yang, J.B.; Xu, D.L. Evidential reasoning rule for evidence combination. Artif. Intell.
**2013**, 205, 1–29. [Google Scholar] [CrossRef] - Yang, J.B.; Xu, D.L. A study on generalising Bayesian inference to evidential reasoning. In Belief Functions: Theory and Applications—Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8764, pp. 180–189. [Google Scholar]
- Chen, Y.; Chen, Y.W.; Xu, X.B.; Pan, C.C.; Yang, J.B.; Yang, G.K. A data-driven approximate causal inference model using the evidential reasoning rule. Knowl. Based Syst.
**2015**, 88, 264–272. [Google Scholar] [CrossRef] - Dempster, A.P. A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B
**1968**, 30, 205–247. [Google Scholar] - Shafer, G. Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Yager, R.R. On the dempster-shafer framework and new combination rules. Inf. Sci.
**1987**, 41, 93–137. [Google Scholar] [CrossRef] - Zadeh, L.A. Review of Shafer’s a mathematical theory of evidence. AI Mag.
**1984**, 5, 81–83. [Google Scholar] - Saaty, L.T. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res.
**1990**, 48, 9–26. [Google Scholar] [CrossRef] - Belton, V.; Stewart, T.J. Multiple Criteria Decision Analysis: An Integrated Approach, 1st ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2002. [Google Scholar]
- Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Springer: Berlin/Heidelberg, Germany, 2013; Volume 44. [Google Scholar]
- Aguarόn, J.; Moreno-Jiménez, J.M. The geometric consistency index: Approximated thresholds. Eur. J. Oper. Res.
**2003**, 147, 137–145. [Google Scholar] [CrossRef] - Bell, D.E.; Raiffa, H.; Tversky, A. Descriptive, Normative, and Prescriptive Interactions in Decision Making. Decision Making: Descriptive, Normative, and Prescriptive Interactions; Cambridge University Press: Cambridge, UK, 1988; Volume 1, pp. 9–32. [Google Scholar]
- Keeney, R.L.; Gregory, R.S. Selecting attributes to measure the achievement of objectives. Oper. Res.
**2005**, 53, 1–11. [Google Scholar] [CrossRef] - Elouedi, Z.; Mellouli, K.; Smets, P. Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Trans. Syst. Man Cybern. Part B Cybern.
**2004**, 34, 782–787. [Google Scholar] [CrossRef] - Rogova, G.L.; Nimier, V. Reliability in information fusion: Literature survey. In Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden, 28 June–1 July 2004; Volume 2, pp. 1158–1165.
- Xu, X.; Li, S.; Song, X.; Wen, C.; Xu, D. The optimal design of industrial alarm systems based on evidence theory. Control Eng. Pract.
**2016**, 46, 142–156. [Google Scholar] [CrossRef] - Fu, C.; Huhns, M.; Yang, S. A consensus framework for multiple attribute group decision analysis in an evidential reasoning context. Inf. Fusion
**2014**, 17, 22–35. [Google Scholar] [CrossRef] - Chen, Y.W.; Xu, D.L.; Yang, J.B.; Tang, D. Fire and Explosion Safety Assessment in Container Line Supply Chain. In Decision Aid Models for Disaster Management and Emergencies; Atlantis Press: Paris, France, 2013; pp. 295–306. [Google Scholar]
- Wang, J. Offshore safety case approach and formal safety assessment of ships. J. Saf. Res.
**2002**, 33, 81–115. [Google Scholar] [CrossRef] - Marine Accident Investigation Branch (MAIB). Annual Report 2012; Marine Accident Investigation Branch: Southampton, UK, 2012.

**Figure 3.**Marine accident investigation branch (MAIB) statistics on fire/explosion risks of UK merchant vessels.

Pairwise Comparisons | Managerial | Operative | Technical | Calculated AHP Weights |
---|---|---|---|---|

Managerial | 1 | 2 | 3 | 0.55 |

Operative | 1/2 | 1 | 1 | 0.24 |

Technical | 1/3 | 1 | 1 | 0.21 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ji, X.; Jiang, J.; Sun, J.; Chen, Y.-W.
A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule. *Systems* **2017**, *5*, 9.
https://doi.org/10.3390/systems5010009

**AMA Style**

Ji X, Jiang J, Sun J, Chen Y-W.
A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule. *Systems*. 2017; 5(1):9.
https://doi.org/10.3390/systems5010009

**Chicago/Turabian Style**

Ji, Xiaoxiao, Jiang Jiang, Jianbin Sun, and Yu-Wang Chen.
2017. "A Hierarchal Risk Assessment Model Using the Evidential Reasoning Rule" *Systems* 5, no. 1: 9.
https://doi.org/10.3390/systems5010009