Research on the Nonlinear and Interactive Effects of Multidimensional Influencing Factors on Urban Innovation Cooperation: A Method Based on an Explainable Machine Learning Model
Abstract
:1. Introduction
2. Literature Review
2.1. Urban Innovation Cooperation
2.2. Multidimensional Influencing Factors
2.3. Explainable Machine Learning Model
3. Data and Methods
3.1. Research Area
3.2. Data Source
3.3. The Selection of Multidimensional Influencing Factors
3.3.1. Physical Space Dimension
3.3.2. Human Resource Dimension
3.3.3. Scientific and Technological Dimension
3.3.4. Social and Economic Dimension
3.4. Methodology
3.4.1. Urban Innovation Cooperation Intensity Network
3.4.2. eXtreme Gradient Boosting (XGBoost)
3.4.3. SHapley Additive exPlanations and Partial Dependence Plots
3.4.4. Architecture of Explainable Machine Learning Model
4. Result
4.1. The Evolution of the Innovation Cooperation Intensity Network
4.2. Factor Screening and Comparison of Multiple Models
4.3. The Relative Importance of Factors Explained by SHAP
4.4. The Nonlinear Effect Based on PDP
4.4.1. The Nonlinear Effect of the Scientific and Technological Dimension
4.4.2. The Nonlinear Effect of the Human Resource Dimension
4.4.3. The Nonlinear Effect of the Social and Economic Dimension
4.4.4. The Nonlinear Effect of the Physical Space Dimension
4.5. Interaction Effect of Multidimensional Influencing Factors
5. Discussion
5.1. Phased Characteristics of Urban Innovation Cooperation
5.2. The Nonlinear Effect of Multidimensional Influencing Factors
5.3. The Interaction Effect of Multidimensional Influencing Factors
5.4. Targeted Management Under Phased Characteristics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fitjar, R.D.; Rodríguez-Pose, A. Firm Collaboration and Modes of Innovation in Norway. Res. Policy 2013, 42, 128–138. [Google Scholar] [CrossRef]
- Jin, P.Z.C.; Peng, C.; Song, M. Macroeconomic uncertainty, high-level innovation, and urban green development performance in China. China Econ. Rev. 2019, 55, 1–18. [Google Scholar] [CrossRef]
- Pan, X.; Chu, J.; Pan, X.; Wang, M. A comparative analysis of changes in urban innovation spatial correlation effect in China and its driving factors. Asian J. Technol. Innov. 2020, 29, 1–15. [Google Scholar] [CrossRef]
- Bao, L. The mechanism of regional collaborative innovation. J. Knowl. Econ. 2024, 15, 1–25. [Google Scholar] [CrossRef]
- Ziegler, R. Social Innovation as a Collaborative Concept. Innov.-Eur. J. Soc. Sci. Res. 2017, 30, 388–405. [Google Scholar] [CrossRef]
- Deng, J.; Chen, T.; Zhang, Y. Effect of Collaborative Innovation on High-Quality Economic Development in Beijing–Tianjin–Hebei Urban Agglomeration—An Empirical Analysis Based on the Spatial Durbin Model. Mathematics 2023, 11, 1909. [Google Scholar] [CrossRef]
- Gao, X.; Guan, J.; Rousseau, R. Mapping collaborative knowledge production in China using patent co-inventorships. Scientometrics 2011, 88, 343–362. [Google Scholar] [CrossRef]
- Mattes, J. Dimensions of Proximity and Knowledge Bases: Innovation between Spatial and Non-spatial Factors. Reg. Stud. 2012, 46, 1085–1099. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Wang, S. Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities. Growth Chang. 2020, 51, 440–463. [Google Scholar] [CrossRef]
- Fan, F.; Dai, S.; Zhang, K.; Ke, H. Innovation agglomeration and urban hierarchy: Evidence from Chinese cities. Appl. Econ. 2021, 53, 6300–6318. [Google Scholar] [CrossRef]
