Knowledge Sharing Key Issue for Digital Technology and Artificial Intelligence Adoption
Abstract
:1. Introduction
- Firstly, the primary objective of this study is to investigate how digital technology is positively linked with AI adoption?
- Secondly, we intend to examine the knowledge sharing mediating role in the relationship between digital technology and AI adoption.
- Lastly, we inspect how privacy and security strengthen the association between DT and AI adoption.
2. Literature Review
2.1. Technology Acceptance Model (TAM)
2.2. The Unified Theory of Acceptance and Use of Technology (UTAUT)
2.3. Digital Technology
2.4. Knowledge Sharing
2.5. Privacy and Security
2.6. AI Adoption
2.7. Digital Technology and AI Adoption
2.8. Knowledge Sharing as Mediator
2.9. Privacy and Security Moderates
3. Methodology
3.1. Data Collection
3.2. Measurement
3.2.1. Digital Technology
3.2.2. Knowledge Sharing
3.2.3. Privacy and Security
3.2.4. AI Adoption
4. Results and Analysis
4.1. Correlation Results
4.2. Hypothesis Testing
4.3. Mediating Role of KS between DT and AI Adoption
4.4. Moderating Role of P&S on DT and AI Adoption Link
5. Discussion
5.1. Theoretical and Practical Implications
5.2. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.-P.O.; Liu, H.; Ting, D.S.J.; Jeon, S.; Chan, R.V.P.; Kim, J.E.; Sim, D.A.; Thomas, P.B.M.; Lin, H.; Chen, Y.; et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog. Retin. Eye Res. 2021, 82, 100900. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial intelligence in medicine. WIREs Data Min. Knowl. Discov. 2019, 9, e1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadreddin, A.; Chan, Y.E. Pathways to developing information technology-enabled capabilities in born-digital new ventures. Int. J. Inf. Manag. 2023, 68, 102572. [Google Scholar] [CrossRef]
- Berzin, S.C.; Singer, J.; Chan, C. Practice innovation through technology in the digital age: A grand challenge for social work. Am. Acad. Soc. Work. Soc. Welf. 2015, 12, 3–21. [Google Scholar]
- Corridon, P.R.; Wang, X.; Shakeel, A.; Chan, V. Digital Technologies: Advancing Individualized Treatments through Gene and Cell Therapies, Pharmacogenetics, and Disease Detection and Diagnostics. Biomedicines 2022, 10, 2445. [Google Scholar] [CrossRef]
- Chan, T.W.; Roschelle, J.; Hsi, S.; Kinshuk Sharples, M.; Brown, T.; Patton, C.; Cherniavsky, J.; Pea, R.; Norris, C.; Soloway, E. One-to-one technology-enhanced learning: An opportunity for global research collaboration. Res. Pract. Technol. Enhanc. Learn. 2006, 1, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, M.; Kruschwitz, N.; Bonnet, D.; Welch, M. Embracing digital technology: A new strategic imperative. MIT Sloan Manag. Rev. 2014, 55, 1. [Google Scholar]
- Henderson, M.; Selwyn, N.; Aston, R. What works and why? Student perceptions of ‘useful’ digital technology in university teaching and learning. Stud. High. Educ. 2017, 42, 1567–1579. [Google Scholar] [CrossRef] [Green Version]
- Berente, N.; Gu, B.; Recker, J.; Santhanam, R. Managing artificial intelligence. MIS Q. 2021, 45, 1433–1450. [Google Scholar] [CrossRef]
- Zheng, T. A Literature Review on Knowledge Sharing. Open J. Soc. Sci. 2017, 5, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.C.; Chan, C.; Bielaczyc, K.; Ma, L.; Scardamalia, M.; Bereiter, C. Knowledge building: Aligning education with needs for knowledge creation in the digital age. Educ. Technol. Res. Dev. 2021, 69, 2243–2266. [Google Scholar] [CrossRef]
