Intelligence and Sensory Sensitivity as Predictors of Emotion Recognition Ability
Abstract
:1. Introduction
The Present Study
2. Method
2.1. Participants and Procedure
2.2. Measures
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Knapp, M.L.; Hall, J.A. Nonverbal Communication in Human Interaction; Wadsworth Publishing Company, Inc.: Belmont, CA, USA, 2009. [Google Scholar]
- Elfenbein, H.A.; Ambady, N. On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychol. Bull. 2002, 128, 203–235. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, K.; Grandjean, D.; Scherer, K.R. Introducing the Geneva emotion recognition test: An example of rasch-based test development. Psychol. Assess. 2014, 26, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Elfenbein, H.A.; Foo, M.D.; White, J.; Tan, H.H.; Aik, V.C. Reading your counterpart: The benefit of emotion recognition accuracy for effectiveness in negotiation. J. Nonverbal Behav. 2007, 31, 205–223. [Google Scholar] [CrossRef]
- Hall, J.A.; Andrzejewski, S.A.; Yopchick, J.E. Psychosocial correlates of interpersonal sensitivity: A meta-analysis. J. Nonverbal Behav. 2009, 33, 149–180. [Google Scholar] [CrossRef]
- Kohler, C.G.; Walker, J.B.; Martin, E.A.; Healey, K.M.; Moberg, P.J. Facial emotion perception in schizophrenia: A meta-analytic review. Schizophr. Bull. 2010, 36, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, K.; Fontaine, J.R.J.; Scherer, K.R. The nomological network of emotion recognition ability. Eur. J. Psychol. Assess. 2017. [Google Scholar] [CrossRef]
- Hampson, E.; van Anders, S.M.; Mullin, L.I. A female advantage in the recognition of emotional facial expressions: Test of an evolutionary hypothesis. Evol. Hum. Behav. 2017, 27, 401–416. [Google Scholar] [CrossRef]
- House, J.S.; Landis, K.R.; Umberson, D. Social relationships and health. Science 1988, 241, 540. [Google Scholar] [CrossRef] [PubMed]
- Hess, U.; Fischer, A. Emotional Mimicry as Social Regulation. Personal. Soc. Psychol. Rev. 2013, 17, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Hess, U.; Fischer, A. Emotional mimicry: Why and when we mimic emotions. Soc. Personal. Psychol. Compass 2014, 8, 45–57. [Google Scholar] [CrossRef]
- Künecke, J.; Hildebrandt, A.; Recio, G.; Sommer, W.; Wilhelm, O. Facial EMG Responses to Emotional Expressions Are Related to Emotion Perception Ability. PLoS ONE 2014, 9, e84053. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.X.; Schlegel, K.; Tignor, S.M.; Hall, J.A. Who is interested in personality? The Interest in Personality Scale and its correlates. Personal. Individ. Differ. 2016, 101, 185–191. [Google Scholar] [CrossRef]
- Roberts, R.D.; MacCann, C.; Matthews, G.; Zeidner, M. Emotional intelligence: Toward a consensus of models and measures. Soc. Personal. Psychol. Compass 2010, 4, 821–840. [Google Scholar] [CrossRef]
- Mayer, J.D.; Salovey, P. What is emotional intelligence? In Emotional Development and Emotional Intelligence: Educational Implications; Salovey, P., Sluyter, D., Eds.; Basic Books: New York, NY, USA, 1997; pp. 3–31. [Google Scholar]
- Petrides, K.V.; Furnham, A. Trait emotional intelligence: Behavioural validation in two studies of emotion recognition and reactivity to mood induction. Eur. J. Personal. 2003, 17, 39–57. [Google Scholar] [CrossRef]
- Riggio, R.E.; Riggio, H.R. Self-report measurement of interpersonal sensitivity. In Interpersonal Sensitivity: Theory and Measurement; Hall, J.A., Bernieri, F.J., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2001; pp. 127–142. [Google Scholar]
- Murphy, N.A.; Hall, J.A. Intelligence and interpersonal sensitivity: A meta-analysis. Intelligence 2011, 39, 54–63. [Google Scholar] [CrossRef]
- Cherniss, C. Emotional intelligence: Toward clarification of a concept. Ind. Organ. Psychol. 2010, 3, 110–126. [Google Scholar] [CrossRef]