- Dai, H.; Liu, Y.; Li, H.; Cao, A. Depth and Width of Collaborative Innovation Networks and High-Quality Development. Sustainability 2024, 16, 5909. [Google Scholar] [CrossRef]
- Ben Letaifa, S.; Rabeau, Y. Too close to collaborate? How geographic proximity could impede entrepreneurship and innovation. J. Bus. Res. 2013, 66, 2071–2078. [Google Scholar] [CrossRef]
- Mtar, K.; Belazreg, W. Causal Nexus Between Innovation, Financial Development, and Economic Growth: The Case of OECD Countries. J. Knowl. Econ. 2020, 12, 310–341. [Google Scholar] [CrossRef]
- Li, X.; Liu, X. The impact of the collaborative innovation network embeddedness on enterprise green innovation performance. Front. Environ. Sci. 2023, 11, 1190697. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Crescenzi, R. Research and Development, Spillovers, Innovation Systems, and the Genesis of Regional Growth in Europe. Reg. Stud. 2008, 42, 51–67. [Google Scholar] [CrossRef]
- Faggian, A.; McCann, P. Universities, Agglomerations and Graduate Human Capital Mobility. Tijdschr. Voor Econ. En Soc. Geogr. 2009, 100, 210–223. [Google Scholar] [CrossRef]
- Crescenzi, R.; Rodríguez-Pose, A. R&D, Socio-Economic Conditions, and Regional Innovation in the U.S. Growth Change 2013, 44, 287–320. [Google Scholar] [CrossRef]
- Zeng, J.; Ning, Z.; Lassala, C.; Ribeiro-Navarrete, S. Effect of innovative-city pilot policy on industry–university–research collaborative innovation. J. Bus. Res. 2023, 162, 113867. [Google Scholar] [CrossRef]
- Huaichao, C.; Zhang, J.; Fei, Y. Has Institutional Support Promoted the Collaborative Innovation of Industry-University-Research? The Moderation Effect of Absorptive Capacity of Enterprise and the Mediation Effect of Cooperative Tightness of Industry-University-Research. Sci. Res. Manag. 2020, 41, 1–11. [Google Scholar]
- Liu, H.; Liu, Z.; Lai, Y.; Li, L. Factors Influencing Collaborative Innovation Project Performance: The Case of China. Sustainability 2021, 13, 7380. [Google Scholar] [CrossRef]
- Li, Y.; Ye, M. Evolution and Development Strategy of Collaborative Innovation Network among Cities in the Yangtze River Delta-Based on Urban Innovation Index Data. Afr. Asian Stud. 2021, 20, 291–323. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, K.L.; Zhang, C. Spatiotemporal Patterns and Influencing Factors of Green Development Efficiency in China’s Urban Agglomerations. Sustain. Cities Soc. 2022, 85, 104069. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, Y.; Wang, X. Spillover and Re-Spillover in China’s Collaborative Innovation. Int. Reg. Sci. Rev. 2022, 46, 38–68. [Google Scholar] [CrossRef]
- Yao, L.; Li, J.; Li, J. Urban Innovation and Intercity Patent Collaboration: A Network Analysis of China’s National Innovation System. Technol. Forecast. Soc. Change 2020, 160, 120185. [Google Scholar] [CrossRef]
- Barbosa, S.; Sáiz, P.; Zofío, J.L. The emergence and historical evolution of innovation networks: On the factors promoting and hampering patent collaboration in technological lagging economies. Res. Policy 2024, 53, 104990. [Google Scholar] [CrossRef]
- Tang, C.; Qiu, P.; Dou, J. The impact of borders and distance on knowledge spillovers—Evidence from cross-regional scientific and technological collaboration. Technol. Soc. 2022, 70, 102014. [Google Scholar] [CrossRef]
- Zhao, Y.; Lyu, J.; Huesig, S. The Impact of Innovative City Cooperation Network on City’s Innovation Efficiency: Evidence from China. J. Knowl. Econ. 2023, 15, 10349–10383. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, Z.; Wang, J.; Cao, C. A tale of two ties: The impact of a focal city’s direct and indirect collaboration networks on regional innovation. J. Technol. Transf. 2024, 49, 1–42. [Google Scholar] [CrossRef]