- Ebbeck, M.; Yim, H.Y.B.; Chan, Y.; Goh, M. Singaporean Parents’ Views of Their Young Children’s Access and Use of Technological Devices. Early Child. Educ. J. 2016, 44, 127–134. [Google Scholar] [CrossRef]
- Tohidinia, Z.; Mosakhani, M. Knowledge sharing behaviour and its predictors. Ind. Manag. Data Syst. 2010, 110, 611–631. [Google Scholar] [CrossRef]
- Dilmaghani, S.; Brust, M.R.; Danoy, G.; Cassagnes, N.; Pecero, J.; Bouvry, P. Privacy and Security of Big Data in AI Systems: A Research and Standards Perspective. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5737–5743. [Google Scholar] [CrossRef]
- Stahl, B.C. Artificial Intelligence for a Better Future: An Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies; Springer Nature: Berlin/Heidelberg, Germany, 2021; p. 124. [Google Scholar]
- Chan, C. Digital technologies and evolving narrative practice: An autoethnographic study. China J. Soc. Work. 2022, 16, 83–99. [Google Scholar] [CrossRef]
- Nambisan, S. Digital Entrepreneurship: Toward a Digital Technology Perspective of Entrepreneurship. Entrep. Theory Pract. 2017, 41, 1029–1055. [Google Scholar] [CrossRef]
- Khin, S.; Ho, T.C. Digital technology, digital capability and organizational performance: A mediating role of digital innovation. Int. J. Innov. Sci. 2018, 11, 177–195. [Google Scholar] [CrossRef]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Holden, R.J.; Karsh, B.-T. The Technology Acceptance Model: Its past and its future in health care. J. Biomed. Inform. 2010, 43, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.D.; Rana, N.P.; Dwivedi, Y.K. The unified theory of acceptance and use of technology (UTAUT): A literature review. J. Enterp. Inf. Manag. 2015, 28, 443–488. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.; Kaye, S.-A.; Oviedo-Trespalacios, O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telemat. Inform. 2022, 77, 101925. [Google Scholar] [CrossRef]
- Giones, F.; Brem, A. Digital technology entrepreneurship: A definition and research agenda. Technol. Innov. Manag. Rev. 2017, 7, 44–51. [Google Scholar] [CrossRef]
- Spiteri, M.; Chang Rundgren, S.N. Literature review on the factors affecting primary teachers’ use of digital tech-nology. Technol. Knowl. Learn. 2020, 25, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Harahap, M.A.K.; Sutrisno, S.; Fauzi, F.; Jusman, I.A.; Ausat, A.M.A. The Impact of Digital Technology on Employee Job Stress: A Business Psychology Review. J. Pendidik. Tambusai 2023, 7, 3635–3638. [Google Scholar]
- Van Veldhoven, Z.; Vanthienen, J. Digital transformation as an interaction-driven perspective between business, society, and technology. Electron. Mark. 2022, 32, 629–644. [Google Scholar] [CrossRef] [PubMed]
- Linde, L.; Sjödin, D.; Parida, V.; Gebauer, H. Evaluation of digital business model opportunities: A framework for avoiding digitalization traps. Res. Technol. Manag. 2020, 64, 43–53. [Google Scholar] [CrossRef]
- Bican, P.M.; Brem, A. Digital Business Model, Digital Transformation, Digital Entrepreneurship: Is There A Sustainable “Digital”? Sustainability 2020, 12, 5239. [Google Scholar] [CrossRef]
- Obeso, M.; Hernandez-Linares, R.; López-Fernandez, M.C.; Serrano-Bedia, A.M. Knowledge management processes and organizational performance: The mediating role of organizational learning. J. Knowl. Manag. 2020, 24, 1859–1880. [Google Scholar] [CrossRef]
- Zaim, H.; Muhammed, S.; Tarim, M. Relationship between knowledge management processes and performance: Critical role of knowledge utilization in organizations. Knowl. Manag. Res. Pract. 2018, 17, 24–38. [Google Scholar] [CrossRef]
