Examining the Differential Role of General and Specific Processing Speed in Predicting Mathematical Achievement in Junior High School
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Cognitive Assessment
2.2.1. Cognitive Tests
Nonverbal Matrix Reasoning
Mental Rotation
Spatial Working Memory
Visual Tracing
Visual Searching
2.2.2. General Processing Speed
Choice Reaction Time
Figure Matching
2.2.3. Specific Processing Speed
Word Semantics (Reading Fluency)
Simple Subtraction (Arithmetic Fluency)
Complex Subtraction (Arithmetic Fluency)
Complex Multiplication (Arithmetic Fluency)
2.3. Academic Achievement
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. Correlation Analysis
3.2. Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andersson, Ulf, and Björn Lyxell. 2007. Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology 96: 197–228. [Google Scholar] [CrossRef]
- Bates, Marsha E., and Edward P. Lemay Jr. 2004. The d2 Test of Attention: Construct validity and extensions in scoring techniques. Journal of the International Neuropsychological Society: JINS 10: 392–400. [Google Scholar] [CrossRef]
- Berkowitz, Michal, and Elsbeth Stern. 2018. Which Cognitive Abilities Make the Difference? Predicting Academic Achievements in Advanced STEM Studies. Journal of Intelligence 6: 48. [Google Scholar] [CrossRef] [Green Version]
- Bull, Rebecca, and Rhona S. Johnston. 1997. Children’s arithmetical difficulties: Contributions from processing speed, item identification, and short-term memory. Journal of Experimental Child Psychology 65: 1–24. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, Brian. 2003. Dyscalculia Screener. London: NFER-Nelson. [Google Scholar]
- Cheng, Dazhi, Aihong Zhou, Xing Yu, Chuansheng Chen, Jianping Jia, and Xinlin Zhou. 2013. Quantifier processing can be dissociated from numerical processing: Evidence from semantic dementia patients. Neuropsychologia 51: 2172–83. [Google Scholar] [CrossRef]
- Cheng, Dazhi, Haiyan Wu, Li Yuan, Rui Xu, Qian Chen, and Xinlin Zhou. 2017. Modality-Dependent or Modality-Independent Processing in Mental Arithmetic: Evidence From Unimpaired Auditory Multiplication for a Patient With Left Frontotemporal Stroke. Journal of the International Neuropsychological Society 23: 692–99. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Dazhi, Qing Xiao, Jiaxin Cui, Chuansheng Chen, Jieying Zeng, Qian Chen, and Xinlin Zhou. 2020. Short-term numerosity training promotes symbolic arithmetic in children with developmental dyscalculia: The mediating role of visual form perception. Developmental Science 23: e12910. [Google Scholar] [CrossRef] [PubMed]
- Cirino, Paul T. 2011. The interrelationships of mathematical precursors in kindergarten. Journal of Experimental Child Psychology 108: 713–33. [Google Scholar] [CrossRef] [Green Version]
- Corsi, Philip Michael. 1972. Human Memory and the Medial Temporal Region of the Brain. Doctoral dissertation, Mcgill University, Montreal, QC, Canada; p. 34. [Google Scholar]
- Cowan, Richard, Chris Donlan, Donna-Lynn Shepherd, Rachel Cole-Fletcher, Matthew Saxton, and Jane Hurry. 2011. Basic Calculation Proficiency and Mathematics Achievement in Elementary School Children. Journal of Educational Psychology 103: 786–803. [Google Scholar] [CrossRef] [Green Version]
- Cowan, Richard, Chris Donlan, Elizabeth J. Newton, and Delyth Llyod. 2005. Number skills and knowledge in children with specific language impairment. Journal of Educational Psychology 97: 732. [Google Scholar] [CrossRef] [Green Version]