- Jiang, S.; Sweet, L.; Blougouras, G.; Brenning, A.; Li, W.; Reichstein, M.; Denzler, J.; Shangguan, W.; Yu, G.; Huang, F.; et al. How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences. Earth’s Futur. 2024, 12, e2024EF004540. [Google Scholar] [CrossRef]
- Sun, B.; Sun, T.; Jiao, P. Spatio-Temporal Segmented Traffic Flow Prediction with ANPRS Data Based on Improved XGBoost. J. Adv. Transp. 2021, 2021, 1–24. [Google Scholar] [CrossRef]
- Shapley, L. A Value for n-Person Games. In Contributions to the Theory of Games II; Kuhn, H., Tucker, A., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–317. [Google Scholar]
- Behera, R.K.; Bala, P.K.; Rana, N.P. Creation of sustainable growth with explainable artificial intelligence: An empirical insight from consumer packaged goods retailers. J. Clean. Prod. 2023, 399, 136605. [Google Scholar] [CrossRef]
- Rui, J. Exploring the association between the settlement environment and residents’ positive sentiments in urban villages and formal settlements in Shenzhen. Sustain. Cities Soc. 2023, 98, 104851. [Google Scholar] [CrossRef]
- Liu, C.; Peng, Z.; Liu, L.; Wu, H.; Kinne, J.; Cai, M.; Li, S. XAI in geographic analysis of innovation: Evaluating proximity factors in the innovation networks of Chinese technology companies through web-based data. Appl. Geogr. 2024, 171, 103373. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Liu, J.; Ren, K.; Ming, T.; Qu, J.; Guo, W.; Li, H. Investigating the effects of local weather, streamflow lag, and global climate information on 1-month-ahead streamflow forecasting by using XGBoost and SHAP: Two case studies involving the contiguous USA. Acta Geophys. 2023, 71, 905–925. [Google Scholar] [CrossRef]
- Gottmann, J. Megalopolitan Systems around the World. Ekistics 1976, 41, 109–113. [Google Scholar]
- Li, Y.; Phelps, N.A. Articulating China’s Science and Technology: Knowledge Collaboration Networks Within and Beyond the Yangtze River Delta Megalopolis in China. Chin. Geogr. Sci. 2018, 28, 247–260. [Google Scholar] [CrossRef]
- Zhang, S.; Cai, J.; Wei, Y.; Yang, Q.; Li, L. Characteristics of urban network and city functions in the Yangtze River Delta Region: A multi-scale perspective. Heliyon 2024, 10, e30377. [Google Scholar] [CrossRef]
- Andersson, D.E.; Gunessee, S.; Matthiessen, C.W.; Find, S. The Geography of Chinese Science. Environ. Plan. A Econ. Space 2014, 46, 2950–2971. [Google Scholar] [CrossRef]
- Lei, X.-P.; Zhao, Z.-Y.; Zhang, X.; Chen, D.-Z.; Huang, M.-H.; Zhao, Y.-H. The inventive activities and collaboration pattern of university–industry–government in China based on patent analysis. Scientometrics 2012, 90, 231–251. [Google Scholar] [CrossRef]
- Li, Y.; Phelps, N.A. Knowledge polycentricity and the evolving Yangtze River Delta megalopolis. Reg. Stud. 2017, 51, 1035–1047. [Google Scholar] [CrossRef]
- Zoltan, J.A.; Anselin, L.; Varga, A. Patents and Innovation Counts as Measures of Regional Production of New Knowledge. Res. Policy 2002, 31, 1069–1085. [Google Scholar]
- Griliches, Z. Patent Statistics as Economic Indicators: A Survey; University of Chicago Press: Chicago, IL, USA, 1998. [Google Scholar]
- Zhang, J.; Chang, Y.; Zhang, L.; Li, D. Do technological innovations promote urban green development?—A spatial econometric analysis of 105 cities in China. J. Clean. Prod. 2018, 182, 395–403. [Google Scholar] [CrossRef]
