Sustainable Development of Information Dissemination: A Review of Current Fake News Detection Research and Practice
Abstract
:1. Introduction
- We investigate the current research status of fake news detection technology, including datasets, research methods and technical models. On this basis, it discusses the use of multimodal technology and innovatively summarizes and analyzes the research progress in communication, linguistics, psychology and other disciplines in fake news detection.
- We summarize the general fake news detection methods, which are divided into three aspects according to the development of different stages. At the same time, it analyzes explainable fake news detection and reviews the research related to explainable model structure and explainable model behavior.
- Based on the summary of the research progress on fake news detection, we propose an explainable triangular communication system consisting of humans, machines and theory that can be constructed, aiming to establish a people-centered, sustainable human–machine interaction information dissemination system. On this basis, the promising research topics of fake news detection technology in the future are discussed.
2. Overview
2.1. Literature Search
2.2. Fake News Classification
2.3. Research Methods of Fake News Detection
2.3.1. Content-Based Detection Method
2.3.2. Detection Method Based on Social Network
2.3.3. Knowledge-Based Detection Method
2.4. Multimodal Fake News Detection
2.5. Multidisciplinary Research Progress
2.5.1. Psychology
2.5.2. Neuro-Cognitive Science
2.5.3. Linguistics
2.5.4. Communication Science
2.6. Mitigation of the Spread of Malicious Content
3. General Technical Model of Fake News Detection
3.1. Fake News Detection based on Machine Learning
3.2. Fake News Detection based on Deep Learning
3.3. Fake News Detection Based on Pre-Training Model
4. Dataset
- (1)
- Claims/Statements
- (2)
- Posts
- (3)
- Articles
5. Explainable Fake News Detection
5.1. Explainable Model Structure
5.2. Explainable Model Behavior
5.3. Human-Machine-Theory Triangle Communication System
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Apuke, O.D.; Omar, B. Fake news and COVID-19: Modelling the predictors of fake news sharing among social media users. Telemat. Inform. 2021, 56, 101475. [Google Scholar] [CrossRef] [PubMed]
- Van Der Linden, S.; Roozenbeek, J.; Compton, J. Inoculating against fake news about COVID-19. Front. Psychol. 2020, 2020, 2928. [Google Scholar] [CrossRef]
- Rocha, Y.M.; de Moura, G.A.; Desidério, G.A.; de Oliveira, C.H.; Lourenço, F.D.; de Figueiredo Nicolete, L.D. The impact of fake news on social media and its influence on health during the COVID-19 pandemic: A systematic review. J. Public Health 2021, 31, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Moscadelli, A.; Albora, G.; Biamonte, M.A.; Giorgetti, D.; Innocenzio, M.; Paoli, S.; Lorini, C.; Bonanni, P.; Bonaccorsi, G. Fake news and Covid-19 in Italy: Results of a quantitative observational study. Int. J. Environ. Res. Public Health 2020, 17, 5850. [Google Scholar] [CrossRef]
- Zhou, X.; Zafarani, R. A survey of fake news: Fundamental theories, detection methods, and opportunities. ACM Comput. Surv. (CSUR) 2020, 53, 1–40. [Google Scholar] [CrossRef]
- Zhang, X.; Ghorbani, A.A. An overview of online fake news: Characterization, detection, and discussion. Inf. Process. Manag. 2020, 57, 102025. [Google Scholar] [CrossRef]
- Hu, L.; Wei, S.; Zhao, Z.; Wu, B. Deep learning for fake news detection: A comprehensive survey. AI Open 2022, 3, 133–155. [Google Scholar] [CrossRef]
- Athira, A.B.; Kumar, S.M.; Chacko, A.M. A systematic survey on explainable AI applied to fake news detection. Eng. Appl. Artif. Intell. 2023, 122, 106087. [Google Scholar]
- Hotho, A.; Nürnberger, A.; Paaß, G. A brief survey of text mining. J. Lang. Technol. Comput. Linguist. 2005, 20, 19–62. [Google Scholar] [CrossRef]
- Zhou, Z.-H. Machine Learning; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Chowdhary, K.; Chowdhary, K.R. Natural language processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020; pp. 603–649. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. OpenAI Blog 2018. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Peng, N.; Dredze, M. Named Entity Recognition for Chinese Social Media with Jointly Trained Embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; Association for Computational Linguistics: Lisbon, Portugal, 2015; pp. 548–554. [Google Scholar]
- Shu, K.; Mahudeswaran, D.; Wang, S.; Lee, D.; Liu, H. Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big Data 2020, 8, 171–188. [Google Scholar] [CrossRef]
- Wang, W.Y. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. arXiv 2017, arXiv:1705.00648. [Google Scholar]
- Zellers, R.; Holtzman, A.; Rashkin, H.; Bisk, Y.; Farhadi, A.; Roesner, F.; Choi, Y. Defending Against Neural Fake News. arXiv 2020, arXiv:1905.12616. [Google Scholar]
