Sometimes Less Is Not Enough: A Commentary on Greiff et al. (2015)
Abstract
:1. Introduction
2. Issues Related to the Tailorshop Assessment Instrument
2.1. Missing Exploration Phase
2.2. Missing Knowledge Test
3. Issues Related to the MicroFIN Assessment Instrument
4. Issues Related to the Analyses
4.1. Research Question 1
4.2. Research Question 2
5. Issues Related to the Interpretation of the Results and Their Relations to Previous Work
6. General Conclusions
Acknowledgments
Conflicts of Interest
References
- Frensch, P.A.; Funke, J. Definitions, Traditions, and a General Framework for Understanding Complex Problem Solving. In Complex Problem Solving: The European Perspective; Frensch, P.A., Funke, J., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1995; pp. 3–25. [Google Scholar]
- Greiff, S.; Niepel, C.; Wüstenberg, S. 21st century skills: International advancements and recent developments. Think. Skills Creat. 2015, 18, 1–3. [Google Scholar] [CrossRef]
- Neubert, J.C.; Mainert, J.; Kretzschmar, A.; Greiff, S. The assessment of 21st century skills in industrial and organizational psychology: Complex and collaborative problem solving. Ind. Organ. Psychol. 2015, 8, 238–268. [Google Scholar] [CrossRef]
- OECD. Pisa 2012 Results: Creative Problem Solving: Students’ Skills in Tackling Real-Life Problems (Volume V); OECD Publishing: Paris, France, 2014. [Google Scholar]
- Kretzschmar, A.; Neubert, J.C.; Wüstenberg, S.; Greiff, S. Construct validity of complex problem solving: A comprehensive view on different facets of intelligence and school grades. Intelligence 2016, 54, 55–69. [Google Scholar] [CrossRef]
- Funke, J. Complex problem solving: A case for complex cognition? Cogn. Process. 2010, 11, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funke, J. Analysis of minimal complex systems and complex problem solving require different forms of causal cognition. Front. Psychol. 2014, 5, 739. [Google Scholar] [CrossRef] [PubMed]
- Greiff, S.; Martin, R. What you see is what you (don’t) get: A comment on Funke’s (2014) opinion paper. Front. Psychol. 2014, 5, 1120. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R. Is it time for a new measurement approach? A closer look at the assessment of cognitive adaptability in complex problem solving. Front. Psychol. 2015, 6, 1664. [Google Scholar] [CrossRef] [PubMed]
- Schoppek, W.; Fischer, A. Complex problem solving—Single ability or complex phenomenon? Front. Psychol. 2015, 6, 1669. [Google Scholar] [CrossRef] [PubMed]
- Greiff, S.; Stadler, M.; Sonnleitner, P.; Wolff, C.; Martin, R. Sometimes less is more: Comparing the validity of complex problem solving measures. Intelligence 2015, 50, 100–113. [Google Scholar] [CrossRef]
- Greiff, S.; Fischer, A.; Wüstenberg, S.; Sonnleitner, P.; Brunner, M.; Martin, R. A multitrait-multimethod study of assessment instruments for complex problem solving. Intelligence 2013, 41, 579–596. [Google Scholar] [CrossRef]
- Greiff, S.; Wüstenberg, S.; Funke, J. Dynamic problem solving: A new assessment perspective. Appl. Psychol. Meas. 2012, 36, 189–213. [Google Scholar] [CrossRef]
- Neubert, J.C.; Kretzschmar, A.; Wüstenberg, S.; Greiff, S. Extending the assessment of complex problem solving to finite state automata: Embracing heterogeneity. Eur. J. Psychol. Assess. 2015, 31, 181–194. [Google Scholar] [CrossRef]
- Sonnleitner, P.; Brunner, M.; Greiff, S.; Funke, J.; Keller, U.; Martin, R.; Hazotte, C.; Mayer, H.; Latour, T. The Genetics Lab: Acceptance and psychometric characteristics of a computer-based microworld assessing complex problem solving. Psychol. Test Assess. Model. 2012, 54, 54–72. [Google Scholar]
