Dam Breach Simulation with the Material Point Method
Abstract
:1. Introduction
2. Mathematical Background
2.1. Conservation Laws
2.2. Deformation Gradient
2.3. Constitutive Model
2.3.1. Soil Model
2.3.2. Water Model
2.3.3. Momentum Exchange
2.3.4. Cohesion and Saturation
2.4. Discretization
2.4.1. Transfer to Grids
2.4.2. Update Grid Momentum
2.4.3. Update Particles
3. Implementation and Simulation Results
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ozmen-Cagatay, H.; Kocaman, S. Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Eng. Appl. Comput. Fluid Mech. 2011, 5, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Biscarini, C.; Di Francesco, S.; Manciola, P. CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sci. 2010, 14, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Sina Hosseini Boosari, S. Predicting the Dynamic Parameters of Multiphase Flow in CFD (dam-break simulation) using artificial intelligence-(cascading deployment). Fluids 2019, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Neilsen, M.L. Computational Fluid Dynamics Models for WinDAM Computational Fluid Dynamics Models for WinDAM. In Proceedings of the 30th International Conference on Computers and their Applications, Honolulu, HI, USA, 9–11 March 2015. [Google Scholar]
- Cao, C.; Neilsen, M.L. Flexible Architecture for Analysis of Water Control Structures. In Proceedings of the International Conference On Computer Applications In Industry And Engineering, Las Vegas, NV, USA, 19–21 March 2018. [Google Scholar]
- De Leffe, M.; Le Touzé, D.; Alessandrini, B. SPH modeling of shallow-water coastal flows. J. Hydraul. Res. 2010, 48, 118–125. [Google Scholar] [CrossRef]
- Gong, K.; Shao, S.; Liu, H.; Wang, B.; Tan, S.K. Two-phase SPH simulation of fluid-structure interactions. J. Fluids Struct. 2016, 65, 155–179. [Google Scholar] [CrossRef] [Green Version]
- Nia, M.R.M.; Ghobadian, R.; Ahmadyan, S.; Ebrahimnejadian, H. Simulation of Dam Break Using Modified Incompressible Smoothed Particles Hydrodynamics (MPM-I-SPH). Int. J. Sci. Eng. Res. 2014, 5, 1051–1057. [Google Scholar]
- Pu, J.H.; Shao, S.; Huang, Y.; Hussain, K. Evaluations of swes and sph numerical modelling techniques for dam break flows. Eng. Appl. Comput. Fluid Mech. 2013, 7, 544–563. [Google Scholar] [CrossRef]
- Moreira, A.; Leroy, A.; Violeau, D.; Taveira-Pinto, F. Dam spillways and the SPH method: Two case studies in Portugal. J. Appl. Water Eng. Res. 2019, 9676. [Google Scholar] [CrossRef]
- Zhao, J.; Shan, T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics. Powder Technol. 2013, 239, 248–258. [Google Scholar] [CrossRef]
- Shi, Z.M.; Zheng, H.C.; Yu, S.B.; Peng, M.; Jiang, T. Application of CFD-DEM to investigate seepage characteristics of landslide dam materials. Comput. Geotech. 2018, 101, 23–33. [Google Scholar] [CrossRef]
- Zhao, T.; Utili, S.; Crosta, G.B. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses. Rock Mech. Rock Eng. 2016, 49, 2437–2456. [Google Scholar] [CrossRef] [Green Version]
- Shan, T.; Zhao, J. A coupled CFD-DEM analysis of granular flow impacting on a water reservoir. Acta Mech. 2014, 225, 2449–2470. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J. Numerical simulation of dam break by a coupled CFD-DEM approach. In Proceedings of the 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, Kyushu, Japan, 9–13 November 2015; pp. 691–696. [Google Scholar] [CrossRef] [Green Version]
- Park, K.M.; Yoon, H.S.; Kim, M.I. CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 105–121. [Google Scholar] [CrossRef]
- Rungjiratananon, W.; Szego, Z.; Kanamori, Y.; Nishita, T. Real-time Animation of Sand-Water Interaction. Comput. Graph. Forum 2008, 27. [Google Scholar] [CrossRef]
- Wu, K.; Yang, D.; Wright, N. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput. Struct. 2016, 177, 141–161. [Google Scholar] [CrossRef]
- Canelas, R. A generalized SPH-DEM discretization for the modelling of complex multiphasic free surface flows. arXiv 2013, arXiv:1011.1669v3. [Google Scholar] [CrossRef]
- Lenaerts, T.; Dutré, P. Mixing Fluids and Granular Materials; Blackwell Publishing Ltd.: Oxford, UK, 2009; Volume 28. [Google Scholar]
- Sulsky, D. A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 1994, 118, 179–196. [Google Scholar] [CrossRef]
- Soga, K.; Alonso, E.; Yerro, A.; Kumar, K.; Bandara, S.; Kwan, J.S.; Koo, R.C.; Law, R.P.; Yiu, J.; Sze, E.H.; et al. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Geotechnique 2018, 68, 457–458. [Google Scholar] [CrossRef] [Green Version]
- Troncone, A.; Conte, E.; Pugliese, L. Analysis of the slope response to an increase in pore water pressure using the material point method. Water 2019, 11, 1446. [Google Scholar] [CrossRef] [Green Version]