- Cui, Jiaxin, Yiyun Zhang, Dazhi Cheng, Dawei Li, and Xinlin Zhou. 2017. Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers. Front Psychol 8: 1336. [Google Scholar] [CrossRef] [Green Version]
- Ekstrom, Ruth B., John W French, Harry Horace Harman, and David Dermen. 1976. Manual for Kit of Factor-Referenced Cognitive Tests. Princeton: Educational Testing Service. [Google Scholar]
- Faul, Franz, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. 2009. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behavior Research Methods 41: 1149–60. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, Lynn S., Douglas Fuchs, Donald L. Compton, Sarah R. Powell, Pamela M. Seethaler, Andrea M. Capizzi, Christopher Schatschneider, and Jack M. Fletcher. 2006. The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology 98: 29–43. [Google Scholar] [CrossRef]
- Fuchs, Lynn S., Pamela M. Seethaler, Sonya K. Sterba, Caitlin Craddock, Douglas Fuchs, Donald L. Compton, David C. Geary, and Paul Changas. 2021. Closing the Word-Problem Achievement Gap in First Grade: Schema-Based Word-Problem Intervention With Embedded Language Comprehension Instruction. Journal of Educational Psychology 113: 86–103. [Google Scholar] [CrossRef] [PubMed]
- Fung, Wenson W., H. Lee Swanson, and Michael J. Orosco. 2014. Influence of reading and calculation on children at risk and not at risk for word problem solving: Is math motivation a mediator? Learning & Individual Differences 36: 84–91. [Google Scholar]
- Geary, David C. 2011. Cognitive Predictors of Achievement Growth in Mathematics: A 5-Year Longitudinal Study. Developmental Psychology 47: 1539–52. [Google Scholar] [CrossRef] [Green Version]
- Geary, David C., and Keith F. Widaman. 1987. Individual Differences in Cognitive Arithmetic. Journal of Experimental Psychology: General 116: 154–71. [Google Scholar] [CrossRef]
- Geary, David C., and Keith F. Widaman. 1992. Numerical cognition: On the convergence of componential and psychometric models. Intelligence 16: 47–80. [Google Scholar] [CrossRef] [Green Version]
- Geary, David C., Mary K. Hoard, Lara Nugent, and Jeffrey N. Rouder. 2015. Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems. Journal of Experimental Child Psychology 140: 211–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groffman, S. 1994. The Relationship between Visual Perception and Learning. Optometric Management of Learning-Related Vision Problems. St. Louis: Mosby-Year Book. [Google Scholar]
- Hecht, Steven A., Joseph K. Torgesen, Richard K. Wagner, and Carol A. Rashotte. 2001. The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: A longitudinal study from second to fifth grades. Journal of Experimental Child Psychology 79: 192–227. [Google Scholar] [CrossRef]
- Jordan, Nancy C., Laurie B. Hanich, and David Kaplan. 2003. Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology 85: 103–19. [Google Scholar] [CrossRef] [Green Version]
- Lambert, Katharina, and Birgit Spinath. 2017. Conservation Abilities, Visuospatial Skills, and Numerosity Processing Speed: Association With Math Achievement and Math Difficulties in Elementary School Children. Journal of Learning Disabilities 51: 223–35. [Google Scholar] [CrossRef] [PubMed]
- Leikin, Roza, Nurit Paz-Baruch, and Mark Leikin. 2014. Cognitive Characteristics of Students with Superior Performance in Mathematics. Journal of Individual Differences 35: 119–29. [Google Scholar] [CrossRef]
