How to Enhance Enterprises’ Radical Innovation Performance Through Multiple Pathways—A Machine Learning Analysis of SRDI Enterprises in China
Abstract
:1. Introduction
2. Literature Review
2.1. Radical Innovation Performance
2.2. Technology–Organization–Environment Framework
3. Methodology
3.1. Research Framework
3.2. Machine Learning Approaches
4. Variable Selection and Measurement
4.1. Dependent Variable—Radical Innovation Performance
4.2. Independent Variables
5. Analysis and Results
5.1. Data Collection and Processing
5.2. Correlation Analysis
5.3. Group Division
5.4. Decision Rule Analysis
6. Conclusions and Discussions
6.1. Conclusions
6.2. Theoretical Contributions and Managerial Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, H.; Liu, R.; Chen, B. The Rise of Specialized and Innovative Little Giant Enterprises under China’s ‘Dual Circulation’ Development Pattern: An Analysis of Spatial Patterns and Determinants. Land 2023, 12, 259. [Google Scholar] [CrossRef]
- Cai, Q.; Wu, J.; Wu, T.; Chang, P.; Mardani, A. The impact of digital leadership on hidden champions’ competitive advantage: A moderated mediation model of ambidextrous innovation and value co-creation. J. Bus. Res. 2024, 182, 114819. [Google Scholar] [CrossRef]
- Witt, A.; Khalik, M.; Godinez, J. The internationalization of hidden champions from Germany and the UK: An extension to the Born-Again Global path. J. Int. Manag. 2024, 30, 101129. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Liu, S.; Song, M. Mechanism of latecomer enterprises’ technological catch-up in technical standards alliances–An ambidextrous innovation perspective. J. Bus. Res. 2023, 154, 113321. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, Z.; Liu, X. The determinants of hidden champion enterprises: Evidence from China. Financ. Res. Lett. 2023, 58, 104659. [Google Scholar] [CrossRef]
- Ardito, L.; Miroshnychenko, I.; Petruzzelli, A.M.; De Massis, A. Family CEO and radical innovation: A stewardship perspective. Res. Policy 2025, 54, 105144. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Belitski, M.; Caiazza, R.; Phan, P. Collaboration strategies and SME innovation performance. J. Bus. Res. 2023, 164, 114018. [Google Scholar] [CrossRef]
- Hervas-Oliver, J.; Sempere-Ripoll, F.; Moll, C.B. Zooming into firms’ location, capabilities and innovation performance: Does agglomeration foster incremental or radical innovation? Eur. Res. Manag. Bus. Econ. 2022, 28, 100186. [Google Scholar] [CrossRef]
- Lei, L.; Wu, X.; Tan, Z. The growth of hidden champions in China: A cognitive explanation from integrated view. Chin. Manag. Stud. 2020, 14, 613–637. [Google Scholar] [CrossRef]
- Flor, M.L.; Sarah, Y.C.; María, J.O. External knowledge search, absorptive capacity and radical innovation in high-technology firms. Eur. Manag. J. 2018, 36, 183–194. [Google Scholar] [CrossRef]
- Li, W.; Xiao, X.; Yang, X.; Li, L. How Does Digital Transformation Impact Green Supply Chain Development? An Empirical Analysis Based on the TOE Theoretical Framework. Systems 2023, 11, 416. [Google Scholar] [CrossRef]
- wael AL-khatib, A. Drivers of generative artificial intelligence to fostering exploitative and exploratory innovation: A TOE framework. Technol. Soc. 2023, 75, 102403. [Google Scholar] [CrossRef]
- Kumar, A.; Shankar, A. Building a sustainable future with enterprise metaverse in a data-driven era: A technology-organization-environment (TOE) perspective. J. Retail. Consum. Serv. 2024, 81, 103986. [Google Scholar] [CrossRef]
- Winter, S.G. The logic of appropriability: From Schumpeter to Arrow to Teece. Res. Policy 2006, 35, 1100–1106. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Z.; Gong, F. Examining the Mechanism of Political Knowledge on Radical Innovation Performance. Financ. Res. Lett. 2024, 60, 104821. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X. Examining the interaction effect of digitalization and highly educated employees on ambidextrous innovation in Chinese publicly listed SMEs: A knowledge-based view. Technol. Soc. 2024, 78, 102656. [Google Scholar] [CrossRef]
