China’s Road Traffic Mortality Rate and Its Empirical Research from Socio-Economic Factors Based on the Tobit Model
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Theoretical Mechanism
3.1.1. The Mechanism of Economic Development
3.1.2. The Mechanism of Urbanization
3.1.3. The Mechanism of Motorization
3.1.4. The Mechanism of Medical Assistance
3.1.5. The Mechanism of Government Regulation
Explanatory Variables | Definitions of Variables | Key References | Pre-Judgment |
---|---|---|---|
Economic development level (DEL) | Per capita GDP (Dollar 10,000) | Li and Zhang [29]; Song and Zhang [32]; Bishai et al. [33]; Lu et al. [34]; | Unknown |
Urbanization level (TIL) | Proportion of city population in total inhabitants (%) | Li and Zhang [29]; Jadaan [38]; Atubi and Gbadamosi [39]; Ali et al. [41]; | Unknown |
Motorization level (ML) | Motor vehicles per 100,000 inhabitants (persons) | Li and Zhang [29]; Ali et al. [41]; He et al. [42]; | Positive |
Medical assistance level (MAL) | Medical personnel in health care institutions per 100,000 inhabitants (persons) | Bishai et al. [33]; Ali et al. [41]; Mock et al. [43]; La Torre et al. [44]; | Negative |
Government regulation (GR) | Government expenditure on health (RMB 100,000) | Li and Zhang [29]; Ali et al. [41]; Castillo-Manzano et al. [45]; | Negative |
3.2. Tobit Regression Model
4. Characteristics Analysis of RTMR
4.1. The Temporal Characteristics of RTMR
4.2. The Temporal Characteristics of RTMR
4.3. The Temporal-Spatial Changes of the RTMR
5. Empirical Analysis
5.1. The Unit Root and VIF Tests
5.2. Discussion of Regression Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, P.; Lyu, D.; Hu, H.; Cao, Y.; Xie, J.; Pang, L.; Zeng, L.; Zhang, T.; Yuan, D. Population-development oriented compre-hensive modern transport system in China. Acta Geogr. Sin. 2020, 75, 2699–2715. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, P.; Hu, H.; Zeng, L.; Wu, K.S.; Lv, D. Transport infrastructure and urban-rural income disparity: A municipal-level analysis in China. J. Transp. Geogr. 2022, 99, 103292. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). Annual Data of the Province in China. 2022. Available online: http://data.stats.gov.cn/easyquery.htm?cn=E0103 (accessed on 1 August 2018).
- Yearbook of China Transportation & Communications. Yearbook House of China Transportation & Communications, Beijing. Available online: https://data.cnki.net/yearbook/Single/N2021040178 (accessed on 8 February 2022).
- World Health Organization (WHO). Global Status Report on Road Safety 2018; WHO Press: Geneva, Switzerland, 2015; Available online: https://www.who.int/roadsafety/events/2015/Appendix_14.pdf (accessed on 10 July 2022).
- The Central Committee of the Communist Party of China. Yearbook House of China, the State Council of the People’s Republic of China. 2021. Available online: http://www.gov.cn/zhengce/2021-02/24/content_5588654.htm (accessed on 10 July 2022).