- Schlegel, K.; Grandjean, D.; Scherer, K.R. Constructs of social and emotional effectiveness: Different labels, same content? J. Res. Personal. 2013, 47, 249–253. [Google Scholar] [CrossRef]
- MacCann, C.; Joseph, D.L.; Newman, D.A.; Roberts, R.D. Emotional intelligence is a second-stratum factor of intelligence: Evidence from hierarchical and bifactor models. Emotion 2014, 14, 358–374. [Google Scholar] [CrossRef] [PubMed]
- Joseph, D.L.; Newman, D.A. Emotional intelligence: An integrative meta-analysis and cascading model. J. Appl. Psychol. 2010, 95, 54–78. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.D.; Salovey, P.; Caruso, D.R.; Sitarenios, G. Measuring emotional intelligence with the MSCEIT v2.0. Emotion 2003, 3, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Maul, A. The validity of the mayer–salovey–caruso emotional intelligence test (MSCEIT) as a measure of emotional intelligence. Emot. Rev. 2012, 4, 394–402. [Google Scholar] [CrossRef]
- Fiori, M.; Antonietti, J.P.; Mikolajczak, M.; Luminet, O.; Hansenne, M.; Rossier, J. What is the ability emotional intelligence test (MSCEIT) good for? An evaluation using item response theory. PLoS ONE 2014, 9, e98827. [Google Scholar] [CrossRef] [PubMed]
- Bänziger, T. Accuracy of judging emotions. In The Social Psychology of Perceiving Others Accurately; Hall, J.A., Mast, M.S., West, T.V., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 23–51. [Google Scholar]
- Castro, V.L.; Boone, R.T. Sensitivity to spatiotemporal percepts predicts the perception of emotion. J. Nonverbal Behav. 2015, 39, 215–240. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.; Slessor, G. Moving beyond basic emotions in aging research. J. Nonverbal Behav. 2011, 35, 279–286. [Google Scholar] [CrossRef]
- Schlegel, K.; Boone, R.T.; Hall, J.A. Individual differences in interpersonal accuracy: A multi-level meta-analysis to assess whether judging other people is one skill or many. J. Nonverbal Behav. 2017, 41, 103–137. [Google Scholar] [CrossRef]
- Acton, G.S.; Schroeder, D.H. Sensory discrimination as related to general intelligence. Intelligence 2001, 29, 263–271. [Google Scholar] [CrossRef]
- Deary, I.J.; Bell, P.J.; Bell, A.J.; Campbell, M.L.; Fazal, N.D. Sensory discrimination and intelligence: Testing spearman’s other hypothesis. Am. J. Psychol. 2004, 117, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Helmbold, N.; Troche, S.; Rammsayer, T. Temporal information processing and pitch discrimination as predictors of general intelligence. Can. J. Exp. Psychol. 2006, 60, 294. [Google Scholar] [CrossRef] [PubMed]
- Troche, S.J.; Rammsayer, T.H. Temporal and non-temporal sensory discrimination and their predictions of capacity- and speed-related aspects of psychometric intelligence. Personal. Individ. Differ. 2009, 47, 52–57. [Google Scholar] [CrossRef]
- Stankov, L.; Seizova-Cajić, T.; Roberts, R.D. Tactile and kinesthetic perceptual processes within the taxonomy of human cognitive abilities. Intelligence 2001, 29, 1–29. [Google Scholar] [CrossRef]
- Banse, R.; Scherer, K.R. Acoustic profiles in vocal emotion expression. J. Personal. Soc. Psychol. 1996, 70, 614–636. [Google Scholar] [CrossRef]
- Mortillaro, M.; Mehu, M.; Scherer, K.R. Subtly different positive emotions can be distinguished by their facial expressions. Soc. Psychol. Personal. Sci. 2011, 2, 262–271. [Google Scholar] [CrossRef]
- Adolphs, R. Neural systems for recognizing emotion. Curr. Opin. Neurobiol. 2002, 12, 169–177. [Google Scholar] [CrossRef]
- Hall, J.A. Gender effects in decoding nonverbal cues. Psychol. Bull. 1978, 85, 845–857. [Google Scholar] [CrossRef]
- Thompson, A.E.; Voyer, D. Sex differences in the ability to recognise non-verbal displays of emotion: A meta-analysis. Cogn. Emot. 2014, 28, 1164–1195. [Google Scholar] [CrossRef] [PubMed]