- Genin, A.; Ma, W.; Bhagwat, V.; Bernile, G. Board experiential diversity and corporate radical innovation. Strateg. Manag. J. 2023, 44, 2634–2657. [Google Scholar] [CrossRef]
- Chirico, R.F.; Ireland, D.; Pittino, D.; Sanchez-Famoso, V. Radical innovation in (multi)family owned firms. J. Bus. Ventur. 2022, 37, 106194. [Google Scholar] [CrossRef]
- Pan, M.; Chen, Q.; Xiao, W. Antecedents of radical innovation speed from a knowledge network perspective. Int. J. Prod. Econ. 2024, 271, 109219. [Google Scholar] [CrossRef]
- Chesbrough, H.; Brunswicker, S. A fad or a phenomenon? The adoption of open innovation practices in large firms. Res. Technol. Manag. 2014, 57, 16–25. [Google Scholar]
- Battistella, C.; De Toni, A.F.; Pessot, E. Practicing open innovation: A reference framework. Bus. Process Manag. J. 2017, 23, 1311–1336. [Google Scholar] [CrossRef]
- An, S.Y.; Ngayo, G.; Hong, S.P. Applying Blockchain, Causal Loop Diagrams, and the Analytical Hierarchy Process to Enhance Fifth-Generation Ceramic Antenna Manufacturing: A Technology–Organization–Environment Framework Approach. Systems 2024, 12, 184. [Google Scholar] [CrossRef]
- Hu, B.; Hong, G. Management equity incentives, R&D investment on corporate green innovation. Financ. Res. Lett. 2023, 58, 104533. [Google Scholar]
- Yin, X.; Qi, L.; Ji, J.; Zhou, J. How does innovation spirit affect R&D investment and innovation performance? The moderating role of business environment. J. Innov. Knowl. 2023, 8, 100398. [Google Scholar]
- Jugend, D.; Jabbour, C.J.C.; Scaliza, J.A.A.; Rocha, R.S.; Junior, J.A.G.; Latan, H.; Salgado, M.H. Relationships among open innovation, innovative performance, government support and firm size: Comparing Brazilian firms embracing different levels of radicalism in innovation. Technovation 2018, 74–75, 54–65. [Google Scholar] [CrossRef]
- Xing, X.; Chen, T.; Yang, X.; Liu, T. Digital transformation and innovation performance of China’s manufacturers? A configurational approach. Technol. Soc. 2023, 75, 102356. [Google Scholar] [CrossRef]
- Van de Vrande, V.; De Jong, J.P.J.; Vanhaverbeke, W.; De Rochemont, M. Open innovation in SMEs: Trends, motives and management challenges. Technovation 2009, 29, 423–437. [Google Scholar] [CrossRef]
- Park, B.; Srivastava, M.K.; Gnyawali, D.R. Walking the tight rope of coopetition: Impact of competition and cooperation intensities and balance on firm innovation performance. Ind. Mark. Manag. 2014, 43, 210–221. [Google Scholar] [CrossRef]
- Nam, D.; Lee, J.; Lee, H. Business analytics adoption process: An innovation diffusion perspective. Int. J. Inf. Manag. 2019, 49, 411–423. [Google Scholar] [CrossRef]
- Xu, R.; Shen, Y.; Liu, M.; Li, L.; Xia, X.; Luo, K. Can government subsidies improve innovation performance? Evidence from Chinese listed companies. Econ. Model. 2023, 120, 106151. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Liu, X.; Zhang, H. Can public R&D subsidy facilitate firms’ exploratory innovation? The heterogeneous effects between central and local subsidy programs. Res. Policy 2021, 50, 104221. [Google Scholar]
- Shang, M.; Jia, C.; Zhong, L.; Cao, J. What determines the performance of digital transformation in manufacturing enterprises? A study on the linkage effects based on fs/QCA method. J. Clean. Prod. 2024, 450, 141856. [Google Scholar] [CrossRef]
- Galil, K.; Hauptman, A.; Rosenboim, R.L. Prediction of corporate credit ratings with machine learning: Simple interpretative models. Financ. Res. Lett. 2023, 58, 104648. [Google Scholar] [CrossRef]
- Taweesan, A.; Kanabkaew, T.; Surinkul, N.; Polprasert, C. Integrating clustering algorithms and machine learning to optimize regional snapshot municipal solid waste management for achieving sustainable development goals. Environ. Adv. 2025, 19, 100607. [Google Scholar] [CrossRef]