- Putz-Osterloh, W. Über die Beziehung zwischen Testintelligenz und Problemlöseerfolg [On the relationship between test intelligence and success in problem solving]. Z. Psychol. 1981, 189, 79–100. [Google Scholar]
- Kluge, A. What you train is what you get? Task requirements and training methods in complex problem-solving. Comput. Hum. Behav. 2008, 24, 284–308. [Google Scholar] [CrossRef]
- Wagener, D. Psychologische Diagnostik mit Komplexen Szenarios—Taxonomie, Entwicklung, Evaluation [Psychological Assessment with Complex Scenarios—Taxonomy, Development, Evaluation]; Pabst Science Publishers: Lengerich, Germany, 2001. [Google Scholar]
- Danner, D.; Hagemann, D.; Schankin, A.; Hager, M.; Funke, J. Beyond IQ: A latent state-trait analysis of general intelligence, dynamic decision making, and implicit learning. Intelligence 2011, 39, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Grossler, A.; Maier, F.H.; Milling, P.M. Enhancing learning capabilities by providing transparency in business simulators. Simul. Gaming 2000, 31, 257–278. [Google Scholar] [CrossRef]
- Wallach, D.P. Learning to Control a Coal-Fired Power Plant: Empirical Results and a Model. In Engineering Psychology and Cognitive Ergonomics; Harris, D., Ed.; Ashgate Publishers: Hampshire, UK, 1997; Volume 2, pp. 82–90. [Google Scholar]
- Kretzschmar, A.; Süß, H.-M. A study on the training of complex problem solving competence. J. Dyn. Decis. Mak. 2015, 1. [Google Scholar] [CrossRef]
- Gonzalez, C.; Thomas, R.P.; Vanyukov, P. The relationships between cognitive ability and dynamic decision making. Intelligence 2005, 33, 169–186. [Google Scholar] [CrossRef]
- Goode, N.; Beckmann, J.F. You need to know: There is a causal relationship between structural knowledge and control performance in complex problem solving tasks. Intelligence 2010, 38, 345–352. [Google Scholar] [CrossRef]
- Dörner, D.; Kreuzig, H.W.; Reither, F.; Stäudel, T. Lohhausen: Vom Umgang mit Unbestimmtheit und Komplexität [Lohhausen: Dealing with Uncertainty and Complexity]; Huber: Bern, Switzerland, 1983. [Google Scholar]
- Fischer, A.; Greiff, S.; Funke, J. The process of solving complex problems. J. Probl. Solving 2012, 4, 19–41. [Google Scholar] [CrossRef]
- Süß, H.-M. Intelligenz, Wissen und Problemlösen: Kognitive Voraussetzungen für Erfolgreiches Handeln bei Computersimulierten Problemen [Intelligence, Knowledge and Problem Solving: Cognitive Prerequisites for Successful Behavior in Computer-Simulated Problems]; Hogrefe: Göttingen, Germany, 1996. [Google Scholar]
- Wuttke, E.; Wolf, K.D. Entwicklung eines Instrumentes zur Erfassung von Problemlösefähigkeit—Ergebnisse einer Pilotstudie [Developing an assessment tool for identifying a person’s ability to solve problems—Results]. Eur. Z. Berufsbild. 2007, 41, 99–118. [Google Scholar]
- Vollmeyer, R.; Burns, B.D.; Holyoak, K.J. The impact of goal specificity on strategy use and the acquisition of problem structure. Cogn. Sci. 1996, 20, 75–100. [Google Scholar] [CrossRef]
- Kersting, M.; Süß, H.-M. Kontentvalide Wissensdiagnostik und Problemlösen: Zur Entwicklung, testtheoretischen Begründung und empirischen Bewährung eines problemspezifischen Diagnoseverfahrens [Content-valid diagnosis of knowledge and problem solving: Development, test theoretical justification and empirical validiation of a new problem-specific test]. Z. Pädagogische Psychol. 1995, 9, 83–94. [Google Scholar]