- Shujahat, M.; Hussain, S.; Javed, S.; Malik, M.I.; Thurasamy, R.; Ali, J. Strategic management model with lens of knowledge management and competitive intelligence: A review approach. VINE J. Inf. Knowl. Manag. Syst. 2017, 47, 55–93. [Google Scholar] [CrossRef] [Green Version]
- Akram, T.; Lei, S.; Haider, M.J.; Hussain, S.T. The impact of organizational justice on employee innovative work behavior: Mediating role of knowledge sharing. J. Innov. Knowl. 2020, 5, 117–129. [Google Scholar] [CrossRef]
- Singh, S.K.; Gupta, S.; Busso, D.; Kamboj, S. Top management knowledge value, knowledge sharing practices, open innovation and organizational performance. J. Bus. Res. 2021, 128, 788–798. [Google Scholar] [CrossRef]
- Yoshikuni, A.C.; Lucas, E.C. Knowledge Management Processes and Performance: Key Role of IS Strategies in Knowledge Capture and Utilisation. J. Inf. Knowl. Manag. 2021, 20, 2150047. [Google Scholar] [CrossRef]
- Grigorescu, A.; Zamfir, A.-M.; Sigurdarson, H.T.; Carlson, E.L. Skill Needs among European Workers in Knowledge Production and Transfer Occupations. Electronics 2022, 11, 2927. [Google Scholar] [CrossRef]
- Abbasi, S.G.; Shabbir, M.S.; Abbas, M.; Tahir, M.S. HPWS and knowledge sharing behavior: The role of psychological empowerment and organizational identification in public sector banks. J. Public Aff. 2021, 21, e2512. [Google Scholar] [CrossRef]
- Saffar, N.; Obeidat, A. The effect of total quality management practices on employee performance: The moderating role of knowledge sharing. Manag. Sci. Lett. 2020, 10, 77–90. [Google Scholar] [CrossRef]
- Swanson, E.; Kim, S.; Lee, S.-M.; Yang, J.-J.; Lee, Y.-K. The effect of leader competencies on knowledge sharing and job performance: Social capital theory. J. Hosp. Tour. Manag. 2020, 42, 88–96. [Google Scholar] [CrossRef]
- Ghahtarani, A.; Sheikhmohammady, M.; Rostami, M. The impact of social capital and social interaction on customers’ purchase intention, considering knowledge sharing in social commerce context. J. Innov. Knowl. 2020, 5, 191–199. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Q. Knowledge sharing in supply chain networks: Effects of collaborative innovation activities and capability on innovation performance. Technovation 2020, 94–95, 102010. [Google Scholar] [CrossRef]
- Emami-Naeini, P.; Dixon, H.; Agarwal, Y.; Cranor, L.F. Exploring how privacy and security factor into IoT device purchase behavior. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Mirzaie, M.; Javanmard, H.A.; Reza Hasankhani, M. Impact of knowledge management process on human capital improvement in Islamic Consultative Assembly. Knowl. Manag. Res. Pract. 2019, 17, 316–327. [Google Scholar] [CrossRef]
- Alsheibani, S.; Cheung, Y.; Messom, C. Artificial Intelligence Adoption: AI-readiness at Firm-Level. PACIS 2018, 4, 231–245. [Google Scholar]
- Chatterjee, S.; Rana, N.P.; Dwivedi, Y.K.; Baabdullah, A.M. Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technol. Forecast. Soc. Chang. 2021, 170, 120880. [Google Scholar] [CrossRef]
- Grover, P.; Kar, A.K.; Dwivedi, Y.K. Understanding artificial intelligence adoption in operations management: Insights from the review of academic literature and social media discussions. Ann. Oper. Res. 2022, 308, 177–213. [Google Scholar] [CrossRef]
- Cubric, M. Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technol. Soc. 2020, 62, 101257. [Google Scholar] [CrossRef]