- Westreich, D.; Lessler, J.; Funk, M.J. Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J. Clin. Epidemiol. 2010, 63, 826–833. [Google Scholar] [CrossRef]
- Ghazi, G.B.M.; Lee, L.C.; Samsudin, A.S.B.; Sino, H. Evaluation of ensemble data preprocessing strategy on forensic gasoline classification using untargeted GC–MS data and classification and regression tree (CART) algorithm. Microchem. J. 2022, 182, 107911. [Google Scholar] [CrossRef]
- Tian, M.; Yao, J.; Xie, J.; Hu, C. Innovation performance feedback and inter-organization knowledge search in high-tech firms: The moderating role of technical knowledge complexity. J. Bus. Res. 2024, 182, 114800. [Google Scholar] [CrossRef]
- Mi, K.; Cui, Z.; Zhu, X.; Zhuang, R. Can Green Credit Improve the Innovation of Enterprise Green Technology: Evidence from 271 Cities in China. Systems 2024, 12, 63. [Google Scholar] [CrossRef]
- Pel, B.; Haxeltine, A.; Avelino, F.; Dumitru, A.; Kemp, R.; Bauler, T.; Kunze, I.; Dorland, J.; Wittmayer, J.; Jørgensen, M.S. Towards a theory of transformative social innovation: A relational framework and 12 propositions. Res. Policy 2020, 49, 104080. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, D.; Lin, F. Does technological diversification matter to firm performance? The moderating role of organizational slack. J. Bus. Res. 2013, 66, 1970–1975. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, X.; Zhang, X.; Jiang, Z.; Wang, Y. Driving forces of digital transformation in Chinese enterprises based on machine learning. Sci. Rep. 2014, 14, 6177. [Google Scholar] [CrossRef]
- Xu, P.; Ye, P.; Zhao, F.; Jahanger, A. Technology spillover and market competitiveness in green credit induced corporate green innovation: An evolutionary game theory and empirical study. Technol. Forecast. Soc. Change 2024, 207, 123622. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y. Study on the Improvement Path of Innovation Performance of “SRDI” Small and Medium-sized Enterprises. Stud. Sci. Sci. 2024, 42, 873–884+896. [Google Scholar]
- Zhang, Z.; Wu, Y.; Wang, H. Corporate financial fragility, R&D investment, and corporate green innovation: Evidence from China. Financ. Res. Lett. 2024, 62, 105190. [Google Scholar]
- Lou, S.; Yao, C.; Zhang, D. How to promote green innovation of high-pollution firms? A fuzzy-set QCA approach based on the TOE framework. Environ. Dev. Sustain. 2023, 16, 1–25. [Google Scholar] [CrossRef]
- Stefan, I.; Bengtsson, L. Unravelling appropriability mechanisms and openness depth effects on firm performance across stages in the innovation process. Technol. Forecast. Soc. Change 2017, 120, 252–260. [Google Scholar] [CrossRef]
- Rodríguez, G.M.J.; Fernández, L.S.; Rodeiro, P.D. Foreign knowledge sources and innovation: Differences across large and small and medium-size multinational enterprises (MNEs). Int. Rev. Econ. Financ. 2024, 92, 741–757. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Lou, Y.; Jin, J. Impact of different patent cooperation network models on innovation performance of technology-based SMEs. Technol. Anal. Strateg. Manag. 2020, 32, 724–738. [Google Scholar] [CrossRef]
- Hong, J.; Feng, B.; Wu, Y.; Wang, L. Do government grants promote innovation efficiency in China’s high-tech industries? Technovation 2016, 57–58, 4–13. [Google Scholar] [CrossRef]
- Yu, A.; Zhang, Q.; Yu, R.; Cheng, Y. More is better or in waste? A resource allocation measure of government grants for facilitating firm innovations. Technol. Forecast. Soc. Change 2023, 197, 122918. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, J. Investment deregulation and innovation performance of Chinese private firms. J. Financ. Stab. 2024, 70, 101207. [Google Scholar] [CrossRef]
- Sun, Z.; Cai, C.; Tan, H.; Ji, H.; Tian, G.L. Corporate ESG Performance and Competitive Strategies from the Perspective of Financial Markets: Strategic Significance of Firm Size. Financ. Res. Lett. 2025, 77, 107080. [Google Scholar] [CrossRef]