- Süß, H.-M.; Kersting, M.; Oberauer, K. Zur Vorhersage von Steuerungsleistungen an computersimulierten Systemen durch Wissen und Intelligenz [On the predictability of control performance on computer-simulated systems by knowledge and intelligence]. Z. Differ. Diagn. Psychol. 1993, 14, 189–203. [Google Scholar]
- Danner, D.; Hagemann, D.; Holt, D.V.; Hager, M.; Schankin, A.; Wüstenberg, S.; Funke, J. Measuring performance in dynamic decision making. J. Individ. Differ. 2011, 32, 225–233. [Google Scholar] [CrossRef]
- Danner, D. Personal Communication; GESIS: Mannheim, Germany, 2016. [Google Scholar]
- Blech, C.; Funke, J. Zur Reaktivität von Kausaldiagramm-Analysen beim komplexen Problemlösen [On the reactivity of causal diagrams in complex problem solving]. Z. Psychol. 2006, 214, 185–195. [Google Scholar] [CrossRef]
- Wüstenberg, S.; Greiff, S.; Funke, J. Complex problem solving—More than reasoning? Intelligence 2012, 40, 1–14. [Google Scholar] [CrossRef]
- Sonnleitner, P.; Keller, U.; Martin, R.; Brunner, M. Students’ complex problem-solving abilities: Their structure and relations to reasoning ability and educational success. Intelligence 2013, 41, 289–305. [Google Scholar] [CrossRef]
- Sonnleitner, P.; Brunner, M.; Keller, U.; Martin, R. Differential relations between facets of complex problem solving and students’ immigration background. J. Educ. Psychol. 2014, 106, 681–695. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research. In Methodology in the Social Sciences, 2nd ed.; The Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 2003, 8, 23–74. [Google Scholar]
- Steiger, J.H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 1980, 87, 245. [Google Scholar] [CrossRef]
- Stadler, M.; Becker, N.; Gödker, M.; Leutner, D.; Greiff, S. Complex problem solving and intelligence: A meta-analysis. Intelligence 2015, 53, 92–101. [Google Scholar] [CrossRef]
- Kuncel, N.R.; Hezlett, S.A.; Ones, D.S. Academic performance, career potential, creativity, and job performance: Can one construct predict them all? J. Personal. Soc. Psychol. 2004, 86, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Greiff, S.; Fischer, A. Der Nutzen einer komplexen Problemlösekompetenz: Theoretische Überlegungen und empirische Befunde [The value of complex problem solving competency: Theoretical considerations and empirical results]. Z. Pädagogische Psychol. 2013, 27, 27–39. [Google Scholar] [CrossRef]
- Tonidandel, S.; LeBreton, J.M. Relative importance analysis: A useful supplement to regression analysis. J. Bus. Psychol. 2011, 26, 1–9. [Google Scholar] [CrossRef]
- Reise, S.P. The rediscovery of bifactor measurement models. Multivar. Behav. Res. 2012, 47, 667–696. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M. No g in education? Learn. Individ. Differ. 2008, 18, 152–165. [Google Scholar] [CrossRef]
- Kersting, M. Zur Konstrukt-und Kriteriumsvalidität von Problemlöseszenarien anhand der Vorhersage von Vorgesetztenurteilen über die berufliche Bewährung [On the construct and criterion validity of problem-solving scenarios based on the prediction of supervisor assessment of job performance]. Diagnostica 2001, 47, 67–76. [Google Scholar]
- Süß, H.-M. Intelligenz und komplexes Problemlösen: Perspektiven für eine Kooperation zwischen differentiell-psychometrischer und kognitionspsychologischer Forschung [Intelligence and complex problem solving: Perspectives for a cooperation between differential-psychometric and cognition-psychological research]. Psychol. Rundsch. 1999, 50, 220–228. [Google Scholar]
- Wittmann, W.W.; Hattrup, K. The relationship between performance in dynamic systems and intelligence. Syst. Res. Behav. Sci. 2004, 21, 393–409. [Google Scholar] [CrossRef]