- Potthast, M.; Kiesel, J.; Reinartz, K.; Bevendorff, J.; Stein, B. A stylometric inquiry into hyperpartisan and fake news. arXiv 2017, arXiv:1702.05638. [Google Scholar]
- Rashkin, H.; Choi, E.; Jang, J.Y.; Volkova, S.; Choi, Y. Truth of varying shades: Analyzing language in fake news and political fact-checking. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 9–11 September 2017; pp. 2931–2937. [Google Scholar]
- Sheikhi, S. An effective fake news detection method using WOA-xgbTree algorithm and content-based features. Appl. Soft Comput. 2021, 109, 107559. [Google Scholar] [CrossRef]
- Shu, K.; Wang, S.; Liu, H. Understanding user profiles on social media for fake news detection. In Proceedings of the 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), IEEE, Miami, FL, USA, 10–12 April 2018; pp. 430–435. [Google Scholar]
- Shu, K.; Wang, S.; Liu, H. Beyond news contents: The role of social context for fake news detection. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, VIC, Australia, 11–15 February 2019; pp. 312–320. [Google Scholar]
- Monti, F.; Frasca, F.; Eynard, D.; Mannion, D.; Bronstein, M.M. Fake news detection on social media using geometric deep learning. arXiv 2019, arXiv:1902.06673. [Google Scholar]
- Raza, S.; Ding, C. Fake news detection based on news content and social contexts: A transformer-based approach. Int. J. Data Sci. Anal. 2022, 13, 335–362. [Google Scholar] [CrossRef]
- Pan, J.Z.; Pavlova, S.; Li, C.; Li, N.; Li, Y.; Liu, J. Content based fake news detection using knowledge graphs. In Proceedings of the Semantic Web–ISWC 2018: 17th International Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; Proceedings, Part I 17. Springer: Cham, Switzerland, 2018; pp. 669–683. [Google Scholar]
- Hu, L.; Yang, T.; Zhang, L.; Zhong, W.; Tang, D.; Shi, C.; Duan, N.; Zhou, M. Compare to the knowledge: Graph neural fake news detection with external knowledge. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, 1–6 August 2021; pp. 754–763. [Google Scholar]
- Bauskar, S.; Badole, V.; Jain, P.; Chawla, M. Natural language processing based hybrid model for detecting fake news using content-based features and social features. Int. J. Inf. Eng. Electron. Bus. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Wu, Y.; Zhan, P.; Zhang, Y.; Wang, L.; Xu, Z. Multimodal fusion with co-attention networks for fake news detection. In Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online Event, 1–6 August 2021; pp. 2560–2569. [Google Scholar]
- Wang, L.; Zhang, C.; Xu, H.; Zhang, S.; Xu, X.; Wang, S. Cross-modal Contrastive Learning for Multimodal Fake News Detection. arXiv 2023, arXiv:2302.14057. [Google Scholar]
- Amri, S.; Sallami, D.; Aïmeur, E. Exmulf: An explainable multimodal content-based fake news detection system. In Proceedings of the International Symposium on Foundations and Practice of Security, Paris, France, 7–10 December 2021; Springer: Cham, Switzerland, 2021; pp. 177–187. [Google Scholar]
- Cao, J.; Qi, P.; Sheng, Q.; Yang, T.; Guo, J.; Li, J. Exploring the role of visual content in fake news detection. In Disinformation, Misinformation, and Fake News in Social Media: Emerging Research Challenges and Opportunities; Springer: Cham, Switzerland, 2020; pp. 141–161. [Google Scholar]
- Qi, P.; Cao, J.; Yang, T.; Guo, J.; Li, J. Exploiting multi-domain visual information for fake news detection. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), IEEE, Beijing, China, 8–11 November 2019; pp. 518–527. [Google Scholar]
- Singhal, S.; Shah, R.R.; Chakraborty, T.; Kumaraguru, P.; Satoh, S. Spotfake: A multi-modal framework for fake news detection. In Proceedings of the 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), IEEE, Singapore, 11–13 September 2019; pp. 39–47. [Google Scholar]
- Qian, S.; Wang, J.; Hu, J.; Fang, Q.; Xu, C. Hierarchical multi-modal contextual attention network for fake news detection. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 153–162. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Zhou, X.; Zafarani, R.; Shu, K.; Liu, H. Fake news: Fundamental theories, detection strategies and challenges. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, VIC, Australia, 11–15 February 2019; pp. 836–837. [Google Scholar]
- Zhou, X.; Jain, A.; Phoha, V.V.; Zafarani, R. Fake news early detection: An interdisciplinary study. arXiv 2019, arXiv:1904.11679. [Google Scholar]
- Guo, B.; Ding, Y.; Sun, Y.; Ma, S.; Li, K.; Yu, Z. The mass, fake news, and cognition security. Front. Comput. Sci. 2021, 15, 153806. [Google Scholar] [CrossRef]
- Greifeneder, R.; Jaffe, M.; Newman, E.; Schwarz, N. The Psychology of Fake News: Accepting, Sharing, and Correcting Misinformation; Routledge: London, UK, 2021. [Google Scholar] [CrossRef]
- Abraham, A.; Hanne, T.; Castillo, O.; Gandhi, N.; Rios, T.N.; Hong, T.-P. Hybrid Intelligent Systems: 20th International Conference on Hybrid Intelligent Systems (HIS 2020), 14–16 December 2020; Springer Nature: Cham, Switzerland, Online, 2021; Volume 1375. [Google Scholar]