- Zhang, W.; Tsimhoni, O.; Sivak, M.; Flannagan, M.J. Road safety in China: Analysis of current challenges. J. Saf. Res. 2010, 41, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Wu, C. Pedestrians’ crossing behaviors and safety at unmarked roadway in China. Accid. Anal. Prev. 2011, 43, 1927–1936. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Q.; Ma, L.; Zhang, Y.; Cong, H. Road traffic accident severity analysis: A census-based study in China. J. Saf. Res. 2019, 70, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Bucsuházy, K.; Matuchová, E.; Zůvala, R.; Moravcová, P.; Kostíková, M.; Mikulec, R. Human factors contributing to the road traffic accident occurrence. Transp. Res. Procedia 2020, 45, 555–561. [Google Scholar] [CrossRef]
- Chand, A.; Jayesh, S.; Bhasi, A. Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Mater. Today Proc. 2021, 47, 5135–5141. [Google Scholar] [CrossRef]
- Yu, S.; Tsai, W.-D. The effects of road safety education on the occurrence of motorcycle violations and accidents for novice riders: An analysis of population-based data. Accid. Anal. Prev. 2021, 163, 106457. [Google Scholar] [CrossRef]
- Rechnitzer, G.; Haworth, N.; Kowadlo, N. The Effect of Vehicle Roadworthiness on Crash Incidence and Severity; Report No. 164; Monash University Accident Research Centre: Clayton, Australia, 2000; Available online: http://www.monash.edu/__data/assets/pdf_file/0017/216710/muarc164.pdf (accessed on 10 July 2022).
- Goel, R. Modelling of road traffic fatalities in India. Accid. Anal. Prev. 2018, 112, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Shaik, E.; Hossain, Q.S. Application of Statistical Models: Parameters Estimation of Road Accident in Bangladesh. SN Comput. Sci. 2020, 1, 261. [Google Scholar] [CrossRef]
- Ganji, S.R.; Rassafi, A.A.; Kordani, A.A. Vehicle Safety Analysis based on a Hybrid Approach Integrating DEMATEL, ANP and ER. KSCE J. Civ. Eng. 2018, 22, 4580–4592. [Google Scholar] [CrossRef]
- Pei, Y.L.; Ma, J. Research on countermeasures for road condition causes of traffic accidents. China J. Highw. Transp. 2003, 16, 77–82. [Google Scholar]
- Wang, X.; Song, Y.; Yu, R.; Schultz, G.G. Safety modeling of urban arterials in Shanghai, China. Accid. Anal. Prev. 2014, 83, 57–66. [Google Scholar] [CrossRef]
- Macioszek, E. The Influence of Motorcycling and Cycling on Small One-Lane Roundabouts Capacity. In Communications in Computer and Information Science; Mikulski, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 239. [Google Scholar] [CrossRef]
- Kopelias, P.; Papadimitriou, F.; Papandreou, K.; Prevedouros, P. Urban Freeway Crash Analysis: Geometric, Operational, and Weather Effects on Crash Number and Severity. Transp. Res. Rec. 2007, 2015, 123–131. [Google Scholar] [CrossRef]
- Eboli, L.; Forciniti, C.; Mazzulla, G. Factors influencing accident severity: An analysis by road accident type. Transp. Res. Procedia 2020, 47, 449–456. [Google Scholar] [CrossRef]
- Bergel-Hayat, R.; Debbarh, M.; Antoniou, C.; Yannis, G. Explaining the road accident risk: Weather effects. Accid. Anal. Prev. 2013, 60, 456–465. [Google Scholar] [CrossRef]
- Van den Bossche, F.; Wets, G.; Brijs, T. A Regression Model with ARMA Errors to Investigate the Frequency and Severity of Road Traffic Accidents. Steunpunt Verkeersveiligheid; Steunpunt Verkeersveiligheid: Diepenbeek, Belgium, 2008; Available online: https://www.researchgate.net/publication/265674721 (accessed on 10 July 2022).