- Li, Y.; Du, R. Polycentric urban structure and innovation: Evidence from a panel of Chinese cities. Reg. Stud. 2022, 56, 113–127. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, C. Intra- and inter-regional research collaboration across organizational boundaries: Evolving patterns in China. Technol. Forecast. Soc. Chang. 2015, 96, 215–231. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Banerjee, A.V.; Duflo, E.; Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 2020, 145, 102442. [Google Scholar] [CrossRef]
- Mohmand, Y.T.; Wang, A.; Saeed, A. The impact of transportation infrastructure on economic growth: Empirical evidence from Pakistan. Transp. Lett. 2017, 9, 63–69. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, J.; Fan, F.; Wang, Z. High-speed rail, urban form, and regional innovation: A time-varying difference-in-differences approach. Technol. Anal. Strat. Manag. 2022, 36, 195–209. [Google Scholar] [CrossRef]
- Wang, L.; Acheampong, R.A.; He, S. High-speed rail network development effects on the growth and spatial dynamics of knowledge-intensive economy in major cities of China. Cities 2020, 105, 102772. [Google Scholar] [CrossRef]
- McGuirk, H.; Lenihan, H.; Hart, M. Measuring the impact of innovative human capital on small firms’ propensity to innovate. Res. Policy 2015, 44, 965–976. [Google Scholar] [CrossRef]
- Ren, Y.; Tian, Y.; Xiao, X. Spatial effects of transportation infrastructure on the development of urban agglomeration integration: Evidence from the Yangtze River Economic Belt. J. Transp. Geogr. 2022, 104, 103431. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Feldman, M.P. R&D Spillovers and the Geography of Innovation and Production. Am. Econ. Rev. 1996, 86, 630–640. [Google Scholar]
- Sawicki, D. The Rise of the Creative Class: And How It’s Transforming Work, Leisure, Community and Everyday Life. Am. Plan. Association. J. Am. Plan. Assoc. 2003, 69, 90. [Google Scholar]
- Lawton, P.; Murphy, E.; Redmond, D. Residential Preferences of the ‘Creative Class’? Cities 2013, 31, 47–56. [Google Scholar] [CrossRef]
- Doll, C.N.; Muller, J.-P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Wang, X.; Sutton, P.C.; Qi, B. Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery. ISPRS Int. J. Geo-Inf. 2019, 8, 580. [Google Scholar] [CrossRef]
- Sarif, N.; Roy, A.K. Measuring urban shrinkage in India using night-light data from DMSP-OLS and VIIRS-NPP satellite sensors. Cities 2024, 152, 105176. [Google Scholar] [CrossRef]
- Huallachain, B.O.; Leslie, T.F. Rethinking the regional knowledge production function. J. Econ. Geogr. 2007, 7, 737–752. [Google Scholar] [CrossRef]
- Duranton, G.; Diego, P. Micro-Foundations of Urban Agglomeration Economies. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2004; pp. 2063–2117. [Google Scholar]
- Ezcurra, R.; Pascual, P.; Rapún, M. Regional Specialization in the European Union. Reg. Stud. 2006, 40, 601–616. [Google Scholar] [CrossRef]
- Boschma, R.; Ron, M. Constructing an Evolutionary Economic Geography. J. Econ. Geogr. 2007, 7, 537–548. [Google Scholar] [CrossRef]
- Kogler, D.F. Evolutionary Economic Geography–Theoretical and Empirical Progress. Reg. Stud. 2015, 49, 705–711. [Google Scholar] [CrossRef]
- Ding, C.; Liu, C.; Zheng, C.; Li, F. Digital Economy, Technological Innovation and High-Quality Economic Development: Based on Spatial Effect and Mediation Effect. Sustainability 2022, 14, 216. [Google Scholar] [CrossRef]