- Rammsayer, T.H.; Troche, S.J. On sex-related differences in auditory and visual sensory functioning. Arch. Sex. Behav. 2012, 41, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Lynn, R.; Irwing, P. Sex differences on the progressive matrices: A meta-analysis. Intelligence 2004, 32, 481–498. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, K.; Scherer, K.R. Introducing a short version of the Geneva emotion recognition test (GERT-S): Psychometric properties and construct validation. Behav. Res. Methods 2016, 48, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.H. Grundintelligenztest Skala 2 (CFT 20-R) Mit Wortschatztest (WS) und Zahlenfolgentest (ZF)—Revision; Hogrefe: Göttingen, Germany, 2006. [Google Scholar]
- Carroll, J.B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Cattell, R.B. Theory of fluid and crystallized intelligence: A critical experiment. J. Educ. Psychol. 1963, 54, 1–22. [Google Scholar] [CrossRef]
- Kaernbach, C. Simple adaptive testing with the weighted up-down method. Percept. Psychophys. 1991, 49, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Petrides, K.V. Psychometric properties of the trait emotional intelligence questionnaire (TEIQue). In Advances in the Measurement of Emotional Intelligence; Stough, C., Saklofske, D.H., Parker, J.D.A., Eds.; Springer: New York, NY, USA, 2009; pp. 85–101. [Google Scholar]
- Freudenthaler, H.H.; Neubauer, A.C.; Gabler, P.; Scherl, W.G.; Rindermann, H. Testing and validating the trait emotional intelligence questionnaire (TEIQue) in a german-speaking sample. Personal. Individ. Differ. 2008, 45, 673–678. [Google Scholar] [CrossRef]
- Mikolajczak, M.; Luminet, O.; Leroy, C.; Roy, E. Psychometric properties of the trait emotional intelligence questionnaire: Factor structure, reliability, construct, and incremental validity in a french-speaking population. J. Personal. Assess. 2007, 88, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Petrides, K.V.; Pérez-González, J.C.; Furnham, A. On the criterion and incremental validity of trait emotional intelligence. Cogn. Emot. 2007, 21, 26–55. [Google Scholar] [CrossRef]
- Nimon, K.; Lewis, M.; Kane, R.; Haynes, R.M. An R package to compute commonality coefficients in the multiple regression case: An introduction to the package and a practical example. Behav. Res. Methods 2008, 40, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Nimon, K. Regression commonality analysis: Demonstration of an SPSS solution. Mult. Linear Regres. Viewp. 2010, 36, 10–17. [Google Scholar]
- Mayer, J.D.; Salovey, P.; Caruso, D.R. Emotional intelligence: Theory, findings, and implications. Psychol. Inq. 2004, 15, 197–215. [Google Scholar] [CrossRef]
- Hunt, E.B. The next word on verbal ability. In Speed of Information-Processing and Intelligence; Vernon, P.A., Ed.; Ablex: Norwood, NJ, USA, 1987; pp. 347–392. [Google Scholar]
- Mackintosh, N.J. IQ and Human Intelligence; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Rosip, J.C.; Hall, J.A. Knowledge of nonverbal cues, gender, and nonverbal decoding accuracy. J. Nonverbal Behav. 2004, 28, 267–286. [Google Scholar] [CrossRef]
- Bänziger, T.; Scherer, K.R. On the use of actor portrayals in research on emotional expression. In Blueprint for Affective Computing: A Sourcebook; Scherer, K.R., Roesch, E., Bänziger, T., Eds.; Springer: Oxford, UK, 2010; pp. 166–176. [Google Scholar]
- Schmidt, F.L.; Hunter, J. General mental ability in the world of work: Occupational attainment and job performance. J. Personal. Soc. Psychol. 2004, 86, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Poropat, A.E. A meta-analysis of the five-factor model of personality and academic performance. Psychol. Bull. 2009, 135, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Elfenbein, H.A.; Marsh, A.A.; Ambady, N. Emotional intelligence and the recognition of emotion from facial expressions. In The Wisdom in Feeling: Psychological Processes in Emotional Intelligence; Barrett, L.F., Salovey, P., Eds.; Guilford Press: New York, NY, USA, 2002; pp. 37–59. [Google Scholar]