- Bordia, P.; DiFonzo, N. 10 Rumors during organizational change: A motivational analysis. In The Psychology of Organizational Change: Viewing Change from the Employee’s Perspective; Cambridge University Press: Cambridge, UK, 2013; p. 232. [Google Scholar]
- Pennycook, G.; Rand, D.G. The psychology of fake news. Trends Cogn. Sci. 2021, 25, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Arisoy, C.; Mandal, A.; Saxena, N. Human Brains Can’t Detect Fake News: A Neuro-Cognitive Study of Textual Disinformation Susceptibility. In Proceedings of the 2022 19th Annual International Conference on Privacy, Security & Trust (PST), IEEE, Fredericton, NB, Canada, 22–24 August 2022; pp. 1–12. [Google Scholar]
- Giachanou, A.; Ríssola, E.A.; Ghanem, B.; Crestani, F.; Rosso, P. The role of personality and linguistic patterns in discriminating between fake news spreaders and fact checkers. In Proceedings of the Natural Language Processing and Information Systems: 25th International Conference on Applications of Natural Language to Information Systems, NLDB 2020, Saarbrücken, Germany, 24–26 June 2020; Proceedings 25. Springer: Cham, Switzerland, 2020; pp. 181–192. [Google Scholar]
- Choudhary, A.; Arora, A. Linguistic feature based learning model for fake news detection and classification. Expert Syst. Appl. May 2021, 169, 114171. [Google Scholar] [CrossRef]
- Shu, K.; Cui, L.; Wang, S.; Lee, D.; Liu, H. defend: Explainable fake news detection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 395–405. [Google Scholar]
- Rubin, V.L. Disinformation and misinformation triangle: A conceptual model for “fake news” epidemic, causal factors and interventions. J. Doc. 2019, 75, 1013–1034. [Google Scholar] [CrossRef]
- Egelhofer, J.L.; Lecheler, S. Fake news as a two-dimensional phenomenon: A framework and research agenda. Ann. Int. Commun. Assoc. 2019, 43, 97–116. [Google Scholar] [CrossRef]
- Di Domenico, G.; Sit, J.; Ishizaka, A.; Nunan, D. Fake news, social media and marketing: A systematic review. J. Bus. Res. 2021, 124, 329–341. [Google Scholar] [CrossRef]
- Apostol, E.-S.; Truică, C.-O.; Paschke, A. ContCommRTD: A Distributed Content-based Misinformation-aware Community Detection System for Real-Time Disaster Reporting. arXiv 2023, arXiv:2301.12984. [Google Scholar]
- Truică, C.-O.; Apostol, E.-S.; Nicolescu, R.-C.; Karras, P. MCWDST: A Minimum-Cost Weighted Directed Spanning Tree Algorithm for Real-Time Fake News Mitigation in Social Media. arXiv 2023, arXiv:2302.12190. [Google Scholar]
- Coban, Ö.; Truică, C.-O.; Apostol, E.-S. CONTAIN: A Community-based Algorithm for Network Immunization. arXiv 2023, arXiv:2303.01934. [Google Scholar] [CrossRef]
- Chen, C.; Tong, H.; Prakash, B.A.; Tsourakakis, C.E.; Eliassi-Rad, T.; Faloutsos, C.; Chau, D.H. Node Immunization on Large Graphs: Theory and Algorithms. IEEE Trans. Knowl. Data Eng. 2016, 28, 113–126. [Google Scholar] [CrossRef]
- Petrescu, A.; Truică, C.-O.; Apostol, E.S.; Karras, P. Sparse Shield: Social Network Immunization vs. Harmful Speech. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, New York, NY, USA, 1–5 November 2021; p. 1436. [Google Scholar]
- Zhang, Y.; Prakash, B.A. Data-Aware Vaccine Allocation Over Large Networks. ACM Trans. Knowl. Discov. Data 2015, 10, 1–32. [Google Scholar] [CrossRef]
- Oshikawa, R.; Qian, J.; Wang, W.Y. A survey on natural language processing for fake news detection. arXiv 2018, arXiv:1811.00770. [Google Scholar]
- Shu, K.; Sliva, A.; Wang, S.; Tang, J.; Liu, H. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explor. Newsl. 2017, 19, 22–36. [Google Scholar] [CrossRef]
- Reis, J.C.; Correia, A.; Murai, F.; Veloso, A.; Benevenuto, F. Supervised learning for fake news detection. IEEE Intell. Syst. 2019, 34, 76–81. [Google Scholar] [CrossRef]
- Alonso, M.A.; Vilares, D.; Gómez-Rodríguez, C.; Vilares, J. Sentiment analysis for fake news detection. Electronics 2021, 10, 1348. [Google Scholar] [CrossRef]
- Nadeem, M.I.; Ahmed, K.; Li, D.; Zheng, Z.; Alkahtani, H.K.; Mostafa, S.M.; Mamyrbayev, O.; Abdel Hameed, H. EFND: A semantic, visual, and socially augmented deep framework for extreme fake news detection. Sustainability 2022, 15, 133. [Google Scholar] [CrossRef]
- Goldani, M.H.; Momtazi, S.; Safabakhsh, R. Detecting fake news with capsule neural networks. Appl. Soft Comput. 2021, 101, 106991. [Google Scholar] [CrossRef]
- Huh, M.; Liu, A.; Owens, A.; Efros, A.A. Fighting fake news: Image splice detection via learned self-consistency. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 101–117. [Google Scholar]
- Zhou, P.; Han, X.; Morariu, V.I.; Davis, L.S. Learning rich features for image manipulation detection. In Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1053–1061. [Google Scholar]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; Volume 3, Available online: https://api.semanticscholar.org/CorpusID:12946615 (accessed on 26 August 2023).