- Ji, H.; Yu, Z.; Tian, G.; Wang, D.; Wen, Y. Market Competition, Environmental, Social and Corporate Governance Investment, and Enterprise Green Innovation Performance. Financ. Res. Lett. 2025, 77, 107057. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, Y.; Zhou, Q.; Yao, S. R&D investment management and ambidextrous technological innovation: Evidence from Chinese listed firms. Int. Rev. Econ. Financ. 2023, 88, 843–860. [Google Scholar]
Variable Types | Variable Names | Variable Abbreviations | Variable Specifications |
---|---|---|---|
Dependent Variable | Radical Innovation Performance | RIP | The natural logarithm of the invention patent volume plus one. |
Technological Context | Technological Diversification | TD | The entropy of the IPC-3 contained in the patents of the enterprise. |
R&D Investment | RD | The average ratio of R&D investment to operating revenue. | |
Organizational Context | Organizational Size | OS | The average value of the enterprise’s total assets. |
Market Competitiveness | MC | The ratio of the average operating profit to the average operating income. | |
Environmental Context | Government Subsidies | GSs | The natural logarithm of the total amount of various types of government subsidies of enterprises. |
Competitive Pressure | CP | One minus the Herfindahl index value. |
Cluster | Type | Number | Technological Context | Organizational Context | Environmental Context | Proportion of High RIP (%) | |||
---|---|---|---|---|---|---|---|---|---|
RD | TD | MC | OS | GSs | CP | ||||
Cluster 1 | Mature and stable | 83 | 0.34 | 0.64 | 0.26 | 0.86 | 0.75 | 0.51 | 60.20 |
Cluster 2 | Innovation driven | 225 | 0.83 | 0.43 | 0.65 | 0.58 | 0.64 | 0.52 | 63.10 |
Cluster 3 | Small and vulnerable | 223 | 0.34 | 0.50 | 0.47 | 0.32 | 0.27 | 0.38 | 35.90 |
Cluster | Technological Context | Organizational Context | Environmental Context | Support Degree (%) | Confidence Degree (%) | Decision Results | |||
---|---|---|---|---|---|---|---|---|---|
RD | TD | MC | OS | GSs | CP | ||||
Mature and stable | - | - | - | ≤0.154 | - | - | 9.6 | 100.0 | Low |
≤0.490 | - | - | >0.154 | - | - | 25.3 | 95.2 | High | |
>0.490 | - | ≤0.467 | >0.154 | - | - | 47.0 | 66.7 | High | |
>0.490 | - | >0.467 | >0.154 | - | - | 18.1 | 73.7 | Low | |
Innovation driven | - | ≤0.028 | ≤1.00 | - | - | - | 2.7 | 100.0 | Low |
- | (0.028,0.817] | ≤1.00 | - | - | - | 50.7 | 60.5 | High | |
- | ≤0.817 | >1.00 | - | - | - | 9.3 | 81.0 | Low | |
≤0.008 | >0.817 | - | - | - | - | 3.6 | 75.0 | High | |
(0.008,0.078] | >0.817 | - | - | - | - | 4.9 | 81.8 | Low | |
>0.078 | >0.817 | - | - | - | - | 28.9 | 93.8 | High | |
Small and vulnerable | - | ≤0.659 | - | - | ≤0.046 | - | 21.1 | 87.2 | Low |
≤0.538 | >0.659 | - | - | ≤0.046 | - | 0.4 | 100.0 | Low | |
>0.538 | >0.659 | - | - | ≤0.046 | - | 0.9 | 100.0 | High | |
- | - | - | ≤0.142 | >0.046 | - | 3.1 | 100.0 | Low | |
- | - | - | >0.142 | >0.046 | - | 74.4 | 56.6 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Qiu, H.; Chen, J.; Li, H.; Wan, X. How to Enhance Enterprises’ Radical Innovation Performance Through Multiple Pathways—A Machine Learning Analysis of SRDI Enterprises in China. Systems 2025, 13, 198. https://doi.org/10.3390/systems13030198
Zhang L, Qiu H, Chen J, Li H, Wan X. How to Enhance Enterprises’ Radical Innovation Performance Through Multiple Pathways—A Machine Learning Analysis of SRDI Enterprises in China. Systems. 2025; 13(3):198. https://doi.org/10.3390/systems13030198
Chicago/Turabian StyleZhang, Liping, Hanhui Qiu, Jinyi Chen, Hailin Li, and Xiaoji Wan. 2025. "How to Enhance Enterprises’ Radical Innovation Performance Through Multiple Pathways—A Machine Learning Analysis of SRDI Enterprises in China" Systems 13, no. 3: 198. https://doi.org/10.3390/systems13030198
APA StyleZhang, L., Qiu, H., Chen, J., Li, H., & Wan, X. (2025). How to Enhance Enterprises’ Radical Innovation Performance Through Multiple Pathways—A Machine Learning Analysis of SRDI Enterprises in China. Systems, 13(3), 198. https://doi.org/10.3390/systems13030198