- Strenze, T. Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence 2007, 35, 401–426. [Google Scholar] [CrossRef]
- Momm, T.; Blickle, G.; Liu, Y.; Wihler, A.; Kholin, M.; Menges, J.I. It pays to have an eye for emotions: Emotion recognition ability indirectly predicts annual income. J. Organ. Behav. 2015, 36, 147–163. [Google Scholar] [CrossRef]
Total Sample (n = 214) | Females (n = 108) | Males (n = 106) | Gender Comparisons | Correlation with Gender (0 = Female, 1 = Male) | |||||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | t(212) | d | r | |
CFT 20-R | 45.30 | 4.96 | 44.6 | 5.0 | 46.1 | 4.8 | −2.21 *** | −0.31 | 0.14 * |
Auditory Threshold | 0.00 | 1.00 | 0.08 | 0.92 | −0.08 | 1.07 | 1.18 | 0.16 | −0.11 |
Visual Threshold | 0.00 | 1.00 | 0.40 | 0.99 | −0.40 | 0.84 | 6.42 *** | 0.87 | −0.40 ** |
GERT-S Total Score | 0.71 | 0.09 | 0.74 | 0.09 | 0.69 | 0.08 | 3.34 **** | 0.59 | −0.30 ** |
TEIQue | 5.07 | 0.54 | 5.00 | 0.53 | 5.14 | 0.55 | −1.99 * | −0.26 | 0.13 |
CFT 20-R | Visual Threshold | Auditory Threshold | GERT-S | TEIQue | |
---|---|---|---|---|---|
Full sample zero-order (lower left half) and partial correlations controlling for gender (upper right half) | |||||
(1) CFT 20-R | −0.29 *** | −0.18 ** | 0.26 *** | 0.06 | |
(2) Visual sensory threshold | −0.32 ** | 0.16 * | −0.23 ** | 0.08 | |
(3) Auditory sensory threshold | −0.19 ** | 0.19 ** | −0.11 | 0.00 | |
(4) GERT-S | 0.21 ** | −0.09 | −0.07 | 0.00 | |
(5) TEIQue | 0.08 | 0.02 | −0.01 | −0.04 | |
Zero-order correlations for females (lower left half) and males (upper right half) | |||||
(1) CFT 20-R | −0.34 ** | −0.16 | 0.18 | −0.07 | |
(2) Visual sensory threshold | −0.30 ** | 0.10 | −0.30 ** | 0.03 | |
(3) Auditory sensory threshold | −0.20 * | 0.25 ** | −0.13 | 0.09 | |
(4) GERT-S | 0.30 *** | −0.11 | −0.03 | −0.08 | |
(5) TEIQue | 0.18 | 0.14 | −0.10 | 0.10 |
Step 1 | Step 2 | Step 3 | ||||
---|---|---|---|---|---|---|
Independent Variables | Beta | t | Beta | t | Beta | t |
(Constant) | 42.97 | 11.40 | 2.70 | |||
Gender | −0.29 *** | −4.34 | −0.39 *** | −5.65 | 0.36 | 0.59 |
Visual sensory threshold | −0.17 * | −2.39 | 0.00 | −0.02 | ||
Auditory sensory threshold | −0.04 | −0.56 | 0.06 | 0.29 | ||
CFT 20-R | 0.21 ** | 3.06 | 0.44 * | 2.13 | ||
Auditory Threshold * gender | −0.11 | −0.51 | ||||
Visual Threshold * gender | −0.18 | −0.83 | ||||
CFT 20-R * gender | −0.83 | −1.22 | ||||
Adjusted R2 | 0.08 | 0.16 | 0.15 |
Commonality Coefficient | Percent Explained of R2 | |
---|---|---|
Unique to CFT 20-R | 0.04 | 23.32 |
Unique to visual sensory threshold | 0.02 | 14.26 |
Unique to gender | 0.13 | 74.50 |
Common to CFT 20-R and visual sensory threshold | 0.02 | 14.26 |
Common to CFT 20-R and gender | −0.00 | −2.19 |
Common to visual sensory threshold and gender | −0.02 | −13.96 |
Common to CFT 20-R, visual sensory threshold, and gender | −0.02 | −10.19 |
Total R2 | 0.17 | 100.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlegel, K.; Witmer, J.S.; Rammsayer, T.H. Intelligence and Sensory Sensitivity as Predictors of Emotion Recognition Ability. J. Intell. 2017, 5, 35. https://doi.org/10.3390/jintelligence5040035
Schlegel K, Witmer JS, Rammsayer TH. Intelligence and Sensory Sensitivity as Predictors of Emotion Recognition Ability. Journal of Intelligence. 2017; 5(4):35. https://doi.org/10.3390/jintelligence5040035
Chicago/Turabian StyleSchlegel, Katja, Joëlle S. Witmer, and Thomas H. Rammsayer. 2017. "Intelligence and Sensory Sensitivity as Predictors of Emotion Recognition Ability" Journal of Intelligence 5, no. 4: 35. https://doi.org/10.3390/jintelligence5040035
APA StyleSchlegel, K., Witmer, J. S., & Rammsayer, T. H. (2017). Intelligence and Sensory Sensitivity as Predictors of Emotion Recognition Ability. Journal of Intelligence, 5(4), 35. https://doi.org/10.3390/jintelligence5040035