- Liu, L.B. An Ensemble Framework for Explainable Geospatial Machine Learning Models. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104036. [Google Scholar] [CrossRef]
- Lu, X.; Sun, L.; Zhang, Y.; Du, J.; Wang, G.; Huang, X.; Li, X.; Wang, X. Predicting Cd accumulation in crops and identifying nonlinear effects of multiple environmental factors based on machine learning models. Sci. Total. Environ. 2024, 951, 175787. [Google Scholar] [CrossRef]
- Mousa, S.R.; Bakhit, P.R.; Osman, O.A.; Ishak, S. A Comparative Analysis of Tree-Based Ensemble Methods for Detecting Imminent Lane Change Maneuvers in Connected Vehicle Environments. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 268–279. [Google Scholar] [CrossRef]
- Zhou, S.; Jia, W.; Wang, M.; Liu, Z.; Wang, Y.; Wu, Z. Synergistic assessment of multi-scenario urban waterlogging through data-driven decoupling analysis in high-density urban areas: A case study in Shenzhen, China. J. Environ. Manag. 2024, 369, 122330. [Google Scholar] [CrossRef]
- Li, Z.; Shi, H.; Yang, X.; Tang, H. Investigating the nonlinear relationship between surface solar radiation and its influencing factors in North China Plain using interpretable machine learning. Atmospheric Res. 2022, 280, 106406. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Lundberg, S. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar]
- Wu, X.; Huang, X. Screening of urban environmental vulnerability indicators based on coefficient of variation and anti-image correlation matrix method. Ecol. Indic. 2023, 150, 110196. [Google Scholar] [CrossRef]
- Grömping, U. Variable Importance in Regression Models. Wiley Interdiscip. Rev.Comput. Stat. 2015, 7, 137–152. [Google Scholar] [CrossRef]
- Chatterjee, S. A New Coefficient of Correlation. J. Am. Stat. Assoc. 2021, 116, 2009–2022. [Google Scholar] [CrossRef]
- Ahlgren, P.; Jarneving, B.; Rousseau, R. Requirements for a Cocitation Similarity Measure, with Special Reference to Pearson’s Correlation Coefficient. J. Am. Soc. Inf. Sci. Technol. 2003, 54, 550–560. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Doan, Q.C.; Ma, J.; Chen, S.; Zhang, X. Nonlinear and Threshold Effects of the Built Environment, Road Vehicles and Air Pollution on Urban Vitality. Landsc. Urban Plan. 2025, 253, 105204. [Google Scholar] [CrossRef]
- Agarwal, V.; Singh, M.; Kumar, K.P. A Comprehensive Review of Linear Regression, Random Forest, Xgboost, and Svr: Integrating Machine Learning and Actuarial Science for Health Insurance Pricing. International Conference on Data Science, Computation and Security, Indore, India, 2–4 November 2023; Springer Nature: Singapore, 2023; Volume 922, pp. 355–367. [Google Scholar]
- Demir, S.; Şahin, E.K. Liquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported by genetic algorithm-based feature selection and parameter optimization from the perspective of data processing. Environ. Earth Sci. 2022, 81, 1–17. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Approximating XGBoost with an interpretable decision tree. Inf. Sci. 2021, 572, 522–542. [Google Scholar] [CrossRef]
- Mardia, K.V.; Kent, J.T.; Taylor, C.C. Multivariate Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2024; Volume 88. [Google Scholar]
- Forman, C.; van Zeebroeck, N. From Wires to Partners: How the Internet Has Fostered R&D Collaborations Within Firms. Manag. Sci. 2012, 58, 1549–1568. [Google Scholar] [CrossRef]