- Li, Mengyi, Yuxin Tan, Jiaxin Cui, Chuansheng Chen, Qi Dong, and Xinlin Zhou. 2019. The Semantic Network Supports Approximate Computation. Neuropsychology 33: 842–54. [Google Scholar] [CrossRef]
- Lin, Xin. 2020. Investigating the Unique Predictors of Word-Problem Solving Using Meta-Analytic Structural Equation Modeling. Educational Psychology Review, 1–28. [Google Scholar] [CrossRef]
- McGrew, Kevin S., and Barbara J. Wendling. 2010. Cattell-Horn-Carroll Cognitive-Achievement Relations: What We Have Learned from the Past 20 Years of Research. Psychology in the Schools 47: 651–75. [Google Scholar] [CrossRef]
- Mummery, Cath J., Karalyn Patterson, J. R. Hodges, and C. J. Price. 1998. Functional neuroanatomy of the semantic system: Divisible by what? Journal of Cognitive Neuroscience 10: 766–77. [Google Scholar] [CrossRef] [PubMed]
- Passolunghi, Maria Chiara, and Silvia Lanfranchi. 2012. Domain-specific and domain-general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology 82: 42–63. [Google Scholar] [CrossRef]
- Qin, Shaozheng, Soohyun Cho, Tianwen Chen, Miriam Rosenberg-Lee, David Geary, and Vinod Menon. 2014. Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature Neuroscience 17: 1263–69. [Google Scholar] [CrossRef]
- Raven, John C., and John Hugh Court. 1998. Raven’s Progressive Matrices and Vocabulary Scales. Psychological Reports. [Google Scholar] [CrossRef]
- Rohde, Treena Eileen, and Lee Anne Thompson. 2007. Predicting academic achievement with cognitive ability. Intelligence 35: 83–92. [Google Scholar] [CrossRef]
- Royer, James, Loel Tronsky, Yan Chan, Stanley Jackson, and Horace Marchant. 1999. Math-Fact Retrieval as the Cognitive Mechanism Underlying Gender Differences in Math Test Performance. Contemporary Educational Psychology 24: 181–266. [Google Scholar] [CrossRef] [PubMed]
- Schlaggar, Bradley, and Bruce McCandliss. 2007. Development of Neural Systems for Reading. Annual Review of Neuroscience 30: 475–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, W. Joel, and Kevin S. McGrew. 2012. The Cattell-Horn-Carroll (CHC) Model of Intelligence. In Contemporary Intellectual Assessment: Theories, Tests, and Issues, 3rd ed. New York: The Guilford Press, pp. 99–144. [Google Scholar]
- Shepard, Roger N., and Jacqueline Metzler. 1971. Mental Rotation of Three-Dimensional Objects. Science 171: 701–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, Mercedes, Lynn Fuchs, David Geary, and Douglas Fuchs. 2021. Connections between mathematics and reading development: Numerical cognition mediates relations between foundational competencies and later academic outcomes. Journal of Educational Psychology. [Google Scholar] [CrossRef]
- Swanson, H. Lee, and Margaret Beebe-Frankenberger. 2004. The Relationship Between Working Memory and Mathematical Problem Solving in Children at Risk and Not at Risk for Serious Math Difficulties. Journal of Educational Psychology 96: 471–91. [Google Scholar] [CrossRef] [Green Version]
- Taub, Gordon E., Timothy Z. Keith, Randy G. Floyd, and Kevin S. McGrew. 2008. Effects of General and Broad Cognitive Abilities on Mathematics Achievement. School Psychology Quarterly 23: 187–98. [Google Scholar] [CrossRef] [Green Version]
- Tikhomirova, Tatiana, Artem Malykh, and Sergey Malykh. 2020. Predicting Academic Achievement with Cognitive Abilities: Cross-Sectional Study across School Education. Behavioral Sciences 10: 158. [Google Scholar] [CrossRef]