- Troncone, A.; Pugliese, L.; Conte, E. Run-out simulation of a landslide triggered by an increase in the groundwater level using the material point method. Water 2020, 12, 2817. [Google Scholar] [CrossRef]
- Yerro, A.; Alonso, E.E.; Pinyol, N.M. The material point method for unsaturated soils. Geotechnique 2015, 65, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Yerro, A.; Alonso, E.E.; Pinyol, N.M. Run-out of landslides in brittle soils. Comput. Geotech. 2016, 80, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Yerro, A.; Soga, K.; Bray, J. Runout evaluation of oso landslide with the material point method. Can. Geotech. J. 2019, 56, 1304–1317. [Google Scholar] [CrossRef] [Green Version]
- Conte, E.; Pugliese, L.; Troncone, A. Post-failure stage simulation of a landslide using the material point method. Eng. Geol. 2019, 253, 149–159. [Google Scholar] [CrossRef]
- Conte, E.; Pugliese, L.; Troncone, A. Post-failure analysis of the Maierato landslide using the material point method. Eng. Geol. 2020, 277, 105788. [Google Scholar] [CrossRef]
- Tran, Q.A.; Sołowski, W. Generalized Interpolation Material Point Method modelling of large deformation problems including strain-rate effects—Application to penetration and progressive failure problems. Comput. Geotech. 2019, 106, 249–265. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Randolph, M.F. Investigation of impact forces on pipeline by submarine landslide using material point method. Ocean. Eng. 2017, 146, 21–28. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Randolph, M.F. Quantification of impact forces on fixed mudmats from submarine landslides using the material point method. Appl. Ocean. Res. 2020, 102, 102227. [Google Scholar] [CrossRef]
- Ceccato, F.; Yerro, A. Modelling soil-water interaction with the Material Point Method. Evaluation of single-point and double-point formulations. In Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2018), Porto, Portugal, 25–27 June 2018. [Google Scholar]
- Bandara, S.; Ferrari, A.; Laloui, L. Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method. Int. J. Numer. Anal. Methods Geomech. 2016, 1358–1380. [Google Scholar] [CrossRef]
- Bandara, S.; Soga, K. Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 2015, 63, 199–214. [Google Scholar] [CrossRef]
- Tampubolon, A.P.; Angeles, L. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. 2017, 36, 1–11. [Google Scholar] [CrossRef]
- Klár, G.; Gast, T.; Pradhana, A.; Fu, C.; Schroeder, C.; Jiang, C.; Teran, J. Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. 2016, 35, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Arduino, P.; Shin, W.; Moore, J.A.; Miller, G.R. Modeling strategies for multiphase drag interactions using the material point method. Int. J. Numer. Methods Eng. 2010, 295–322. [Google Scholar] [CrossRef]
- Jassim, I.; Stolle, D.; Vermeer, P. Two-phase dynamic analysis by material point method. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 2502–2522. [Google Scholar] [CrossRef]
- Neilsen, M.L.; Hall, N. WinDAM: Earthen Embankment Erosion Analysis WinDAM: Earthen Embankment Erosion Analysis. In Proceedings of the 24th International Conference on Computers and Their Applications in Industry and Engineering (CAINE-2011), Honolulu, HI, USA, 16–18 November 2011. [Google Scholar]
- Atktn, B.R.J.; Craine, R.E. Continuum theories of mixtures: Basic theory and historical development. Q. J. Mech. Appl. Math. 1976, 29, 209–244. [Google Scholar]
- Borja, R.I. On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 2006, 43, 1764–1786. [Google Scholar] [CrossRef] [Green Version]
- Bonet, J.; Wood, R.D. Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef] [Green Version]
- Drucker, D.C.; Prager, W. Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 1943, 10, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Becker, M. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 2–4 August 2007; pp. 1–8. [Google Scholar]
- Robert, K.D. Soil-Pipeline Interaction in Unsaturated Soils. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2010. [Google Scholar]
- Jiang, C.; Selle, A.; Teran, J. The Affine Particle-In-Cell Method. ACM Trans. Graph. 2015, 34, 1–10. [Google Scholar] [CrossRef]
- Stomakhin, A.; Schroeder, C.; Chai, L.; Teran, J.; Selle, A. A material point method for snow simulation. ACM Trans. Graph. 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Xia, Y.; Ge, Z.; Chen, Y.; Liu, B.; Huang, Z. Flame; GitHub Repository. 2018. Available online: https://github.com/YiYiXia/Flame (accessed on 19 January 2020).