- Riemer, K.; Schellhammer, S. Collaboration in the Digital Age: Diverse, Relevant and Challenging. In Collaboration in the Digital Age: How Technology Enables Individuals, Teams and Businesses; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–12. [Google Scholar]
- Kaldor, N. Capital Accumulation and Economic Growth. In The Theory of Capital: Proceedings of a Conference Held by the International Economic Association; Palgrave Macmillan: London, UK, 1961. [Google Scholar]
- Iwaisako, T.; Futagami, K. Patent Protection, Capital Accumulation, and Economic Growth. Econ. Theory 2013, 52, 631–668. [Google Scholar] [CrossRef]
- Andersson, R.; Quigley, J.M.; Wilhelmsson, M. Urbanization, productivity, and innovation: Evidence from investment in higher education. J. Urban Econ. 2009, 66, 2–15. [Google Scholar] [CrossRef]
- Wei, L.; Lin, B.; Zheng, Z.; Wu, W.; Zhou, Y. Does fiscal expenditure promote green technological innovation in China? Evidence from Chinese cities. Environ. Impact Assess. Rev. 2023, 98, 106945. [Google Scholar] [CrossRef]
- Han, S.; Wang, M.; Liu, Q.; Wang, R.; Ou, G.; Zhang, L. The Influence of Land Disposition Derived from Land Finance on Urban Innovation in China: Mechanism Discussion and Empirical Evidence. Int. J. Environ. Res. Public Health 2022, 19, 3212. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Kapur, D.; McHale, J.; Oettl, A. Brain drain or brain bank? The impact of skilled emigration on poor-country innovation. J. Urban Econ. 2011, 69, 43–55. [Google Scholar] [CrossRef]
- Docquier, F.; Rapoport, H. Globalization, Brain Drain, and Development. J. Econ. Lit. 2012, 50, 681–730. [Google Scholar] [CrossRef]
- Kaasa, A.; Vadi, M. How Does Culture Contribute to Innovation? Evidence from European Countries? Evidence from European Countries. Econ. Innov. New Technol. 2010, 19, 583–604. [Google Scholar] [CrossRef]
- Cooke, P.N.; Lazzeretti, L. Creative Cities, Cultural Clusters and Local Economic Development; Edward Elgar Publishing: Cheltenham, UK, 2008. [Google Scholar]
- Anas, A.; Arnott, R.; Small, K.A. Urban Spatial Structure. J. Econ. Lit. 1998, 101, 1426–1464. [Google Scholar]
- Glaeser, E.L.; Gottlieb, J.D. The Wealth of Cities: Agglomeration Economies and Spatial Equilibrium in the United States. J. Econ. Lit. 2009, 47, 983–1028. [Google Scholar] [CrossRef]
- Fumagalli, F.; Muschalik, M.; Kolpaczki, P.; Hüllermeier, E.; Hammer, B. Shap-Iq: Unified Approximation of Any-Order Shapley Interactions. Adv. Neural Inf. Process. Syst. 2024, 36, 11515–11551. [Google Scholar]
- Yue, H. Investigating the Influence of Streetscape Environmental Characteristics on Pedestrian Crashes at Intersections Using Street View Images and Explainable Machine Learning. Accid. Anal. Prev. 2024, 205, 107693. [Google Scholar] [CrossRef]
- Moon, H.; Mariadoss, B.J.; Johnson, J.L. Collaboration with Higher Education Institutions for Successful Firm Innovation. J. Bus. Res. 2019, 99, 534–541. [Google Scholar] [CrossRef]
- De Noni, I.; Orsi, L.; Belussi, F. The Role of Collaborative Networks in Supporting the Innovation Performances of Lagging-Behind European Regions. Res. Policy 2018, 47, 1–13. [Google Scholar] [CrossRef]
- Mao, C.; Yu, X.; Zhou, Q.; Harms, R.; Fang, G. Knowledge growth in university-industry innovation networks—Results from a simulation study. Technol. Forecast. Soc. Chang. 2020, 151, 119746. [Google Scholar] [CrossRef]
- Lewis, R. Chicago Made: Factory Networks in the Industrial Metropolis; University of Chicago Press: Chicago, IL, USA, 2019. [Google Scholar]