- Träff, Ulf, Kenny Skagerlund, Linda Olsson, and Rickard Östergren. 2017. Pathways to arithmetic fact retrieval and percentage calculation in adolescents. The British Journal of Educational Psychology 87: 647–63. [Google Scholar] [CrossRef] [PubMed]
- Wei, Wei, Hao Lu, Hui Zhao, Chuansheng Chen, Qi Dong, and Xinlin Zhou. 2012. Gender differences in children’s arithmetic performance are accounted for by gender differences in language abilities. Psychological Science 23: 320–30. [Google Scholar] [CrossRef] [Green Version]
- Widaman, Keith F., Todd D. Little, David C. Geary, and Pierre Cormier. 1992. Individual differences in the development of skill in mental addition: Internal and external validation of chronometric models. Learning and Individual Differences 4: 167–213. [Google Scholar] [CrossRef] [Green Version]
- Zaboski, Brian A., John H. Kranzler, and Nicholas A. Gage. 2018. Meta-analysis of the relationship between academic achievement and broad abilities of the Cattell-horn-Carroll theory. Journal of School Psychology 71: 42–56. [Google Scholar] [CrossRef]
- Zhang, Han, Chuansheng Chen, and Xinlin Zhou. 2012. Neural correlates of numbers and mathematical terms. Neuroimage 60: 230–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Xinlin, and Dazhi Cheng. 2015. When and why numerosity processing is associated with developmental dyscalculia. In The Routledge International Handbook of Dyscalculia and Mathematical. Exeter: Swales & Willis Ltd., New York: Routledge, pp. 78–89. [Google Scholar]
- Zhou, Xinlin, and Qi Dong. 2003. Representation formats for addition and multiplication facts. Acta Psychologica Sinica, 345–51. [Google Scholar]
- Zhou, Xinlin, Chuansheng Chen, Yufeng Zang, Qi Dong, Chunhui Chen, Sibing Qiao, and Qiyong Gong. 2007. Dissociated brain organization for single-digit addition and multiplication. Neuroimage 35: 871–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Xinlin, Wei Wei, Yiyun Zhang, Jiaxin Cui, and Chuansheng Chen. 2015. Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology 6: 1364. [Google Scholar] [CrossRef] [Green Version]
Tests | Mean (SD) | Split-Half Reliability | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Nonverbal matrix reasoning | 20.46 (7.50) | 0.78 | - | |||||||||||||||
2. Mental rotation | 20.15 (9.76) | 0.86 | 0.24 ** | - | ||||||||||||||
3. Spatial working memory | 82.24 (7.33) | 0.91 | 0.07 | 0.23 ** | - | |||||||||||||
4. Visual tracing | 19.32 (5.12) | 0.92 | 0.25 ** | 0.29 ** | 0.13 | -- | ||||||||||||
5. Visual search | 30.65 (25.09) | 0.92 | 0.25 ** | 0.17 * | 0.09 | 0.16 * | -- | |||||||||||
6. Figure matching | 53.06 (24.98) | 0.92 | 0.21 ** | 0.34 ** | 0.20 ** | 0.26 ** | 0.32 ** | -- | ||||||||||
7. Choice reaction time | 319.94 (59.16) | 0.93 | −0.11 | −0.01 | −0.11 | −0.19 ** | 0.03 | −0.14 * | -- | |||||||||
8. Word semantic | 32.93 (7.44) | 0.82 | 0.23 ** | 0.12 | 0.07 | 0.26 ** | 0.20 ** | 0.14 * | −0.19 ** | -- | ||||||||
9. Simple subtraction | 44.04 (11.15) | 0.86 | 0.23 ** | 0.12 | 0.12 | 0.15 * | 0.39 ** | 0.42 ** | −0.04 | 0.24 ** | -- | |||||||
10. Complex subtraction | 21.40 (9.12) | 0.85 | 0.18 ** | 0.08 | 0.08 | 0.13 | 0.43 ** | 0.34 ** | −0.07 | 0.13 | 0.47 ** | -- | ||||||
11. Complex multiplication | 29.02 (6.78) | 0.78 | 0.14 * | 0.08 | 0.43 ** | 0.18 ** | 0.26 ** | 0.27 ** | −0.22 ** | 0.11 | 0.39 ** | 0.21 ** | -- | |||||