- Hosmer Jr, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Hunt, E.B.; Marin, J.; Stone, P.J. Experiments in Induction; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Antony Vijay, J.; Anwar Basha, H.; Arun Nehru, J. A dynamic approach for detecting the fake news using random forest classifier and NLP. In Computational Methods and Data Engineering: Proceedings of ICMDE 2020, Volume 2; Springer: Singapore, 2020; pp. 331–341. [Google Scholar]
- Eldesoky, I.; Moussa, F. Fake news detection based on word and document embedding using machine learning classifiers. J. Theor. Appl. Inf. Technol. 2021, 99, 1891–1901. [Google Scholar]
- Lai, C.-M.; Chen, M.-H.; Kristiani, E.; Verma, V.K.; Yang, C.-T. Fake News Classification Based on Content Level Features. Appl. Sci. 2022, 12, 1116. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Ilie, V.-I.; Truică, C.-O.; Apostol, E.-S.; Paschke, A. Context-Aware Misinformation Detection: A Benchmark of Deep Learning Architectures Using Word Embeddings. IEEE Access 2021, 9, 162122–162146. [Google Scholar] [CrossRef]
- Ma, J.; Gao, W.; Mitra, P.; Kwon, S.; Jansen, B.J.; Wong, K.-F.; Cha, M. Detecting rumors from microblogs with recurrent neural networks. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016. [Google Scholar]
- Kaliyar, R.K.; Goswami, A.; Narang, P.; Sinha, S. FNDNet–a deep convolutional neural network for fake news detection. Cogn. Syst. Res. 2020, 61, 32–44. [Google Scholar] [CrossRef]
- Huang, Q.; Zhou, C.; Wu, J.; Wang, M.; Wang, B. Deep structure learning for rumor detection on twitter. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. arXiv 2015, arXiv:1511.05493. [Google Scholar]
- Low, J.F.; Fung, B.C.M.; Iqbal, F.; Huang, S.-C. Distinguishing between fake news and satire with transformers. Expert Syst. Appl. 2022, 187, 115824. [Google Scholar] [CrossRef]
- Jwa, H.; Oh, D.; Park, K.; Kang, J.M.; Lim, H. exbake: Automatic fake news detection model based on bidirectional encoder representations from transformers (bert). Appl. Sci. 2019, 9, 4062. [Google Scholar] [CrossRef]
- Gundapu, S.; Mamidi, R. Transformer based Automatic COVID-19 Fake News Detection System. arXiv 2021, arXiv:2101.00180. [Google Scholar]
- Truică, C.-O.; Apostol, E.-S. It’s All in the Embedding! Fake News Detection Using Document Embeddings. Mathematics 2023, 11, 508. [Google Scholar] [CrossRef]
- Truică, C.-O.; Apostol, E.-S.; Paschke, A. Awakened at CheckThat! 2022: Fake News Detection using BiLSTM and Sentence Transformer. In Proceedings of the CLEF 2022: Conference and Labs of the Evaluation Forum, Bologna, Italy, 5–8 September 2022. [Google Scholar]
- Truică, C.-O.; Apostol, E.-S. MisRoBÆRTa: Transformers versus Misinformation. Mathematics 2022, 10, 569. [Google Scholar] [CrossRef]
- Kaliyar, R.K.; Goswami, A.; Narang, P. FakeBERT: Fake news detection in social media with a BERT-based deep learning approach. Multimed. Tools Appl. 2021, 80, 11765–11788. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language representations. arXiv 2019, arXiv:1909.11942. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Gunel, B.; Du, J.; Conneau, A.; Stoyanov, V. Supervised contrastive learning for pre-trained language model fine-tuning. arXiv 2020, arXiv:2011.01403. [Google Scholar]
- Nakamura, K.; Levy, S.; Wang, W.Y. r/Fakeddit: A New Multimodal Benchmark Dataset for Fine-grained Fake News Detection. arXiv 2019, arXiv:1911.03854. [Google Scholar]
- Shang, L.; Zhang, Y.; Zhang, D.; Wang, D. FauxWard: A Graph Neural Network Approach to Fauxtography Detection Using Social Media Comments. Soc. Netw. Anal. Min. 2020, 10, 76. [Google Scholar] [CrossRef]
- Boididou, C.; Papadopoulos, S.; Zampoglou, M.; Apostolidis, L.; Papadopoulou, O.; Kompatsiaris, Y. Detection and visualization of misleading content on Twitter. Int. J. Multimed. Info. Retr. 2018, 7, 71–86. [Google Scholar] [CrossRef]
- Heller, S.; Rossetto, L.; Schuldt, H. The PS-Battles Dataset—An Image Collection for Image Manipulation Detection. arXiv 2018, arXiv:1804.04866. [Google Scholar]
- Thorne, J.; Vlachos, A.; Christodoulopoulos, C.; Mittal, A. FEVER: A large-scale dataset for Fact Extraction and VERification. arXiv 2018, arXiv:1803.05355. [Google Scholar]
- Ferreira, W.; Vlachos, A. Emergent: A Novel Data-Set for Stance Classification[EB/OL]; ACL: San Diego, CA, USA, 2016; Available online: http://aclweb.org/anthology/N/N16/N16-1138.pdf (accessed on 26 August 2023).
