A Research on Active Control to Synchronize a New 3D Chaotic System
Abstract
:1. Introduction
2. Problem Statement and a Theory for the Proposed Active Control Strategy
Active Controller Design
3. Identical Chaos Synchronization
3.1. Description of the New 3D Chaotic System
3.2. Problem Statement
3.3. Numerical Simulation and Discussion
4. Non-Identical Synchronization
4.1. Problem Formulation
4.2. Simulation Studies
5. Conclusions
- (a)
- The synchronization speed is fast as well as the amplitude of the oscillations is smaller.
- (b)
- In the proposed active synchronization control approach, the eigenvalues of the coefficient matrix of the closed-loop system can be adjusted to have a desirable synchronization time.
- (c)
- Most of the chaotic systems in real practical applications have different structures, thus, we believe that the proposed active control approach will be a helpful tool in synchronizing a class of chaotic/hyperchaotic systems.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tunik, A.A.; Galaguz, T.A. Robust stabilization and nominal performance of the flight control system for small UAV. Appl. Comput. Math. 2004, 3, 34–45. [Google Scholar]
- Koofigar, H.R.; Sheikholeslam, F.; Hosseinnia, S. Robust adaptive synchronization for a general class of uncertain chaotic systems with application to Chua’s Circuit. CHAOS 2011, 21, 0431341–0431349. [Google Scholar] [CrossRef] [PubMed]
- Ge, A.M.; Yang, C.H. The generalized synchronization of a Quantum-CNN chaotic oscillators with different orders. Chaos Solitons Fractals 2006, 35, 980–990. [Google Scholar] [CrossRef]
- Hammami, S. State feedback-based secure image cryptosystem hyperchaotic synchronization. ISA Transit. 2014. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Chen, G.; Liao, X. A new hyperchaotic Lorenz-type system: Generation, analysis, and implementation. Int. J. Circuit Theory Appl. 2010, 39, 865–879. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, C.; Kan, H. An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system. Appl. Math. Comput. 2015, 252, 201–214. [Google Scholar] [CrossRef]
- Ahmad, I.; Saaban, A.; Ibrahim, A.; Al-Hadhrami, S.; Shahzad, M.; Al-Mahrouqi, S.H. A Research on Adaptive Control to Stabilize and Synchronize a Hyperchaotic System with Uncertain Parameters. Int. J. Optim. Control Theor. Appl. IJOCTA 2015, 5, 51–62. [Google Scholar] [CrossRef]
- Chen, H. Global Chaos Synchronization of Chaotic systems via Linear balanced feedback control. Appl. Math. Comput. 2007, 186, 923–931. [Google Scholar] [CrossRef]
- Ojo, K.S.; Njah, A.N.; Ogunjo, S. Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhoffer-van der Pol Oscillator. Pranama J. Phys. 2013, 80, 825–835. [Google Scholar] [CrossRef]
- Ahmad, I.; Saaban, A.; Ibrahim, A.; Shazad, M. Global Chaos Synchronization of New Chaotic system Using Linear Active Control. Complexity 2014, 21, 379–386. [Google Scholar] [CrossRef]
- Akbar, M.; Ozguner, U. Decentralization Sliding Mode Control Design using overlapping decomposition. Autometica 2002, 38, 1713–1718. [Google Scholar] [CrossRef]
- Ahmad, I.; Saaban, A.; Ibrahim, A.; Shazad, M. A Research on the Synchronization of Two Novel Chaotic Systems Based on a Nonlinear Control algorithm. Eng. Technol. Appl. Sci. Res. 2015, 5, 739–747. [Google Scholar]
- Agiza, H.N.; Yassen, M.T. Synchronization of Rossler and Chen Chaotic Dynamical Systems using Active Control. Phys. Lett. A 2001, 278, 191–197. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, W.; Zheng, H. Synchronization of two chaotic nonlinear gyros using active control. Phys. Lett. A 2005, 343, 153–158. [Google Scholar] [CrossRef]
- Ucar, A.; Lonngren, K.E.; Bai, E.W. Chaos synchronization in RCL-shunted Josephson junction via active control. Chaos Solitons Fractals 2007, 31, 105–111. [Google Scholar] [CrossRef]
- Njah, A.N.; Vincent, U.E. Synchronization and anti-synchronization of chaos in an extended Bonho ffer-van der Pol Oscillator using Active control. J. Sound Vib. 2009, 319, 41–49. [Google Scholar] [CrossRef]
- Shahzad, M.; Ahmad, I. Experimental study of synchronization & Antisynchronization for spin orbit problem of Enceladus, International. J. Control Sci. Eng. 2013, 3, 41–47. [Google Scholar]
- Khalil, H.K. Non Linear Systems, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Scott, D.S. On the Accuracy of the Gershgorin Circle Theorem for Bounding the Spread of a Real Symmetric Matrix. Linear Algebra Appl. 1985, 65, 147–155. [Google Scholar] [CrossRef]
- Dorf, R.C.; Bishop, R.H. Modern Control Systems, 9th ed.; Princeton Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Qi, G.; Wang, Z.; Guo, Y. Generation of an eight-wing chaotic attractor from QI-3D four-wing chaotic system. Int. J. Bifurc. Chaos. 2012, 22. [Google Scholar] [CrossRef]
- Liu, W.; Chen, G. Can a three-dimensional smooth autonomous quadratic chaotic system generate a four-scroll attractor. Int. J. Bifurc. Chaos. 2004, 14, 1395–1403. [Google Scholar] [CrossRef]
- Ling, L.U.; Guo, Z.A.; Chao, Z. Synchronization between two different chaotic systems with nonlinear feedback control. Chin. Phys. 2007, 16, 1603–1607. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Saaban, A.B.; Ibrahim, A.B.; Shahzad, M. A Research on Active Control to Synchronize a New 3D Chaotic System. Systems 2016, 4, 2. https://doi.org/10.3390/systems4010002
Ahmad I, Saaban AB, Ibrahim AB, Shahzad M. A Research on Active Control to Synchronize a New 3D Chaotic System. Systems. 2016; 4(1):2. https://doi.org/10.3390/systems4010002
Chicago/Turabian StyleAhmad, Israr, Azizan Bin Saaban, Adyda Binti Ibrahim, and Mohammad Shahzad. 2016. "A Research on Active Control to Synchronize a New 3D Chaotic System" Systems 4, no. 1: 2. https://doi.org/10.3390/systems4010002
APA StyleAhmad, I., Saaban, A. B., Ibrahim, A. B., & Shahzad, M. (2016). A Research on Active Control to Synchronize a New 3D Chaotic System. Systems, 4(1), 2. https://doi.org/10.3390/systems4010002