- Wittmann, W.W.; Süß, H.-M. Investigating the Paths between Working Memory, Intelligence, Knowledge, and Complex Problem-Solving Performances via Brunswik Symmetry. In Learning and Individual Differences: Process, Trait and Content Determinants; Ackerman, P.L., Kyllonen, P.C., Roberts, R.D., Eds.; APA: Washington, DC, USA, 1999; pp. 77–104. [Google Scholar]
- Jäger, A.O.; Süß, H.-M.; Beauducel, A. Berliner Intelligenzstruktur-Test Form 4 [Berlin Intelligence-Structure Test Version 4]; Hogrefe: Göttingen, Germany, 1997. [Google Scholar]
- Süß, H.-M.; Beauducel, A. Modeling the construct validity of the Berlin Intelligence Structure Model. Estud. Psicol. (Camp.) 2015, 32, 13–25. [Google Scholar] [CrossRef]
- Liepmann, D.; Beauducel, A.; Brocke, B.; Amthauer, R. Intelligenz-Struktur-Test 2000 R (I-S-T 2000 R)—Manual [Intelligence Structure Test 2000 R Manual]; Hogrefe: Göttingen, Germany, 2007. [Google Scholar]
- 2The common procedure applied in the MCS assessment tools allowed participants to freely explore each task to acquire knowledge without any goal except to explore the task and to use their knowledge to achieve several goals in the subsequent phase of the assessment. Thus, the cognitive demands were split and successively requested in the MCS tasks.
- 4An examination of previous literature revealed that five to six tasks are the very minimum numbers of tasks that are usually employed in the MCS approach, independent of the specific operationalization (see e.g., [13,35] for MicroDYN; [5,14] for MicroFIN; [36,37] for Genetics Lab). Furthermore, the low reliability of the applied MicroFIN test (see Table 2 [12]) as well as issues with the measurement model (see [12]) can be taken as evidence against the adequacy of the MicroFIN version that was applied.
- 5Greiff et al.’s finding that neither Tailorshop nor MicroFIN were significant predictors of school grades in a simultaneous regression (see Model 5c [11]) emphasized the impact of g-factor variance in a correlated factor model.
- 6Please note also that Greiff et al. [11] cited Süß [27] several times with regard to the relation between Tailorshop performance and school grades. However, no such information was provided by Süß [27]. In fact, to date, there is little information in the literature on whether and to what extent a participant’s Tailorshop performance can be used to explain variance in school grades. However, there is evidence that Tailorshop performance can be used to incrementally explain variance in supervisory ratings beyond reasoning [32,47], a finding that does not yet appear to have been replicated with MCS assessment tools.
- 8The rationale behind this approach was the need for a different conceptualization of CPS. Broadly speaking, knowledge acquisition was considered part of (crystallized) intelligence and, thus, was not viewed as a specific type of CPS performance (see [27]).
© 2017 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kretzschmar, A. Sometimes Less Is Not Enough: A Commentary on Greiff et al. (2015). J. Intell. 2017, 5, 4. https://doi.org/10.3390/jintelligence5010004
Kretzschmar A. Sometimes Less Is Not Enough: A Commentary on Greiff et al. (2015). Journal of Intelligence. 2017; 5(1):4. https://doi.org/10.3390/jintelligence5010004
Chicago/Turabian StyleKretzschmar, André. 2017. "Sometimes Less Is Not Enough: A Commentary on Greiff et al. (2015)" Journal of Intelligence 5, no. 1: 4. https://doi.org/10.3390/jintelligence5010004
APA StyleKretzschmar, A. (2017). Sometimes Less Is Not Enough: A Commentary on Greiff et al. (2015). Journal of Intelligence, 5(1), 4. https://doi.org/10.3390/jintelligence5010004