- Hassink, R. Locked in Decline? On the Role of Regional Lock-Ins in Old Industrial Areas. In The Handbook of Evolutionary Economic Geography; Edward Elgar Publishing: Cheltenham, UK, 2010. [Google Scholar]
- Du, Y.; Wang, M.; Yin, Y. Research on innovation cooperation network of Chinese universities based on patent data. J. Eng. Technol. Manag. 2023, 71, 101784. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Y.; Xia, M.; Zhang, Y. Effects of the Talent War on Urban Innovation in China: A Difference-in-Differences Analysis. Land 2022, 11, 1485. [Google Scholar] [CrossRef]
- Verginer, L.; Riccaboni, M. Talent goes to global cities: The world network of scientists’ mobility. Res. Policy 2021, 50, 104127. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, K.; Li, P. Innovation ecosystems and national talent competitiveness: A country-based comparison using fsQCA. Technol. Forecast. Soc. Chang. 2023, 194, 122733. [Google Scholar] [CrossRef]
- Florida, R.; Charlotta, M. Talent, Cities, and Competitiveness; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Cruz, S.S.; Paulino, S.R. Experiences of innovation in public services for sustainable urban mobility. J. Urban Manag. 2022, 11, 108–122. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, H. The Impact of Public Services on Urban Innovation—A Study Based on Differences and Mechanisms. Sustainability 2022, 14, 9630. [Google Scholar] [CrossRef]
- Feldman, M.P.; Audretsch, D.B. Innovation in Cities:: Science-Based Diversity, Specialization and Localized Competition. Eur. Econ. Rev. 1999, 43, 409–429. [Google Scholar] [CrossRef]
- Andersson, D.; Berger, T.; Prawitz, E. Making a Market: Infrastructure, Integration, and the Rise of Innovation. Rev. Econ. Stat. 2023, 105, 258–274. [Google Scholar] [CrossRef]
- Cheng, T.; Selden, M. The Origins and Social Consequences of China’s HukouSystem. China Q. 1994, 139, 644–668. [Google Scholar] [CrossRef]
- Orsini, N.; Moore, A.; Wolk, A. Interaction Analysis Based on Shapley Values and Extreme Gradient Boosting: A Realistic Simulation and Application to a Large Epidemiological Prospective Study. Front. Nutr. 2022, 9, 871768. [Google Scholar] [CrossRef]
- Dakhli, M.; De Clercq, D. Human Capital, Social Capital, and Innovation: A Multi-Country Study. Entrep. Reg. Dev. 2004, 16, 107–128. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R. Artificial Intelligence and Sustainable Development During Urbanization: Perspectives on Ai R&D Innovation, Ai Infrastructure, and Ai Market Advantage. Sustain. Dev. 2024, 23, 1136–1156. [Google Scholar]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Tu, W.; Zhang, L.; Sun, D.; Mao, W. Evaluating high-tech industries’ technological innovation capability and spatial pattern evolution characteristics: Evidence from China. J. Innov. Knowl. 2023, 8, 100287. [Google Scholar] [CrossRef]
- Appio, F.P.; Lima, M.; Paroutis, S. Understanding Smart Cities: Innovation Ecosystems, Technological Advancements, and Societal Challenges. Technol. Forecast. Soc. Change 2019, 142, 1–14. [Google Scholar] [CrossRef]
Different Dimensions | Influencing Factors | Explanation |
---|---|---|
Physical Space dimension | CLA | Per capita construction land area: Total construction land/total population |
UR | Urbanization rate: Urban population/total population | |
UPA | Urban park area per capita: Total urban park area/total population | |
URL | Per capita urban road length: Total length of urban roads/total population | |