- Tu, H.; Li, Z.; Li, H.; Zhang, K.; Sun, L. Driving Simulator Fidelity and Emergency Driving Behavior. J. Transp. Res. Board 2015, 2518, 113–121. [Google Scholar] [CrossRef]
- Sangkharat, K.; Thornes, J.E.; Wachiradilok, P.; Pope, F.D. Determination of the impact of rainfall on road accidents in Thailand. Heliyon 2021, 7, e06061. [Google Scholar] [CrossRef]
- Malin, F.; Norros, I.; Innamaa, S. Accident risk of road and weather conditions on different road types. Accid. Anal. Prev. 2019, 122, 181–188. [Google Scholar] [CrossRef]
- Hu, G.; Wen, M.; Baker, T.D.; Baker, S.P. Road-traffic deaths in China, 1985–2005: Threat and opportunity. Inj. Prev. 2008, 14, 149–153. [Google Scholar] [CrossRef]
- Sun, L.-L.; Liu, D.; Chen, T.; He, M.-T. Analysis on the accident casualties influenced by several economic factors based on the traffic-related data in China from 2004 to 2016. Chin. J. Traumatol. 2019, 22, 75–79. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G. Road traffic safety and differences in regional economic development: Evidence from random effects model and shapley value decomposition. In Road Safety in China; Zhang, G., Zhong, Q., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Luoma, J.; Sivak, M. Why is road safety in the U.S. not on par with Sweden, the U.K., and the Netherlands? Lessons to be learned. Eur. Transp. Res. Rev. 2014, 6, 295–302. [Google Scholar] [CrossRef]
- Gulzar, S.; Yahya, F.; Mir, Z.; Zafar, R. Provincial analysis of traffic accidents in Pakistan. Soc. Sci. Hum. 2012, 3, 365–374. Available online: https://www.oalib.com/paper/2072288 (accessed on 10 July 2022).
- Song, L.; Zhang, S.S. VAR model study on the impact of scale and speed of economic growth on traffic safety risk. China Public Saf. 2016, 3, 83–85. Available online: https://d.wanfangdata.com.cn/periodical/zgggaq-xsb201603019 (accessed on 10 July 2022).
- Bishai, D.; Quresh, A.; James, P.; Ghaffar, A. National road casualties and economic development. Health Econ. 2006, 15, 65–81. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, P.; Dong, Y.; Hu, H.; Zeng, L. Accessibility of high-speed rail stations and spatial disparity of urban-rural income gaps. Prog. Geogr. 2022, 41, 131–142. [Google Scholar] [CrossRef]
- Verma, A.; Harsha, V.; Subramanian, G.H. Evolution of Urban Transportation Policies in India: A Review and Analysis. Transp. Dev. Econ. 2021, 7, 25. [Google Scholar] [CrossRef]
- Nakamura, M. A study of differences in the incidence rate of traffic accidents (First report) Factors affecting incidence of traffic accidents in the prefectures of Japan. Jpn. J. Health Hum. Ecol. 1984, 50, 168–177. [Google Scholar] [CrossRef]
- Okui, T.; Park, J. Analysis of the regional distribution of road traffic mortality and associated factors in Japan. Inj. Epidemiol. 2021, 8, 60. [Google Scholar] [CrossRef]
- Jadaan, K.S. Traffic accidents in Kuwait: An economic dimension. Accid. Anal. Prev. 1990, 22, 399–401. [Google Scholar] [CrossRef]
- Atubi, A.O.; Gbadamosi, K.T. Global positioning and socio-economic impact of road traffic accidents in Nigeria: Matters arising. Am. Int. J. Contemp. Res. 2015, 5, 136–146. [Google Scholar]
- Fu, Y.; Zhong, Q.; Yang, Q. Economic development and road traffic safety in China: A status Quo analysis. In Road Safety in China; Zhang, G., Zhong, Q., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Ali, Q.; Yaseen, M.R.; Khan, M.T.I. Road traffic fatalities and its determinants in high-income countries: A continent-wise comparison. Environ. Sci. Pollut. Res. 2019, 26, 19915–19929. [Google Scholar] [CrossRef]