- Hanson, G.J.; Robinson, K.M.; Cook, K.R. Prediction of Headcut Migration Using a Deterministic Approach. Trans. ASAE 2001, 44, 525–531. [Google Scholar] [CrossRef]
- Hanson, G.J.; Cook, K.R.; Hunt, S.L. Physical Modeling of Overtopping Erosion and Breach Formation of Cohesive Embankments. Trans. ASAE 2005, 48, 1783–1794. [Google Scholar] [CrossRef]
- Zhong, Q.M.; Chen, S.S.; Deng, Z.; Mei, S.A. Prediction of Overtopping-Induced Breach Process of Cohesive Dams. J. Geotech. Geoenvironmental Eng. 2019, 145. [Google Scholar] [CrossRef]
- Wu, W. Simplified physically based model of earthen embankment breaching. J. Hydraul. Eng. 2013, 139, 837–851. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, D.; Martinelli, M. Numerical Simulations of Dam-break Floods with MPM. Procedia Eng. 2017, 175, 133–140. [Google Scholar] [CrossRef]
- Yan, X.; Li, C.F.; Chen, X.S.; Hu, S.M. MPM simulation of interacting fluids and solids. Comput. Graph. Forum 2018, 37, 183–193. [Google Scholar] [CrossRef]
Variable | Meaning |
---|---|
I | identity matrix |
a | soil and water |
t | time step size |
material derivative | |
density | |
g | gravitational constant |
drag coefficient | |
weight | |
weight gradient | |
Particle | |
h initial particle volume | |
particle mass | |
particle position | |
particle velocity | |
soil elastic deformation gradient | |
soil plastic deformation gradient | |
water determinant deformation gradient | |
water saturation | |
cohesion | |
volume correction scalar | |
Grid | |
grid velocity | |
grid node mass | |
grid node location | |
mixed water saturation on grid |
Dam Failure Example | 1 | 2 | 3 | 4 | 5 | HE1S1 | 05-HR-OBA | 05-HR-OBB |
---|---|---|---|---|---|---|---|---|
Cohesion | 0.01 | 0.008 | 0.006 | 0.004 | 0.002 | 0.008 | 0.008 | 0.008 |
Gravity (m/s) | 3 | 3 | 3 | 3 | 3 | 3 | 9.8 | 9.8 |
Initial Reservoir Level (m) | No | 3.25 | 3.25 | 3.25 | 3.25 | 4 | 2.4 | 2.4 |
Number of Water Particles | 0 | 197,542 | 197,542 | 197,542 | 197,542 | 195,811 | 95,131 | 95,131 |
Dam Height (m) | 3.75 | 3.75 | 3.75 | 3.75 | 3.75 | 4.6 | 3.3 | 3.3 |
Crest Width (m) | 6 | 6 | 6 | 6 | 6 | 3.68 | 1 | 1 |
Upstream Slope V/H | 0.8333 | 0.8333 | 0.8333 | 0.8333 | 0.8333 | 0.3333 | 0.3882 | 0.3882 |
Downstream Slope V/H | 0.8333 | 0.8333 | 0.8333 | 0.8333 | 0.8333 | 0.3333 | 0.3143 | 0.3143 |
Number of Soil Particle | 277,887 | 277,887 | 277,887 | 277,887 | 277,887 | 403,225 | 173,982 | 173,982 |
Water Inlet Height (m) | 7.25 | 7.25 | 7.25 | 7.25 | 7.25 | 7.25 | 2.5 | 2.5 |
Inlet Velocity (m/s) | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 2 |
Resolution | 7000 × 2800 | 7000 × 2800 | 7000 × 2800 | 7000 × 2800 | 7000 × 2800 | 7000 × 2800 | 7000 × 2800 | 7000 × 2800 |
Number of Iterations | 2399 | 2185 | 1503 | 2399 | 1979 | 2399 | 2087 | 2371 |
Simulation Time (h) | 44 | 50 | 30 | 55 | 42 | 71 | 64 | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Neilsen, M. Dam Breach Simulation with the Material Point Method. Computation 2021, 9, 8. https://doi.org/10.3390/computation9020008
Cao C, Neilsen M. Dam Breach Simulation with the Material Point Method. Computation. 2021; 9(2):8. https://doi.org/10.3390/computation9020008
Chicago/Turabian StyleCao, Chendi, and Mitchell Neilsen. 2021. "Dam Breach Simulation with the Material Point Method" Computation 9, no. 2: 8. https://doi.org/10.3390/computation9020008
APA StyleCao, C., & Neilsen, M. (2021). Dam Breach Simulation with the Material Point Method. Computation, 9(2), 8. https://doi.org/10.3390/computation9020008