- Popat, K.; Mukherjee, S.; Strötgen, J.; Weikum, G. Credibility Assessment of Textual Claims on the Web. In Proceedings of the 25th ACM international on conference on information and knowledge management, Indianapolis, IN, USA, 24–28 October 2016; p. 2178. [Google Scholar]
- Popat, K.; Mukherjee, S.; Yates, A.; Weikum, G. DeClarE: Debunking Fake News and False Claims using Evidence-Aware Deep Learning. arXiv 2018, arXiv:1809.06416. [Google Scholar] [CrossRef]
- Hanselowski, A.; Stab, C.; Schulz, C.; Li, Z.; Gurevych, I. A Richly Annotated Corpus for Different Tasks in Automated Fact-Checking. arXiv 2019, arXiv:1911.01214. [Google Scholar]
- Augenstein, I.; Lioma, C.; Wang, D.; Lima, L.C.; Hansen, C.; Hansen, C.; Simonsen, J.G. MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims. arXiv 2019, arXiv:1909.03242. [Google Scholar]
- Thorne, J.; Vlachos, A.; Cocarascu, O.; Christodoulopoulos, C.; Mittal, A. The FEVER2.0 Shared Task. In Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), Hong Kong, China, 3 November 2019; Association for Computational Linguistics: Hong Kong, China, 2019; pp. 1–6. [Google Scholar]
- Aly, R.; Guo, Z.; Schlichtkrull, M.; Thorne, J.; Vlachos, A.; Christodoulopoulos, C.; Cocarascu, O.; Mittal, A. FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured information. arXiv 2021, arXiv:2106.05707. [Google Scholar]
- Nakov, P.; Barrón-Cedeño, A.; Elsayed, T.; Suwaileh, R.; Màrquez, L.; Zaghouani, W.; Atanasova, P.; Kyuchukov, S.; Martino, G. Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. In Proceedings of the 9th International Conference of the CLEF Association, CLEF 2018, Avignon, France, 10–14 September 2018; pp. 372–387, ISBN 978-3-319-98931-0. [Google Scholar]
- Elsayed, T.; Nakov, P.; Barrón-Cedeño, A.; Hasanain, M.; Suwaileh, R.; Martino, G.D.S.; Atanasova, P. Overview of the CLEF-2019 CheckThat!: Automatic Identification and Verification of Claims. arXiv 2021, arXiv:2109.15118. [Google Scholar]
- Barron-Cedeno, A.; Elsayed, T.; Nakov, P.; Martino, G.D.S.; Hasanain, M.; Suwaileh, R.; Haouari, F.; Babulkov, N.; Hamdan, B.; Nikolov, A.; et al. Overview of CheckThat! 2020: Automatic Identification and Verification of Claims in Social Media 2020. In Proceedings of the 11th International Conference of the CLEF Association, CLEF 2020, Thessaloniki, Greece, 22–25 September 2020. [Google Scholar]
- Baly, R.; Mohtarami, M.; Glass, J.; Marquez, L.; Moschitti, A.; Nakov, P. Integrating Stance Detection and Fact Checking in a Unified Corpus. arXiv 2018, arXiv:1804.08012. [Google Scholar]
- Khouja, J. Stance Prediction and Claim Verification: An Arabic Perspective. arXiv 2020, arXiv:2005.10410. [Google Scholar]
- Nørregaard, J.; Derczynski, L. DanFEVER: Claim verification dataset for Danish. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa), Reykjavik, Iceland (Online), 31 May–2 June 2021; Linköping University Electronic Press: Linköping, Sweden, 2021; pp. 422–428. [Google Scholar]
- Kotonya, N.; Toni, F. Explainable Automated Fact-Checking for Public Health Claims. arXiv 2020, arXiv:2010.09926. [Google Scholar]
- Wadden, D.; Lin, S.; Lo, K.; Wang, L.L.; van Zuylen, M.; Cohan, A.; Hajishirzi, H. Fact or Fiction: Verifying Scientific Claims. arXiv 2020, arXiv:2004.14974. [Google Scholar]
- Lee, N.; Bang, Y.; Madotto, A.; Fung, P. Misinformation Has High Perplexity. arXiv 2020, arXiv:2006.04666. [Google Scholar]
- Hossain, T.; Logan Iv, R.L.; Ugarte, A.; Matsubara, Y.; Young, S.; Singh, S. COVIDLies: Detecting COVID-19 Misinformation on Social Media. In Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020, Online, 20 November 2020; Association for Computational Linguistics: Online, 2020. [Google Scholar]
- Jiang, Y.; Bordia, S.; Zhong, Z.; Dognin, C.; Singh, M.; Bansal, M. HoVer: A Dataset for Many-Hop Fact Extraction And Claim Verification. arXiv 2020, arXiv:2011.03088. [Google Scholar]
- Patwa, P.; Sharma, S.; Pykl, S.; Guptha, V.; Kumari, G.; Akhtar, M.S.; Ekbal, A.; Das, A.; Chakraborty, T. Fighting an Infodemic: COVID-19 Fake News Dataset. In Combating Online Hostile Posts in Regional Languages during Emergency Situation; Chakraborty, T., Shu, K., Bernard, H.R., Liu, H., Akhtar, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1402, pp. 21–29. [Google Scholar]
- Mitra, T.; Gilbert, E. CREDBANK: A Large-Scale Social Media Corpus With Associated Credibility Annotations. Proc. Int. AAAI Conf. Web Soc. Media 2015, 9, 258–267. [Google Scholar] [CrossRef]
- Zubiaga, A.; Liakata, M.; Procter, R.; Hoi, G.W.S.; Tolmie, P. Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads. PLoS ONE 2016, 11, e0150989. [Google Scholar] [CrossRef]
- Santia, G.; Williams, J. BuzzFace: A News Veracity Dataset with Facebook User Commentary and Egos. Proc. Int. AAAI Conf. Web Soc. Media 2018, 12, 531–540. [Google Scholar] [CrossRef]
- Singer-Vine, C.S.; Strapagiel, L.; Shaban, H.; Hall, E. Jeremy Hyperpartisan Facebook Pages Are Publishing False and Misleading Information at an Alarming Rate[EB/OL]. Available online: https://www.buzzfeednews.com/article/craigsilverman/partisan-fb-pages-analysis (accessed on 26 August 2023).
- Li, Y.; Jiang, B.; Shu, K.; Liu, H. MM-COVID: A Multilingual and Multimodal Data Repository for Combating COVID-19 Disinformation. arXiv 2020, arXiv:2011.04088. [Google Scholar]
- Hanselowski, A.; PVS, A.; Schiller, B.; Caspelherr, F.; Chaudhuri, D.; Meyer, C.M.; Gurevych, I. A Retrospective Analysis of the Fake News Challenge Stance Detection Task. arXiv 2018, arXiv:1806.05180. [Google Scholar]
- Szpakowski, M. Fake News Corpus[CP/OL]. Available online: https://github.com/several27/FakeNewsCorpus (accessed on 26 August 2023).