- He, H.; Paichadze, N.; Hyder, A.A.; Bishai, D. Economic development and road traffic fatalities in Russia: Analysis of federal regions 2004–2011. Inj. Epidemiol. 2015, 2, 19. [Google Scholar] [CrossRef]
- Mock, C.N.; Jurkovich, G.J.; Arreola-Risa, C.; Maier, R.V. Trauma mortality patterns in three nations at different economic levels: Implications for global trauma system development. J. Trauma Acute Care Surg. 1998, 44, 804–814. [Google Scholar] [CrossRef]
- La Torre, G.; Van Beeck, E.; Quaranta, G.; Mannocci, A.; Ricciardi, W. Determinants of within-country variation in traffic accident mortality in Italy: A geographical analysis. Int. J. Health Geogr. 2007, 6, 49. [Google Scholar] [CrossRef]
- Castillo-Manzano, J.I.; Castro-Nuño, M.; Fageda, X. Can health public expenditure reduce the tragic consequences of road traffic accidents? The EU-27 experience. Eur. J. Health Econ. 2014, 15, 645–652. [Google Scholar] [CrossRef]
- Ning, L.C.; Zheng, W.; Zeng, L.E. Research on China’s Carbon Dioxide Emissions Efficiency from 2007 to 2016: Based on Two Stage Super Efficiency SBM Model and Tobit Model. Acta Sci. Nat. Univ. Pekin. 2021, 57, 181–188. [Google Scholar] [CrossRef]
- Zhao, P.-J.; Zeng, L.-E.; Lu, H.-Y.; Zhou, Y.; Hu, H.-Y.; Wei, X.-Y. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total Environ. 2020, 741, 140026. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef]
- Zeng, L.; Lu, H.; Liu, Y.; Zhou, Y.; Hu, H. Analysis of Regional Differences and Influencing Factors on China’s Carbon Emission Efficiency in 2005–2015. Energies 2019, 12, 3081. [Google Scholar] [CrossRef]
- Zeng, L. China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach. Sustainability 2021, 13, 3143. [Google Scholar] [CrossRef]
- Zhao, P.; Zeng, L.; Li, P.; Lu, H.; Hu, H.; Li, C.; Zheng, M.; Li, H.; Yu, Z.; Yuan, D.; et al. China’s transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model. Energy 2022, 238, 121934. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Duan, J.; Zhang, H. The assessment of traffic accident risk based on grey relational analysis and fuzzy comprehensive evaluation method. Nat. Hazards 2017, 88, 1409–1422. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Wang, C.; Rao, K.; Wu, S.; Liu, Q. Health Care in China: Improvement, Challenges, and Reform. Chest 2013, 143, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, J.; Lin, T.; Dixon, J.; Zhang, G.; Ye, H. Urbanization and health in China, thinking at the national, local and individual levels. Environ. Health 2016, 15, S32. [Google Scholar] [CrossRef]
- Wang, C.W.; Chan, C.L.W. Estimated trends and patterns of road traffic fatalities in China, 2002–2012. Traffic Inj. Prev. 2016, 17, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Buchmueller, T.C.; Jacobson, M.; Wold, C. How far to the hospital? The effect of hospital closures on access to care. J. Health Econ. 2006, 25, 740–761. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.L.; Wang, Z. Regional inequality in China’s health care expenditures. Health Econ. 2009, 18, S137–S146. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Health Expenditure Database. 2021. Available online: https://apps.who.int/nha/database/Select/Indicators/en (accessed on 10 July 2022).
- World Road Transport Organisation. The Industry’s Commitment. Available online: https://www.iru.org/what-we-do/being-trusted-voice-mobility-and-logistics/people/road-safety (accessed on 10 July 2022).