- Jöhnk, J.; Weißert, M.; Wyrtki, K. Ready or not, AI comes—An interview study of organizational AI readiness factors. Bus. Inf. Syst. Eng. 2021, 63, 5–20. [Google Scholar] [CrossRef]
- Tuffaha, M.; Rosario Perello-Marin, M. Artificial intelligence definition, applications and adoption in Human Resource Management: A systematic literature review. Int. J. Bus. Innov. Res. 2021, 1, 1–33. [Google Scholar] [CrossRef]
- Pagani, M.; Pardo, C. The impact of digital technology on relationships in a business network. Ind. Mark. Manag. 2017, 67, 185–192. [Google Scholar] [CrossRef]
- Cheung, M.L.; Leung, K.S.W.; Chan, H.S. Driving healthcare wearable technology adoption for Generation Z consumers in Hong Kong. Young Consum. 2020, 22, 10–27. [Google Scholar] [CrossRef]
- Lai, K.-W. Digital technology and the culture of teaching and learning in higher education. Australas. J. Educ. Technol. 2011, 27, 1263–1275. [Google Scholar] [CrossRef]
- Sapienza, M.; Nurchis, M.C.; Riccardi, M.T.; Bouland, C.; Jevtić, M.; Damiani, G. The Adoption of Digital Tech-nologies and Artificial Intelligence in Urban Health: A Scoping Review. Sustainability 2022, 14, 7480. [Google Scholar] [CrossRef]
- Ardolino, M.; Rapaccini, M.; Saccani, N.; Gaiardelli, P.; Crespi, G.; Ruggeri, C. The role of digital technologies for the service transformation of industrial companies. Int. J. Prod. Res. 2018, 56, 2116–2132. [Google Scholar] [CrossRef]
- Secundo, G.; Shams, S.R.; Nucci, F. Digital technologies and collective intelligence for healthcare ecosystem: Optimizing Internet of Things adoption for pandemic management. J. Bus. Res. 2021, 131, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Usai, A.; Fiano, F.; Petruzzelli, A.M.; Paoloni, P.; Briamonte, M.F.; Orlando, B. Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. J. Bus. Res. 2021, 133, 327–336. [Google Scholar] [CrossRef]
- Miller, E.A.; West, D.M. Where’s the revolution? Digital technology and health care in the internet age. J. Health Politics Policy Law 2009, 34, 261–284. [Google Scholar] [CrossRef] [PubMed]
- Neumann, O.; Guirguis, K.; Steiner, R. Exploring artificial intelligence adoption in public organizations: A comparative case study. Public Manag. Rev. 2022, 1–27. [Google Scholar] [CrossRef]
- Agarwal, P.; Swami, S.; Malhotra, S.K. Artificial Intelligence Adoption in the Post COVID-19 New-Normal and Role of Smart Technologies in Transforming Business: A Review. J. Sci. Technol. Policy Manag. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Ilomäki, L.; Lakkala, M. Digital technology and practices for school improvement: Innovative digital school model. Res. Pract. Technol. Enhanc. Learn. 2018, 13, 25. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; De Silva, M.T.; Budhwar, P.; Srikanth, N. Elevating talents’ experience through innovative artificial intelligence-mediated knowledge sharing: Evidence from an IT-multinational enterprise. J. Int. Manag. 2021, 27, 100871. [Google Scholar] [CrossRef]
- Herath, H.; Mittal, M. Adoption of artificial intelligence in smart cities: A comprehensive review. Int. J. Inf. Manag. Data Insights 2022, 2, 100076. [Google Scholar] [CrossRef]
- Widodo, A.; Putra, F.; Nadeak, M.; Novitasari, D.; Asbari, M. Information technology adoption and knowledge sharing intention: The mediating role of leadership style. Int. J. Soc. Manag. Stud. 2022, 3, 258–268. [Google Scholar]