HM | Per capita highway mileage: Total urban highway mileage/total population | |
NPP | National Polar-orbiting Partnership: city night light data | |
Human Resource dimension | UPD | Urban Population Density: Total population/total area |
CT | Number of college teachers: The total number of college teachers in that year | |
CS | Number of college students: The total number of college students in that year | |
AAS | Average Annual Wage of Staff: Average wage of working staff in the current year | |
PF | Total passenger flow of the city in the current year | |
Scientific and Technological dimension | EE | Education expenditure per capita: Government education expenditure/total population |
STE | Per capita Scientific and Technological Expenditure of the government: Government research expenditure/total population | |
EDS | Number of Enterprises above Designated Size in Industry: Industrial enterprises with an annual income of more than CNY 20 million | |
IL | Industrial land size per capita: Total industrial land area/total population | |
NCU | Number of colleges and universities in that year | |
Social and Economic dimension | FDI | Per capita Foreign Direct Investment |
GPSE | Government General Public Service Expenditure/total population | |
IS | Industrial structure: Output value of tertiary industry/total output value | |
LC | Public library collections per capita: Public library collections/total population | |
IU | Number of Internet Users | |
PIV | Added value of the primary industry | |
SIV | Added value of the secondary industry | |
TIV | Added value of the tertiary industry |
Factor | CLA | NPP | UPD | AAS | UPA | GPSE | URL | PF | HM | STE | EDS | IS | IU | LC | NCU | FDI | IL | UR | PIV | SIV | TIV |
VIF | 1.26 | 1.62 | 1.60 | 7.06 | 2.50 | 5.673 | 2.80 | 2.15 | 2.56 | 4.05 | 5.52 | 2.38 | 7.91 | 2.09 | 4.021 | 2.35 | 2.48 | 5.07 | 1.45 | 7.81 | 7.68 |
Model | MSE | RMSE | MAE | R2 |
---|---|---|---|---|
Linear Regression | 1.925926 | 1.387782 | 1.137931 | 0.569081 |
Support Vector Regression Random Forest | 3.016528 0.837297 | 1.736834 0.915052 | 1.413283 0.702528 | 0.325052 0.812654 |
Gradient Boosting Decision Tree | 0.883495 | 0.939891 | 0.749674 | 0.802345 |
Extreme Gradient Boosting | 0.633541 | 0.790763 | 0.638109 | 0.855971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, X.; Zhang, Z.; Zhang, S.; Li, K. Research on the Nonlinear and Interactive Effects of Multidimensional Influencing Factors on Urban Innovation Cooperation: A Method Based on an Explainable Machine Learning Model. Systems 2025, 13, 187. https://doi.org/10.3390/systems13030187
Wang R, Wang X, Zhang Z, Zhang S, Li K. Research on the Nonlinear and Interactive Effects of Multidimensional Influencing Factors on Urban Innovation Cooperation: A Method Based on an Explainable Machine Learning Model. Systems. 2025; 13(3):187. https://doi.org/10.3390/systems13030187
Chicago/Turabian StyleWang, Rui, Xingping Wang, Zhonghu Zhang, Siqi Zhang, and Kailun Li. 2025. "Research on the Nonlinear and Interactive Effects of Multidimensional Influencing Factors on Urban Innovation Cooperation: A Method Based on an Explainable Machine Learning Model" Systems 13, no. 3: 187. https://doi.org/10.3390/systems13030187
APA StyleWang, R., Wang, X., Zhang, Z., Zhang, S., & Li, K. (2025). Research on the Nonlinear and Interactive Effects of Multidimensional Influencing Factors on Urban Innovation Cooperation: A Method Based on an Explainable Machine Learning Model. Systems, 13(3), 187. https://doi.org/10.3390/systems13030187