Provinces | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 11.3 | 10.9 | 9.85 | 8.58 | 7.05 | 5.57 | 5.27 | 4.96 | 4.58 | 4.44 | 4.07 | 3.95 | 4.25 | 6.25 | 6.35 | 5.98 |
Tianjin | 11.2 | 9.69 | 9.30 | 8.17 | 7.61 | 10.4 | 7.70 | 7.31 | 6.70 | 6.00 | 5.68 | 5.46 | 5.34 | 5.26 | 5.22 | 4.81 |
Hebei | 7.08 | 6.70 | 5.95 | 5.05 | 4.86 | 4.19 | 3.93 | 3.74 | 3.59 | 3.43 | 3.41 | 3.38 | 3.36 | 3.35 | 3.32 | 3.30 |
Shanxi | 10.9 | 12.5 | 11.4 | 10.1 | 9.02 | 8.53 | 8.09 | 6.85 | 6.42 | 6.35 | 5.88 | 5.70 | 5.50 | 5.79 | 5.74 | 5.65 |
Inner Mongolia | 8.81 | 9.36 | 8.76 | 7.76 | 7.55 | 6.59 | 5.86 | 5.56 | 5.12 | 4.83 | 4.39 | 4.02 | 3.88 | 3.86 | 4.01 | 3.96 |
Liaoning | 8.40 | 7.94 | 6.92 | 6.11 | 5.90 | 5.28 | 4.97 | 4.87 | 4.77 | 4.61 | 4.59 | 4.58 | 4.55 | 4.46 | 4.51 | 4.27 |
Jilin | 8.24 | 9.28 | 8.94 | 7.85 | 6.85 | 6.07 | 5.41 | 5.29 | 5.18 | 5.05 | 4.89 | 4.81 | 4.73 | 6.74 | 7.41 | 4.41 |
Heilongjiang | 6.41 | 6.45 | 5.67 | 5.66 | 4.98 | 4.45 | 3.71 | 3.64 | 3.40 | 3.11 | 3.02 | 3.01 | 3.02 | 3.00 | 3.00 | 3.42 |
Shanghai | 7.96 | 8.41 | 7.37 | 6.27 | 5.67 | 5.14 | 4.72 | 4.38 | 4.02 | 3.85 | 3.79 | 3.72 | 3.60 | 3.14 | 2.80 | 2.67 |
Jiangsu | 8.90 | 10.8 | 10.0 | 9.00 | 7.62 | 6.77 | 6.66 | 6.39 | 6.20 | 5.98 | 5.89 | 5.86 | 5.82 | 5.75 | 5.69 | 5.58 |
Zhejiang | 14.7 | 15.3 | 13.8 | 13.1 | 12.5 | 11.3 | 10.8 | 9.88 | 9.58 | 9.06 | 8.84 | 7.99 | 7.72 | 7.49 | 6.78 | 6.21 |
Anhui | 6.74 | 7.70 | 7.12 | 6.39 | 6.02 | 4.93 | 4.78 | 4.83 | 4.62 | 4.49 | 4.43 | 4.35 | 4.32 | 4.28 | 4.30 | 4.15 |
Fujian | 11.4 | 12.4 | 11.6 | 10.8 | 9.80 | 8.44 | 7.94 | 7.64 | 7.20 | 6.60 | 5.67 | 5.24 | 4.92 | 4.87 | 4.80 | 4.59 |
Jiangxi | 6.62 | 6.44 | 5.63 | 5.05 | 4.44 | 4.04 | 3.71 | 3.59 | 3.36 | 3.11 | 2.99 | 3.06 | 3.15 | 4.58 | 4.59 | 4.34 |
Shandong | 9.76 | 8.50 | 7.62 | 6.78 | 6.15 | 5.34 | 4.77 | 4.45 | 4.12 | 3.96 | 3.85 | 3.78 | 3.71 | 3.63 | 3.66 | 3.58 |
Henan | 5.95 | 5.63 | 4.89 | 4.31 | 3.67 | 2.99 | 2.13 | 1.94 | 1.78 | 1.74 | 1.74 | 1.74 | 1.87 | 2.05 | 2.17 | 2.78 |
Hubei | 4.80 | 4.44 | 4.23 | 4.05 | 3.76 | 3.54 | 3.41 | 3.39 | 3.32 | 3.15 | 3.11 | 3.05 | 2.90 | 7.67 | 8.09 | 8.18 |