- Gruppi, M.; Horne, B.D.; Adalı, S. NELA-GT-2020: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles. arXiv 2021, arXiv:2102.04567. [Google Scholar]
- Vlachos, A.; Riedel, S. Fact Checking: Task definition and dataset construction. In Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science, Baltimore, MD, USA, 26 June 2014; Association for Computational Linguistics: Baltimore, MD, USA, 2014; pp. 18–22. [Google Scholar]
- Horne, B.; Adali, S. This Just In: Fake News Packs A Lot In Title, Uses Simpler, Repetitive Content in Text Body, More Similar To Satire Than Real News. Proc. Int. AAAI Conf. Web Soc. Media 2017, 11, 759–766. [Google Scholar] [CrossRef]
- Pathak, A.; Srihari, R. BREAKING! Presenting Fake News Corpus for Automated Fact Checking. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Florence, Italy, 2019; pp. 357–362. [Google Scholar]
- Ahmed, H.; Traore, I.; Saad, S. Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques. In Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments; Traore, I., Woungang, I., Awad, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2017; Volume 10618, pp. 127–138. ISBN 978-3-319-69154-1. [Google Scholar]
- Pérez-Rosas, V.; Kleinberg, B.; Lefevre, A.; Mihalcea, R. Automatic Detection of Fake News. arXiv 2017, arXiv:1708.07104. [Google Scholar]
- Torabi Asr, F.; Taboada, M. Big Data and quality data for fake news and misinformation detection. Big Data Soc. 2019, 6, 2053951719843310. [Google Scholar] [CrossRef]
- Abu Salem, F.K.; Al Feel, R.; Elbassuoni, S.; Jaber, M.; Farah, M. FA-KES: A Fake News Dataset around the Syrian War. ICWSM 2019, 13, 573–582. [Google Scholar] [CrossRef]
- Posadas Durán, J.; Gomez Adorno, H.; Sidorov, G.; Moreno, J. Detection of fake news in a new corpus for the Spanish language. J. Intell. Fuzzy Syst. 2019, 36, 4869–4876. [Google Scholar] [CrossRef]
- Shahi, G.K.; Nandini, D. FakeCovid—A Multilingual Cross-domain Fact Check News Dataset for COVID-19. arXiv 2020, arXiv:2006.11343. [Google Scholar]
- Confalonieri, R.; Coba, L.; Wagner, B.; Besold, T.R. A historical perspective of explainable Artificial Intelligence. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1391. [Google Scholar] [CrossRef]
- Chien, S.-Y.; Yang, C.-J.; Yu, F. XFlag: Explainable fake news detection model on social media. Int. J. Hum. Comput. Interact. 2022, 38, 1808–1827. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Binder, A.; Bach, S.; Montavon, G.; Müller, K.-R.; Samek, W. Layer-wise relevance propagation for deep neural network architectures. In Proceedings of the Information Science and Applications (ICISA) 2016; Springer: Singapore; pp. 913–922.
- Wu, K.; Yuan, X.; Ning, Y. Incorporating relational knowledge in explainable fake news detection. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Virtual Event, 11–14 May 2021; Springer: Cham, Switzerland, 2021; pp. 403–415. [Google Scholar]
- Chen, M.; Wang, N.; Subbalakshmi, K.P. Explainable rumor detection using inter and intra-feature attention networks. arXiv 2020, arXiv:2007.11057. [Google Scholar]
- Qiao, Y.; Wiechmann, D.; Kerz, E. A language-based approach to fake news detection through interpretable features and BRNN. In Proceedings of the 3rd International Workshop on Rumours and Deception in Social Media (RDSM), Online, 13 December 2020; pp. 14–31. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Silva, A.; Han, Y.; Luo, L.; Karunasekera, S.; Leckie, C. Propagation2Vec: Embedding partial propagation networks for explainable fake news early detection. Inf. Process. Manag. 2021, 58, 102618. [Google Scholar] [CrossRef]
- Yang, F.; Pentyala, S.K.; Mohseni, S.; Du, M.; Yuan, H.; Linder, R.; Ragan, E.D.; Ji, S.; Hu, X. Xfake: Explainable fake news detector with visualizations. In Proceedings of the The World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 3600–3604. [Google Scholar]
- Jin, Y.; Wang, X.; Yang, R.; Sun, Y.; Wang, W.; Liao, H.; Xie, X. Towards Fine-Grained Reasoning for Fake News Detection. arXiv 2022, arXiv:2110.15064. [Google Scholar] [CrossRef]
- Kurasinski, L.; Mihailescu, R.-C. Towards machine learning explainability in text classification for fake news detection. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, Miami, FL, USA, 14–17 December 2020; pp. 775–781. [Google Scholar]
- Yang, Z.; Ma, J.; Chen, H.; Lin, H.; Luo, Z.; Chang, Y. A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection. arXiv 2022, arXiv:2209.14642. [Google Scholar]
- Lu, Y.-J.; Li, C.-T. GCAN: Graph-aware co-attention networks for explainable fake news detection on social media. arXiv 2020, arXiv:2004.11648. [Google Scholar]
- Chi, H.; Liao, B. A quantitative argumentation-based Automated eXplainable Decision System for fake news detection on social media. Knowl. Based Syst. 2022, 242, 108378. [Google Scholar] [CrossRef]