- Dora, M.; Kumar, A.; Mangla, S.K.; Pant, A.; Kamal, M.M. Critical success factors influencing artificial intelligence adoption in food supply chains. Int. J. Prod. Res. 2022, 60, 4621–4640. [Google Scholar] [CrossRef]
- Qammach, N.I.J. The Mediating Role of Knowledge Sharing on Relationship between IT Capability and IT Support as Predictors of Innovation Performance: An Empirical Study on Mobile Companies in Iraq. Procedia Econ. Financ. 2016, 39, 562–570. [Google Scholar] [CrossRef] [Green Version]
- Al Mansoori, S.; Salloum, S.A.; Shaalan, K. The Impact of Artificial Intelligence and Information Technologies on the Efficiency of Knowledge Management at Modern Organizations: A Systematic Review. In Recent Advances in Intelligent Systems and Smart Applications; Springer Nature: Basel, Switzerland, 2020; pp. 163–182. [Google Scholar] [CrossRef]
- Rosales, M.A.; Magsumbol, J.-A.V.; Palconit, M.G.B.; Culaba, A.B.; Dadios, E.P. Artificial Intelligence: The Technology Adoption and Impact in the Philippines. In Proceedings of the 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 3–7 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Orben, A.; Przybylski, A.K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 2019, 3, 173–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent-Lancrin, S.; Van der Vlies, R. Trustworthy Artificial Intelligence (AI) in Education: Promises and Challenges; OECD iLibrary: Berlin, Germany, 2020. [Google Scholar]
- Brooks, D.J. What is security: Definition through knowledge categorization. Secur. J. 2010, 23, 225–239. [Google Scholar] [CrossRef]
- Stahl, B.C.; Wright, D. Ethics and Privacy in AI and Big Data: Implementing Responsible Research and Innovation. IEEE Secur. Priv. 2018, 16, 26–33. [Google Scholar] [CrossRef]
- Gehrke, J.; Lui, E.; Pass, R. Towards Privacy for Social Networks: A Zero-Knowledge Based Definition of Privacy. In Proceedings of the Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA, 28–30 March 2011; pp. 432–449. [Google Scholar] [CrossRef] [Green Version]
- Saura, J.R.; Ribeiro-Soriano, D.; Palacios-Marqués, D. Assessing behavioral data science privacy issues in government artificial intelligence deployment. Gov. Inf. Q. 2022, 39, 101679. [Google Scholar] [CrossRef]
- Sachdev, R. Towards Security and Privacy for Edge AI in IoT/IoE based Digital Marketing Environments. In Proceedings of the 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23 April 2020; pp. 341–346. [Google Scholar] [CrossRef]
- Genderen, R.V.D.H.V. Privacy and Data Protection in the Age of Pervasive Technologies in AI and Robotics. Eur. Data Prot. Law Rev. 2017, 3, 338–352. [Google Scholar] [CrossRef]
- Murdoch, B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Med. Ethic 2021, 22, 122. [Google Scholar] [CrossRef]
- Mannheim, I.; Wouters, E.J.; van Boekel, L.C.; van Zaalen, Y. Attitudes of health care professionals toward older adults’ abilities to use digital technology: Questionnaire study. J. Med. Internet Res. 2021, 23, e26232. [Google Scholar] [CrossRef]
- Żywiołek, J.; Tucmeanu, E.R.; Tucmeanu, A.I.; Isac, N.; Yousaf, Z. Nexus of Transformational Leadership, Employee Adaptiveness, Knowledge Sharing, and Employee Creativity. Sustainability 2022, 14, 11607. [Google Scholar] [CrossRef]
- Udo, G.J. Privacy and security concerns as major barriers for e-commerce: A survey study. Inf. Manag. Comput. Secur. 2001, 9, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Preacher, K.J.; Hayes, A.F. Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Fornell, C.; Lacker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and Statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Aivaz, K.A.; Tofan, I. The Synergy Between Digitalization and The Level of Research and Business Development Allocations at Eu Level. Stud. Business Econ. 2022, 17, 5–17. [Google Scholar] [CrossRef]