Hunan | 5.50 | 5.71 | 6.06 | 5.62 | 4.81 | 3.97 | 3.36 | 3.29 | 3.09 | 2.95 | 2.81 | 2.66 | 2.64 | 2.30 | 1.69 | 1.63 |
Guangdong | 12.4 | 11.7 | 10.8 | 9.35 | 8.28 | 7.26 | 6.46 | 5.94 | 5.59 | 5.39 | 5.31 | 5.12 | 5.13 | 5.00 | 4.79 | 4.33 |
Guangxi | 7.43 | 7.45 | 7.49 | 6.39 | 6.14 | 5.56 | 5.02 | 5.08 | 4.92 | 4.67 | 4.60 | 4.53 | 4.38 | 4.64 | 4.60 | 9.05 |
Hainan | 6.57 | 6.36 | 6.00 | 5.11 | 6.24 | 5.49 | 5.78 | 5.42 | 5.39 | 5.15 | 5.51 | 6.38 | 6.91 | 6.94 | 7.28 | 8.98 |
Chongqing | 3.70 | 5.80 | 5.30 | 4.63 | 4.33 | 3.69 | 3.61 | 3.53 | 3.37 | 3.33 | 3.27 | 3.24 | 3.21 | 3.13 | 3.08 | 2.95 |
Sichuan | 6.00 | 6.04 | 5.38 | 5.01 | 4.66 | 4.11 | 3.74 | 3.64 | 3.48 | 3.35 | 3.28 | 3.27 | 3.22 | 2.85 | 2.61 | 2.82 |
Guizhou | 5.11 | 4.69 | 4.42 | 3.85 | 3.73 | 3.75 | 3.42 | 3.27 | 2.94 | 2.67 | 2.42 | 2.27 | 2.10 | 6.40 | 9.70 | 6.46 |
Yunnan | 7.17 | 7.27 | 6.52 | 5.86 | 5.15 | 4.58 | 4.13 | 4.10 | 3.90 | 3.80 | 3.73 | 6.48 | 6.40 | 6.29 | 6.08 | 5.70 |
Tibet | 22.8 | 21.5 | 19.3 | 18.8 | 15.2 | 13.2 | 12.5 | 13.6 | 10.5 | 10.9 | 9.30 | 7.77 | 5.19 | 4.41 | 4.90 | 3.61 |
Shaanxi | 6.33 | 8.01 | 7.31 | 7.33 | 6.12 | 5.80 | 5.46 | 5.21 | 5.06 | 4.81 | 4.78 | 4.38 | 4.26 | 4.13 | 4.07 | 3.89 |
Gansu | 8.24 | 7.84 | 7.07 | 6.68 | 6.08 | 6.10 | 6.08 | 5.88 | 5.87 | 5.58 | 5.56 | 5.52 | 5.37 | 5.20 | 5.03 | 4.82 |
Qinghai | 13.9 | 13.8 | 13.6 | 12.1 | 11.5 | 10.9 | 10.4 | 10.2 | 9.84 | 9.35 | 9.20 | 9.13 | 9.03 | 8.92 | 8.81 | 8.43 |
Ningxia | 15.3 | 14.7 | 13.4 | 11.0 | 9.43 | 8.50 | 7.31 | 6.98 | 6.70 | 6.24 | 6.12 | 5.94 | 5.91 | 5.51 | 5.51 | 5.93 |
Xinjiang | 13.7 | 14.7 | 15.5 | 12.7 | 11.5 | 10.9 | 9.63 | 9.26 | 9.02 | 8.70 | 8.52 | 8.25 | 7.97 | 6.65 | 6.79 | 5.89 |
LLC | IPS | ADF-Fisher | PP-Fisher | |
---|---|---|---|---|
RTMR | −19.4475 *** | −8.64590 *** | 185.476 *** | 137.727 *** |
DEL | 4.08565 | 10.9288 | 3.40716 | 2.47945 |
UL | −59.9130 *** | −82.3674 *** | 69.1872 | 150.966 *** |
ML | 25.2159 | 27.2979 | 5.79785 | 2.81477 |
MAL | 7.11400 | 12.6761 | 2.63104 | 2.14695 |
GEH | 12.4898 | 17.5182 | 1.57287 | 0.77390 |
ΔRTMR | −9.40476 *** | −9.25567 *** | 215.826 *** | 229.742 *** |
ΔDEL | −7.56895 *** | −5.68740 *** | 127.569 *** | 103.159 *** |
ΔUL | −2358.96 *** | −417.507 *** | 324.188 *** | 398.606 *** |
