Computational Study of Lithium Intercalation in Silicene Channels on a Carbon Substrate after Nuclear Transmutation Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potential Related to Substrate
2.2. Modeling of Intercalation of Lithium in a Silicene Channel
α AB = ½ (α A α B),
re AB = (re A re B)1/2.
2.3. Molecular Dynamic Simulation Technique
2.4. Calculation Formulas
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Galashev, A.E.; Rakhmanova, O.R.; Zaikov, Y.P. Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment. Phys. Solid State 2016, 58, 1850–1857. [Google Scholar] [CrossRef]
- Galashev, A.E.; Rakhmanova, O.R. Computer simulation of a forced drift of lithium ions through graphene membranes. High Temp. 2016, 54, 11–19. [Google Scholar] [CrossRef]
- Salah, M.; Murphy, P.; Hall, C.; Francis, C.; Kerr, R.; Fabretto, M. Pure silicon thin-film anodes for lithium-ion batteries: A review. J. Power Sour. 2019, 414, 48–67. [Google Scholar] [CrossRef]
- Luo, X.; Lang, J.; Lv, S.; Li, Z. High-performance sandwich structured Si thin film anodes with LiPON coating. Front. Mater. Sci. 2018, 12, 147–155. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Ivanichkina, K.A. Computer test of a new silicone anode for lithium-ion battery. ChemElectroChem 2019, 6, 1525–1535. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Ivanichkina, K.A. Computer study of atomic mechanisms of intercalation/deintercalation of Li ions in a silicene anode on an Ag (111) substrate. J. Electrochem. Soc. 2018, 165, 1788–1796. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Ivanichkina, K.A. Computational investigation of a promising Si–Cu anode material. Phys. Chem. Chem. Phys. 2019, 21, 12310. [Google Scholar] [CrossRef] [PubMed]
- Galashev, A.E.; Ivanichkina, K.A. Numerical simulation of the structure and mechanical properties of silicene layers on graphite during the lithium ion motion. Phys. Solid State 2019, 61, 233–243. [Google Scholar] [CrossRef]
- Galashev, A.E.; Ivanichkina, K.A.; Vorobev, A.S.; Rakhmanova, O.R. Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment. Phys. Solid State 2017, 59, 1242–1252. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamamoto, H.; Ohba, H.; Sasase, M.; Esaka, F.; Yamaguchi, K.; Udono, H.; Shamoto, S.; Yokogama, A.; Hojou, K. Local neutron transmutation doping using isotopically enriched silicon film. J. Phys. Chem. Solids 2007, 68, 2204–2208. [Google Scholar] [CrossRef]
- Shchukin, V.; Sharafutdinov, R.G.; Konstantinov, V.O. Deposition of silicon films doped with boron and phosphorus by the gas-jet plasma-chemical method. Semiconductors 2019, 53, 127–131. [Google Scholar] [CrossRef]
- Ali, M.K.M.; Ibrahim, K.; Mkawi, E.M.; Salhin, A. Characterization of phosphoric acid doped N-type silicon Thin films printed on ITO coated PET substrate. Int. J. Electrochem. Sci. 2013, 8, 535–547. [Google Scholar]
- Galashev, A.E.; Zaikov, Y.P. Computer simulation of Li+ ion interaction with a graphene sheet. Rus. J. Phys. Chem. A 2015, 89, 2243–2247. [Google Scholar] [CrossRef]
- Galashev, A.E.; Ivanichkina, K.A. Computer modeling of lithium intercalation and deintercalation in a silicene channel. Rus. J. Phys. Chem. A 2019, 93, 765–769. [Google Scholar] [CrossRef]
- Zhu, J.; Gandi, A.N.; Schwingenschlogl, U. Potential of B/Al-doped silicene electrodes in Na/K-ion batteries. Adv. Theory Simulat. 2018, 1, 1800017. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y. Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J. Phys. Chem. C 2013, 117, 18266–18278. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Stillinger, F.H.; Weber, T.A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B Condens. Matter. 1985, 31, 5262–5271. [Google Scholar] [CrossRef] [Green Version]
- Tersoff, J. Empirical interatomic potential for carbon, with application to amorphous carbon. Phys. Rev. Lett. 1988, 61, 2879–2882. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B: Condens. Matter. 1989, 39, 5566–5568. [Google Scholar] [CrossRef]
- Kınacı, A.; Haskins, J.B.; Sevik, C.; Çağın, T. Thermal conductivity of BN–C nanostructures. Phys. Rev. B 2012, 86, 115410. [Google Scholar] [CrossRef]
- Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D.C.; Lundqvist, B.I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [PubMed]
- Berland, K.; Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 2014, 89, 035412. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 2002, 14, 2745–2779. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 1991, 43, 8861–8869. [Google Scholar] [CrossRef]
- Gopal, R.; Kumar, R.; Parashar, A. Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment. Mater. Res. Express 2016, 3, 035011. [Google Scholar]
- Galashev, A.E. Molecular dynamic simulation of the bombardment of a lead film on graphene by Xe13 clusters. Phys. Met. Metallogr. 2016, 117, 246–253. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P.; Li, G.; Liu, L. Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg2Si. J. Electron. Mater. 2012, 41, 1465–1469. [Google Scholar] [CrossRef]
- Fang, T.-E.; Wu, J.-H. Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comp. Mater. Sci. 2008, 43, 785–790. [Google Scholar] [CrossRef]
- Das, S.K.; Roy, D.; Sengupta, S. Volume change in some substitutional alloys using Morse potential function. J. Phys. F: Metal. Phys. 1977, 7, 5–13. [Google Scholar] [CrossRef]
- Galashev, A.E.; Rakhmanova, O.R.; Ivanichkina, K.A. Graphene and graphite supports for silicene stabilization: A computational study. J. Struct. Chem. 2018, 59, 877–883. [Google Scholar] [CrossRef]
- Rui, W.; Shaofeng, W.; Xiaozhi, W. The stability and charge carriers in bilayer silicene. arXiv 2013, arXiv:1305.4789. [Google Scholar]
- Galashev, A.Y.; Ivanichkina, K.A. Nanoscale simulation of the lithium ion interaction with defective silicene. Phys. Lett. A 2017, 381, 3079–3083. [Google Scholar] [CrossRef]
- Neek-Amal, M.; Sadeghi, A.; Berdiyorov, G.R.; Peeters, F.M. Realization of free-standing silicene using bilayer graphene. Appl. Phys. Lett. 2013, 103, 261904. [Google Scholar] [CrossRef] [Green Version]
- Galashev, A.Y. Computer study of the removal of Cu from the graphene surface using Ar clusters. Comput. Mater. Sci. 2015, 98, 123–128. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Murday, J.S.; Cotts, R.M. Self-diffusion coefficient of liquid lithium. J. Chem. Phys. 1968, 48, 4938–4945. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Zaikov, Y.P. New Si–Cu and Si–Ni anode materials for lithium ion batteries. J. Appl. Elecrtochem. 2019, 49, 1027–1034. [Google Scholar] [CrossRef]
- Lin, X.; Ni, J. Much stronger binding of metal adatoms to silicene than to graphene: A first-principles study. Phys. Rev. B 2012, 86, 075440. [Google Scholar] [CrossRef]
- Tritsaris, G.A.; Zhao, K.; Okeke, O.U.; Kaxiras, E. Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study. J. Phys. Chem. C 2012, 116, 22212–22216. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Cui, Y.; Wang, E. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Tritsaris, G.A.; Kaxiras, E.; Meng, S.; Wang, E. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013, 13, 2258–2263. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Sun, Y.; Lu, Y.; Liang, X.; Tian, D.; Ma, X.; Yang, D. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers. AIP Adv. 2018, 8, 045301. [Google Scholar] [CrossRef] [Green Version]
- Mortazavia, R.; Dianatb, A.; Cunibertib, G.; Rabczuk, T. Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochimica Acta. 2016, 213, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Pei, Q.X.; Sha, Z.D.; Zhang, Y.Y.; Zhang, Y.W. Effects of temperature and strain rate on the mechanical properties of silicone. J. Appl. Phys. 2014, 115, 023519. [Google Scholar] [CrossRef]
System | Stretching | E | DFT | Tersoff + Morse | BNC_Tersoff | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | lC–N | lN–N | E | lC–N | lN–N | E | lC–N | lN–N | |||
C23N (Figure 1b) | 0 | Ed | 1.57 | 1.437 | - | 1.59 | 1.433 | - | −0.23 | 1.448 | - |
2% (armchair) | ΔEa | 0.25 | 1.453 | - | 0.26 | 1.449 | - | 0.54 | 1.462 | - | |
2% (zigzag) | ΔEz | 0.27 | 1.452 | - | 0.28 | 1.449 | - | 0.55 | 1.462 | - | |