Items | Cronbach’s Alpha | Factor Loading | Composite Reliability | AVE | |
---|---|---|---|---|---|
Digital Technology | 4 | 0.82 | 0.73–0.91 | 0.87 | 0.68 |
Knowledge Sharing | 4 | 0.79 | 0.70–0.88 | 0.92 | 0.71 |
Privacy and Security | 4 | 0.86 | 0.76–0.90 | 0.94 | 0.73 |
AI adoption | 5 | 0.81 | 0.71–0.93 | 0.90 | 0.69 |
Model Detail | χ2 | Df | χ2/df | RMESA | GFI | CFI |
---|---|---|---|---|---|---|
Hypothesized four-factor model | 1010.11 | 390 | 2.590026 | 0.05 | 0.90 | 0.91 |
Three-factor model | 1234.15 | 290 | 4.25569 | 0.15 | 0.88 | 0.89 |
Two-factor model | 1154.43 | 360 | 3.20675 | 0.22 | 0.71 | 0.72 |
Single-factor model | 1189.54 | 320 | 3.717313 | 0.26 | 0.64 | 0.65 |
Constructs | Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|---|
Gender | 0.7 | 0.81 | 1 | |||||||
Age | 31 | 2 | 0.09 | 1 | ||||||
Work experience | 20.4 | 0.84 | 0.08 | 0.03 | 1 | |||||
Education level | 20.4 | 0.91 | 0.06 | 0.05 | 0.04 | 1 | ||||
Digital Technology | 30.8 | 0.93 | 0.09 | 0.12 * | 0.08 | 0.07 | 1 | |||
Knowledge Sharing | 30.5 | 0.91 | 0.05 | 0.09 | 0.04 | 0.05 | 0.30 ** | 1 | ||
AI adoption | 30.9 | 0.95 | 0.03 | 0.07 | 0.06 | 0.09 | 0.25 * | 0.29 ** | 1 | |
Privacy and Security | 30.6 | 0.90 | 0.08 | 0.03 | 0.04 | 0.09 | 0.25 ** | 0.27 * | 0.15 * | 1 |
H1 and Condition of H2 Detail | Effects | Coefficient | Remarks |
---|---|---|---|
DT → AI adoption | + | 0.22 ** | Accepted |
DT → KS | + | 0.33 ** | Accepted |
KS → AI adoption | + | 0.32 ** | Accepted |
Model Detail | Beta | Boot | Bias | SE | Lower | Upper |
---|---|---|---|---|---|---|
NC → SF → IP | 0.1321 | 0.1457 | −0.0006 | 0.293 | 0.1632 | 0.1435 |
Soble Test Z Score = 5.51 ** |
Step 1 | Step 2 | Step 3 | |
---|---|---|---|
Moderating role of Privacy and Security | |||
Gender | 0.028 | 0.010 | 0.009 |
Age | 0.023 | 0.020 | 0.017 |
Work Experience | 0.007 | 0.005 | 0.006 |
Educational Level | 0.033 | 0.034 | 0.043 |
Digital Technology | 0.30 ** | 0.33 ** | |
Privacy and security | 0.22 ** | 0.26 ** | |
DTx P&S | 0.24 ** | ||
R2 | 0.007 | 0.182 | 0.168 |
Adjusted R2 | 0.010 | 0.139 | 0.173 |
∆R2 | 0.009 | 0.112 | 0.029 |
∆F | 4.172 | 79.63 | 17.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binsaeed, R.H.; Yousaf, Z.; Grigorescu, A.; Samoila, A.; Chitescu, R.I.; Nassani, A.A. Knowledge Sharing Key Issue for Digital Technology and Artificial Intelligence Adoption. Systems 2023, 11, 316. https://doi.org/10.3390/systems11070316
Binsaeed RH, Yousaf Z, Grigorescu A, Samoila A, Chitescu RI, Nassani AA. Knowledge Sharing Key Issue for Digital Technology and Artificial Intelligence Adoption. Systems. 2023; 11(7):316. https://doi.org/10.3390/systems11070316
Chicago/Turabian StyleBinsaeed, Rima H., Zahid Yousaf, Adriana Grigorescu, Alina Samoila, Razvan Ion Chitescu, and Abdelmohsen A. Nassani. 2023. "Knowledge Sharing Key Issue for Digital Technology and Artificial Intelligence Adoption" Systems 11, no. 7: 316. https://doi.org/10.3390/systems11070316
APA StyleBinsaeed, R. H., Yousaf, Z., Grigorescu, A., Samoila, A., Chitescu, R. I., & Nassani, A. A. (2023). Knowledge Sharing Key Issue for Digital Technology and Artificial Intelligence Adoption. Systems, 11(7), 316. https://doi.org/10.3390/systems11070316