12. Mathematics in Grade 7 | 81.40 (18.03) | N/A | 0.35 ** | 0.24 ** | 0.10 | 0.31 ** | 0.39 ** | 0.29 ** | −0.14 | 0.42 ** | 0.46 ** | 0.41 ** | 0.28 ** | -- | ||||
13. Chinese in Grade 7 | 83.72 (8.27) | N/A | 0.25 ** | 0.11 | 0.13 | 0.28 ** | 0.26 ** | 0.20 ** | −0.25 ** | 0.45 ** | 0.45 ** | 0.37 ** | 0.31 ** | 0.66 ** | -- | |||
14. English in Grade 7 | 84.86 (15.35) | N/A | 0.33 ** | 0.12 | 0.09 | 0.25 ** | 0.41 ** | 0.20 ** | −0.18 ** | 0.41 ** | 0.51 ** | 0.46 ** | 0.33 ** | 0.67 ** | 0.78 ** | -- | ||
15. Chinese in Grade 9 | 101.32 (10.66) | N/A | 0.36 ** | 0.16 * | 0.13 | 0.38 ** | 0.30 ** | 0.18 ** | −0.31 ** | 0.49 ** | 0.51 ** | 0.38 ** | 0.34 ** | 0.77 ** | 0.75 ** | 0.74 ** | -- | |
16. Mathematics in Grade 9 | 89.25 (21.60) | N/A | 0.34 ** | 0.21 ** | 0.10 | 0.29 ** | 0.37 ** | 0.24 ** | −0.16 * | 0.39 ** | 0.43 ** | 0.41 ** | 0.26 ** | 0.67 ** | 0.87 ** | 0.75 ** | 0.77 ** | -- |
17. English in Grade 9 | 89.94 (24.62) | N/A | 0.23 ** | 0.10 | 0.09 | 0.24 ** | 0.38 ** | 0.21 ** | −0.18 ** | 0.43 ** | 0.47 ** | 0.44 ** | 0.31 ** | 0.66 ** | 0.77 ** | 0.86 ** | 0.76 ** | 0.83 ** |
Predictors | Grade 7 | Grade 9 | ||||
---|---|---|---|---|---|---|
Mathematics | Chinese | English | Mathematics | Chinese | English | |
∆R2 | ∆R2 | ∆R2 | ∆R2 | ∆R2 | ∆R2 | |
Step 1 Age, Gender | 0.043 | 0.081 ** | 0.138 ** | 0.060 * | 0.080 ** | 0.137 ** |
Step 2 Nonverbal matrix reasoning | 0.114 ** | 0.053 ** | 0.094 ** | 0.105 ** | 0.118 ** | 0.043 * |
Step 3 Spatial abilities (mental rotation, Spatial working memory) | 0.036 | 0.015 | 0.009 | 0.027 | 0.015 | 0.011 |
Step 4 Visual attention (visual tracing, visual search) | 0.098 ** | 0.068 ** | 0.099 ** | 0.084 ** | 0.102 ** | 0.096 ** |
General processing speed | ||||||
Step 5 Choice reaction time | 0.009 | 0.008 | 0.003 | 0.003 | 0.000 | 0.007 |
Step 5 Figure matching | 0.006 | 0.038 * | 0.021 | 0.013 | 0.058 ** | 0.022 |
Specific processing speed | ||||||
Step 5 Word semantic | 0.056 ** | 0.081 ** | 0.042 ** | 0.044 ** | 0.082 ** | 0.063 ** |
Step 5 Simple subtraction | 0.072 ** | 0.091 ** | 0.088 ** | 0.054 ** | 0.109 ** | 0.080 ** |
Step 5 Complex subtraction | 0.051 ** | 0.057 ** | 0.066 ** | 0.054 ** | 0.045 ** | 0.068 ** |
Step 5 Complex multiplication | 0.020 | 0.033 * | 0.034 * | 0.014 | 0.039 ** | 0.033 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, D.; Shi, K.; Wang, N.; Miao, X.; Zhou, X. Examining the Differential Role of General and Specific Processing Speed in Predicting Mathematical Achievement in Junior High School. J. Intell. 2022, 10, 1. https://doi.org/10.3390/jintelligence10010001
Cheng D, Shi K, Wang N, Miao X, Zhou X. Examining the Differential Role of General and Specific Processing Speed in Predicting Mathematical Achievement in Junior High School. Journal of Intelligence. 2022; 10(1):1. https://doi.org/10.3390/jintelligence10010001
Chicago/Turabian StyleCheng, Dazhi, Kaihui Shi, Naiyi Wang, Xinyang Miao, and Xinlin Zhou. 2022. "Examining the Differential Role of General and Specific Processing Speed in Predicting Mathematical Achievement in Junior High School" Journal of Intelligence 10, no. 1: 1. https://doi.org/10.3390/jintelligence10010001
APA StyleCheng, D., Shi, K., Wang, N., Miao, X., & Zhou, X. (2022). Examining the Differential Role of General and Specific Processing Speed in Predicting Mathematical Achievement in Junior High School. Journal of Intelligence, 10(1), 1. https://doi.org/10.3390/jintelligence10010001