2% (equiaxial) | ΔE | 0.60 | 1.469 | - | 0.50 | 1.465 | - | 1.11 | 1.477 | - | |
C22N2 (Figure 1c) | 0 | Ed | 2.05 | 1.432 | 1.478 | 2.18 | 1.425 | 1.470 | 2.16 | 1.441 | 1.484 |
2% (armchair) | ΔEa | 0.26 | 1.453 | 1.486 | 0.43 | 1.447 | 1.507 | 0.44 | 1.459 | 1.506 | |
2% (zigzag) | ΔEz | 0.26 | 1.442 | 1.515 | 0.13 | 1.431 | 1.495 | 0.47 | 1.439 | 1.616 | |
2% (equiaxial) | ΔE | 0.60 | 1.462 | 1.523 | 0.54 | 1.451 | 1.536 | 0.92 | 1.456 | 1.638 | |
C18N6 (Figure 1d) | 0 | Ed | 2.80 | 1.440 | 1.433 | 2.78 | 1.416 | 1.451 | 4.55 | 1.463 | 1.384 |
2% (armchair) | ΔEa | 0.25 | 1.455 | 1.449 | 0.31 | 1.426 | 1.473 | −4.22 | 1.465 | 0.788 | |
2% (zigzag) | ΔEz | 0.25 | 1.456 | 1.449 | 0.38 | 1.427 | 1.475 | 0.46 | 1.462 | 1.436 | |
2% (equiaxial) | ΔE | 0.57 | 1.470 | 1.467 | 0.70 | 1.436 | 1.497 | −4.05 | 1.467 | 0.778 | |
Si23P | 0 | Ed | −0.30 | 2.329 | - | −0.30 | 2.329 | - | - | - | - |
2% (armchair) | ΔEa | 0.12 | 2.347 | - | 0.29 | 2.347 | - | - | - | - | |
2% (zigzag) | ΔEz | 0.12 | 2.347 | - | 0.29 | 2.348 | - | - | - | - | |
2% (equiaxial) | ΔE | 0.30 | 2.365 | - | 0.68 | 2.365 | - | - | - | - | |
Si22P2 | 0 | Ed | −0.29 | 2.383 | 2.383 | −0.30 | 2.326 | 2.362 | - | - | - |
2% (armchair) | ΔEa | 0.11 | 2.406 | 2.385 | 0.31 | 2.347 | 2.398 | - | - | - | |
2% (zigzag) | ΔEz | 0.11 | 2.395 | 2.415 | 0.26 | 2.340 | 2.415 | - | - | - | |
2% (equiaxial) | ΔE | 0.29 | 2.419 | 2.418 | 0.67 | 2.360 | 2.434 | - | - | - | |
0 | Ed | −0.36 | 2.407 | 2.387 | −0.36 | 2.309 | 2.388 | - | - | - | |
2% (armchair) | ΔEa | 0.10 | 2.426 | 2.403 | 0.19 | 2.328 | 2.403 | - | - | - | |
Si18P6 | 2% (zigzag) | ΔEz | 0.10 | 2.424 | 2.403 | 0.19 | 2.331 | 2.405 | - | - | - |
2% (equiaxial) | ΔE | 0.26 | 2.445 | 2.419 | 0.54 | 2.350 | 2.420 | - | - | - |
Interaction | De (eV) | α (1/Å) | r0 (Å) |
---|---|---|---|
C–N | 4.440 | 2.096 | 1.350 |
N–N | 2.275 | 2.233 | 1.342 |
Si–P | 4.479 | 2.301 | 1.300 |
P–P-(1) | 1.001 | 2.322 | 2.263 |
P–P-(2) | 1.953 | 2.382 | 2.263 |
P–P-(3) | 1.477 | 2.352 | 2.263 |
Interaction | De (eV) | α (1/Å) | r0 (Å) |
---|---|---|---|
Si(1)–Si(2) | 0.227 | 4.499 | 1.540 |
C(1)–C(2) | 2.423 | 2.555 | 2.522 |
Si–C | 0.925 | 2.082 | 2.530 |
Si–N | 0.794 | 1.866 | 2.588 |
C–P | 1.557 | 2.438 | 2.389 |
Li–Li | 0.420 | 0.789 | 3.000 |
Li–Si | 0.309 | 3.673 | 1.160 |
Li–C | 1.258 | 1.707 | 2.060 |
Li–P | 0.649 | 1.556 | 2.605 |
Li–N | 1.080 | 1.511 | 2.006 |
Number of Si Atoms in Systems | Number of C Atoms in Systems | Silicene Sheet Size (nm) | Simulation Duration (the Same for All Systems) (ps) | External Electric Field (the Same for All Systems) (V/m) | Phosphorous Atom Concentration (1013 atom/cm2) | Nitrogen Atom Concentration (1013 atom/cm3) |
---|---|---|---|---|---|---|
600 | 2720 | 4.8 × 4.1 | 500 | 104 | 4.573 | 180.22 |
hg (nm) | 0.24 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | |
---|---|---|---|---|---|---|---|
N | |||||||
NLi (pristine) | 12 | 25 | 13 | 13 | 21 | 143 | |
NLi (NTD) | 244 | 183 | 146 | 149 | 156 | 165 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galashev, A.; Ivanichkina, K.; Katin, K.; Maslov, M. Computational Study of Lithium Intercalation in Silicene Channels on a Carbon Substrate after Nuclear Transmutation Doping. Computation 2019, 7, 60. https://doi.org/10.3390/computation7040060
Galashev A, Ivanichkina K, Katin K, Maslov M. Computational Study of Lithium Intercalation in Silicene Channels on a Carbon Substrate after Nuclear Transmutation Doping. Computation. 2019; 7(4):60. https://doi.org/10.3390/computation7040060
Chicago/Turabian StyleGalashev, Alexander, Ksenia Ivanichkina, Konstantin Katin, and Mikhail Maslov. 2019. "Computational Study of Lithium Intercalation in Silicene Channels on a Carbon Substrate after Nuclear Transmutation Doping" Computation 7, no. 4: 60. https://doi.org/10.3390/computation7040060
APA StyleGalashev, A., Ivanichkina, K., Katin, K., & Maslov, M. (2019). Computational Study of Lithium Intercalation in Silicene Channels on a Carbon Substrate after Nuclear Transmutation Doping. Computation, 7(4), 60. https://doi.org/10.3390/computation7040060