- Ni, S.; Li, J.; Kao, H.-Y. MVAN: Multi-view attention networks for fake news detection on social media. IEEE Access 2021, 9, 106907–106917. [Google Scholar] [CrossRef]
- Tao, J.; Lin, J.; Zhang, S.; Zhao, S.; Wu, R.; Fan, C.; Cui, P. Mvan: Multi-view attention networks for real money trading detection in online games. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2536–2546. [Google Scholar]
- Raha, T.; Choudhary, M.; Menon, A.; Gupta, H.; Srivatsa, K.V.; Gupta, M.; Varma, V. Neural models for Factual Inconsistency Classification with Explanations. arXiv 2023, arXiv:2306.08872. [Google Scholar]
- Bhattarai, B.; Granmo, O.-C.; Jiao, L. Explainable tsetlin machine framework for fake news detection with credibility score assessment. arXiv 2021, arXiv:2105.09114. [Google Scholar]
- Granmo, O.-C. The Tsetlin Machine–A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic. arXiv 2018, arXiv:1804.01508. [Google Scholar]
- Fu, D.; Ban, Y.; Tong, H.; Maciejewski, R.; He, J. DISCO: Comprehensive and explainable disinformation detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21 October 2022; pp. 4848–4852. [Google Scholar]
- De Magistris, G.; Russo, S.; Roma, P.; Starczewski, J.T.; Napoli, C. An explainable fake news detector based on named entity recognition and stance classification applied to COVID-19. Information 2022, 13, 137. [Google Scholar] [CrossRef]
Fake News Classification | Definition |
---|---|
Deceptive fake news | A false information intended to mislead and deceive the reader. Deceptive fake news is more deceptive and is intended to deliberately mislead readers or cause adverse effects. |
False information of rumor nature | Unconfirmed rumors, rumors or anonymous messages, etc. |
False comment information | An untrue or misleading comment posted on an online platform, social media, or other interactive platform. |
Headline party-type fake news | Edit false headlines eye-catching, the actual content but no reference value of the news |
Fact-based recombination of false information | To create misleading or false impressions by reorganizing true facts. |
Reference | Keywords | Dataset | Features | Accuracy |
---|---|---|---|---|
Qi [40] | Multi-domain Visual Neural Network | Text; Visual | 0.846 | |
Singhal [41] | BERT; VGG-19 | Twitter; | Text; Visual | 0.7777 with Twitter; 0.8923 with Weibo |
Qian [42] | Contextual attention; BERT; ResNet | PHEME; Twitter; | Text; Visual | 0.881 with PHEME; 0.897 with Twitter; 0.885 with Weibo |
Wu [36] | Co-attention; CNNs BERT; VGG-19 | Twitter; | Text; Visual; Social context | 0.809 with Twitter; 0.899 with Weibo |
Wang [37] | Attention guidance; BERT; ResNet | Twitter; | Text; Visual | 0.900 with Twitter; 0.923 with Weibo |
Dataset | Labels | Specific Labels | Instances | Categories | Data Format |
---|---|---|---|---|---|
Fakeddit [97] | 2, 3, 6 | - | 1,063,106 | posts | text, image |
Fauxtography [98] | 2 | fake or true | 1233 | article | text, image |
image-verification-corpus [99] | 2 | fake or true | 17,806 | posts | text, image |
PS-Battles [100] | 2 | fake or true | 102,028 | posts | image |
Dataset | Labels | Specific Labels | Instances | Categories | Data Format |
---|---|---|---|---|---|
LIAR [24] | 6 | true, mostly true, half true, mostly false, false, pants on fire | 12,836 | claims | text |
FEVER [101] | 3 | true, fake, unverified | 185,445 | claims | text |
Emergent [102] | 3 | true, fake, unverified | 300 | claims | text |
Snopes_credibility [103] | 2 | agree, disagree | 4856 | claims | text |
Wikipedia_credibility [103] | 1 | fake | 157 | claims | text |
DeClarE_politifact [104] | 2 | agree, disagree | 2569 | claims | text |
UKPSnopes [105] | 3 | agree, disagree, no stance | 6422 | claims | text |
MultiFC [106] | 2–40 | - | 36,534 | claims | text |
FEVER2.0 [107] | 3 | supported, refuted, not enough info | 1174 | claims | text |
FEVEROUS [108] | 3 | supported, refuted, not enough info | 87,062 | claims | text |
CT-FCC-18 [109] | 3 | supported, refuted, not enough info | 150 | claims | text |
CT19-T2 [110] | 2 | fake or true | 69 | claims | text |
CT20-Arabic [111] | 2 | fake or true | 165 | claims | text |
Arabic_corpus [112] | 2 | fake or true | 429 | claims | text |
Arabic_Stance [113] | 2 | fake or true | 4547 | claims | text |
DANFEVER [114] | 3 | supported, refuted, not enough info | 6407 | claims | text |
PUBHEALTH [115] | 4 | true, false, mixture, unproven | 11,832 | claims | text |
SCIFACT [116] | 3 | supported, refuted, not enough info | 1490 | claims | text |
COVID-19-Scientific [117] | 2 | fake or true | 142 | claims | text |
COVID-19-Politifact [117] | 2 | fake or true | 340 | claims | text |
COVIDLies [118] | 3 | agree, disagree, no stance | 6761 | claims | text |
HoVer [119] | 3 | supported, refuted, not enough info | 26,171 | claims | text |
TSHP-17_politifac [27] | 6 | - | 10483 | claims | text |
Dataset | Labels | Specific Labels | Instances | Categories | Data Format |
---|---|---|---|---|---|