ΔML | −2.08629 ** | 2.08405 | 40.8875 | 49.8927 |
ΔMAL | −15.3639 *** | −10.8079 *** | 220.040 *** | 236.928 *** |
ΔGEH | −10.5378 *** | −6.25929 *** | 140.145 *** | 140.555 *** |
ΔΔRTMR | −16.3830 *** | −17.8261 *** | 353.504 *** | 555.251 *** |
ΔΔDEL | −12.9114 *** | −11.0272 *** | 228.655 *** | 270.744 *** |
ΔΔUL | −1874.91 *** | −385.529 *** | 458.376 *** | 656.193 *** |
ΔΔML | −17.3218 *** | −14.4102 *** | 294.667 *** | 376.434 *** |
ΔΔMAL | −29.4760 *** | −23.1930 *** | 448.824 *** | 687.932 *** |
ΔΔGEH | −21.9993 *** | −18.6821 *** | 376.069 *** | 545.920 *** |
EDL | UL | ML | MAL | GEH | Mean VIF | |
---|---|---|---|---|---|---|
VIF | 2.79 | 1.01 | 6.31 | 4.57 | 1.66 | 3.27 |
1/VIF | 0.359 | 0.988 | 0.158 | 0.219 | 0.603 |
Variable | Coefficient | Std. Err. | T | p > |z| |
---|---|---|---|---|
DEL | −1.899 *** | 0.726 | −2.62 | 0.009 |
UL | 0.799 *** | 0.140 | 5.7 | 0.000 |
VD | 0.002 ** | 0.001 | 3.69 | 0.015 |
MAL | −0.029 *** | 0.012 | −2.45 | 0.000 |
GEH | −0.043 *** | 0.005 | −9.51 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Li, H.; Lao, X.; Hu, H.; Wei, Y.; Li, C.; Yuan, X.; Guo, D.; Liu, K. China’s Road Traffic Mortality Rate and Its Empirical Research from Socio-Economic Factors Based on the Tobit Model. Systems 2022, 10, 122. https://doi.org/10.3390/systems10040122
Zeng L, Li H, Lao X, Hu H, Wei Y, Li C, Yuan X, Guo D, Liu K. China’s Road Traffic Mortality Rate and Its Empirical Research from Socio-Economic Factors Based on the Tobit Model. Systems. 2022; 10(4):122. https://doi.org/10.3390/systems10040122
Chicago/Turabian StyleZeng, Liangen, Haitao Li, Xin Lao, Haoyu Hu, Yonggui Wei, Chengming Li, Xinyue Yuan, Dongxu Guo, and Kexin Liu. 2022. "China’s Road Traffic Mortality Rate and Its Empirical Research from Socio-Economic Factors Based on the Tobit Model" Systems 10, no. 4: 122. https://doi.org/10.3390/systems10040122
APA StyleZeng, L., Li, H., Lao, X., Hu, H., Wei, Y., Li, C., Yuan, X., Guo, D., & Liu, K. (2022). China’s Road Traffic Mortality Rate and Its Empirical Research from Socio-Economic Factors Based on the Tobit Model. Systems, 10(4), 122. https://doi.org/10.3390/systems10040122