COVID19 Fake News Dataset [120] | 2 | fake or true | 10,700 | posts | text |
CREDBANK [121] | 5 | certainly not true, may not be true, uncertain, may be true, certainly true | 60,000,000 | posts | text |
PHEME [122] | 3 | true, fake, unverified | 330 | posts | text |
BuzzFace [123] | 4 | mostly true, mixture of true and false, mostly false, containing no factual content | 2263 | posts | text |
BUZZFEEDNEWS [124] | 4 | mostly true, mixture of true and false, mostly false, containing no factual content | 2282 | posts | text |
FacebookHoax [99] | 2 | hoax, no hoax | 15,000 | posts | text |
MM-COVID [125] | 2 | fake or true | 11,173 | posts | text |
Dataset | Labels | Specific Labels | Instances | Categories | Data Format |
---|---|---|---|---|---|
FakeNewsNet [23] | 2 | fake or true | 602,659 | article | text |
FNC-1 [126] | 4 | agree, disagree, discuss, be unrelated to the headline | 75,385 | article | text |
FakeNewsCorpus [127] | 10 | fake, satire, bias, conspiracy, state, junksci, hate, clickbait, unreliable, political, reliable | 9,408,908 | article | text |
NELA-GT-2020 [128] | - | - | 180,000 | article | text |
Politifact14 [129] | 5 | true, mostly true, half true, mostly false, false | 221 | headline | text |
Buzzfeed_political [130] | 2 | fake or true | 71 | article | text |
Random_political [130] | 3 | true, fake, satire | 225 | article | text |
Breaking! [131] | 3 | fake, partially true, opinion | 679 | article | text |
Ahmed2017 [132] | 2 | fake or true | 25,200 | article | text |
FakeNewsAMT [133] | 2 | fake or true | 480 | article | text |
Celebrity [133] | 2 | fake or true | 500 | article | text |
MisInfoText_Buzzfeed [134] | 4 | true, false, mostly false, containing no factual content | 1413 | article | text |
MisInfoText_Snopes [134] | 5 | fully true, mostly true, mixture of true and false, mostly false and fully false | 312 | article | text |
FA-KES [135] | 2 | fake or true | 804 | article | text |
Spanish-v1 [136] | 2 | fake or true | 971 | article | text |
Spanish-v2 [136] | 2 | fake or true | 572 | article | text |
FakeCovid [137] | 2–18 | - | 12,805 | article | text |
Reference | Keywords | Dataset | Accuracy |
---|---|---|---|
Chien [139] | LSTM; LRP; SAT | 0.937 | |
Chen [143] | Inter and intra-attention; Self-Attention | PHEME; RumourEval2019 | 0.559 with PHEME; 0.5020 with RumourEval2019 |
Qiao [144] | Bi-directional recurrent neural network | ISOT; LIAR | 0.993 with ISOT; 2.272with LIAR |
Yang [147] | System visualization | PolitiFact | - |
Silva [146] | News propagation networks; Network embedding learning | PolitiFact; GossipCop | 0.897 with PolitiFact; 0.892 with GossipCop |
Jin [148] | Fine-grained reasoning; Mutual reinforcement | PolitiFact; GossipCop | 0.9092 with PolitiFact; 0.8320 with GossipCop |
Kurasinski [149] | LSTM; CNN; Visualizations | Fake News Corpus | 0.85 |
Yang [150] | Coarse-to-fine Cascaded Evidence-Distillation | RAWFC; LIAR-RAW | - |
Amri [38] | Latent Dirichlet Allocation; VilBERT; Local Explainable Model-agnostic Explanations | Twitter; | 0.898 with Twitter; 0.9204 with Weibo |
Reference | Keywords | Dataset | Accuracy |
---|---|---|---|
Shu [55] | Attention network | PolitiFact; GossipCop | 0.904 with PolitiFact; 0.808 with GossipCop |
Lu [151] | Graph-aware CoAttention Networks | Twitter15; Twitter16 | 0.8767 with Twitter15; 0.9084 with Twitter16 |
Chi [152] | Quantitative argumentation | Twitter 2017; Twitter 2019; Reddit 2019 | 0.57 with Twitter 2017; 0.48 with Twitter 2019; 0.36 with Reddit 2019 |
Ni [153] | Graph attention networks | Twitter15; Twitter16 | 0.9234 with Twitter15; 0.9365 with Twitter16 |
Raha [155] | Deep learning; Factual inconsistency explanations | FICLE | - |
Bhattarai [156] | Tsetlin Machine | PolitiFact; GossipCop | 0.871 with PolitiFact; 0.842with GossipCop |
Fu [158] | Graph Augmentation | self-defining | 0.9793 |
De [159] | Named entity recognition; CNN | BBC; PubMed; PMC | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Jiang, H.; Shen, H.; Shi, L.; Cheng, N. Sustainable Development of Information Dissemination: A Review of Current Fake News Detection Research and Practice. Systems 2023, 11, 458. https://doi.org/10.3390/systems11090458
Yuan L, Jiang H, Shen H, Shi L, Cheng N. Sustainable Development of Information Dissemination: A Review of Current Fake News Detection Research and Practice. Systems. 2023; 11(9):458. https://doi.org/10.3390/systems11090458
Chicago/Turabian StyleYuan, Lu, Hangshun Jiang, Hao Shen, Lei Shi, and Nanchang Cheng. 2023. "Sustainable Development of Information Dissemination: A Review of Current Fake News Detection Research and Practice" Systems 11, no. 9: 458. https://doi.org/10.3390/systems11090458
APA StyleYuan, L., Jiang, H., Shen, H., Shi, L., & Cheng, N. (2023). Sustainable Development of Information Dissemination: A Review of Current Fake News Detection Research and Practice. Systems, 11(9), 458. https://doi.org/10.3390/systems11090458