Computational Streetscapes
Abstract
:1. Introduction
2. Domain-Specific Approaches to Streetscape Modeling
2.1. Physics
2.2. Urban Studies
2.3. Animation
2.4. Psychology
2.5. Behavioral Geography
2.6. Biology
3. Dataware for Streetscape Models
3.1. Acquiring and Generating Peoplescape Data
3.2. Big Data
3.3. Data Models
4. Prevailing Methods for Streetscape Simulation
4.1. Path-Planning
4.2. Navigation and Way-Finding
4.3. Timing
4.4. Vision
4.5. Steering to Avoid and Avail of Interaction
4.6. Kinematics and Effort
4.7. Collision Detection and Avoidance
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Brown, E. Alphabet’s next big thing: Building a ‘smart’ city. Unit of google parent explores project to ‘create a city from scratch’. Wall Street J. Available online: http://www.wsj.com/articles/alphabets-next-big-thing-building-a-smart-city-1461688156 (accessed on 19 September 2016).
- Niantic Labs. Pokémon Go; Niantic, Inc.: San Franisco, CA, USA, 2016. [Google Scholar]
- Yin, L.; Cheng, Q.; Wang, Z.; Shao, Z. ‘Big data’ for pedestrian volume: Exploring the use of google street view images for pedestrian counts. Appl. Geogr. 2015, 63, 337–345. [Google Scholar] [CrossRef]
- Zheng, Y.; Capra, L.; Wolfson, O.; Yang, H. Urban computing: Concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 2014, 5, 38. [Google Scholar] [CrossRef]
- O’Keefe, J.; Burgess, N.; Donnett, J.G.; Jeffery, K.J.; Maguire, E.A. Place cells, navigational accuracy, and the human hippocampus. Philos. Trans. R. Soc. Biol. Sci. 1998, 353, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D.; Illés, F.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Uricchio, W. The algorithmic turn: Photosynth, augmented reality and the changing implications of the image. Visual Stud. 2011, 26, 25–35. [Google Scholar] [CrossRef]
- Hess, P.; Moudon, A.; Snyder, M.; Stanilov, K. Site design and pedestrian travel. Transp. Res. Record J. Transp. Res. Board 1999, 1674, 9–19. [Google Scholar] [CrossRef]
- Kitazawa, K.; Fujiyama, T. Pedestrian vision and collision avoidance behavior: Investigation of the information process space of pedestrians using an eye tracker. In Pedestrian and Evacuation Dynamics 2008; Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M., Eds.; Springer: Berlin, Germany, 2010; pp. 95–108. [Google Scholar]
- Batty, M. Predicting where we walk. Nature 1997, 388, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.; Zook, M.; Boulton, A. Augmented reality in urban places: Contested content and the duplicity of code. Trans. Inst. Br. Geogr. 2013, 38, 464–479. [Google Scholar] [CrossRef]
- Shaw, D.B. Streets for cyborgs: The electronic flâneur and the posthuman city. Space Culture 2015, 18, 230–242. [Google Scholar] [CrossRef]
- Owen, N.; Humpel, N.; Leslie, E.; Bauman, A.; Sallis, J.F. Understanding environmental influences on walking: Review and research agenda. Am. J. Prev. Med. 2004, 27, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Zandvliet, R.; Dijst, M. Short-term dynamics in the use of places: A space-time typology of visitor populations in the netherlands. Urban Stud. 2006, 43, 1159–1176. [Google Scholar] [CrossRef]
- Frías-Martínez, V.; Soto, V.; Hohwald, H.; Frías-Martínez, E. Characterizing urban landscapes using geolocated tweets. In Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust, Amsterdam, The Netherlands, 3–5 September 2012; pp. 239–248.
- Roberts, M. From ‘creative city’ to ‘no-go areas’—The expansion of the night-time economy in british town and city centres. Cities 2006, 23, 331–338. [Google Scholar] [CrossRef]
- Gärling, T.; Gärling, E. Distance minimization in downtown pedestrian shopping. Environ. Plan. A 1988, 20, 547–554. [Google Scholar] [CrossRef]
- King, A.C.; Stokols, D.; Talen, E.; Brassington, G.S.; Killingsworth, R. Theoretical approaches to the promotion of physical activity: Forging a transdisciplinary paradigm. Am. J. Prev. Med. 2002, 23, 15–25. [Google Scholar] [CrossRef]
- Kwan, M.P. Gender and individual access to urban opportunities: A study using space–time measures. Prof. Geogr. 1999, 51, 210–227. [Google Scholar] [CrossRef]
- Dabbs, J.M.; Stokes, N.A., III. Beauty is power: The use of space on the sidewalk. Sociometry 1975, 38, 551–557. [Google Scholar] [CrossRef]
- Whyte, W.H. The Social Life of Small Urban Spaces; The Conservation Foundation: Washington, DC, USA, 1980. [Google Scholar]
- Lund, H. Testing the claims of new urbanism: Local access, pedestrian travel, and neighboring behaviors. J. Am. Plan. Assoc. 2003, 69, 414–429. [Google Scholar] [CrossRef]
- Golledge, R.A. Representing, interpreting and using cognized environments. Proc. Reg. Sci. Assoc. 1978, 41, 168–204. [Google Scholar] [CrossRef]
- Cutting, J.E.; Springer, K.; Braren, P.A.; Johnson, S.H. Wayfinding on foot from information in retinal, not optical, flow. J. Exp. Psychol. Gen. 1992, 121, 41–72. [Google Scholar] [CrossRef] [PubMed]
- Golledge, R.A. Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes; The Johns Hopkins Press: Baltimore, MD, USA, 1999. [Google Scholar]
- Kitchin, R.M.; Blades, M.; Golledge, R.A. Relations between psychology and geography. Environ. Behav. 1997, 29, 554–573. [Google Scholar] [CrossRef]
- Brun, V.H.; Otnass, M.K.; Molden, S.; Steffenach, H.-A.; Witter, M.P.; Moser, M.-B.; Moser, E.I. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 2002, 296, 2243–2246. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.D.; Collman, F.; Dombeck, D.A.; Tank, D.W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 2009, 461, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Nitz, D. Neuroscience: The inside story on place cells. Nature 2009, 461, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Farkas, I.; Helbing, D.; Vicsek, T. Crowd behaves as excitable media during mexican wave. Nature 2002, 419, 131. [Google Scholar] [CrossRef] [PubMed]
- Downs, R.M.; Stea, D. Image and Environment: Cognitive Mapping and Spatial Behavior; Aldine Transaction: New Brunswick, NJ, USA, 1973. [Google Scholar]
- Newman, O. Defensible Space; The Macmillan Company: New York, NY, USA, 1972. [Google Scholar]
- Bohannan, J. Directing the herd: Crowds and the science of evacuation. Science 2005, 310, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, L.; Lu, X.; Thorson, A.; Garfield, R.; von Schreeb, J. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in haiti. PLoS Med. 2011, 8, e1001083. [Google Scholar] [CrossRef] [PubMed]
- Cocking, C.; Drury, J. The mass psychology of disasters and emergency evacuations: A research report and implications for the fire and rescue service. Fire Safety Technol. Manag. 2008, 10, 13–19. [Google Scholar]
- Green, G.B.; Burnham, G. Health care at mass gatherings. J. Am. Med. Assoc. 1998, 279, 1485–1486. [Google Scholar] [CrossRef]
- Krausz, B.; Bauckhage, C. Loveparade 2010: Automatic video analysis of a crowd disaster. Comput. Vis. Image Underst. 2012, 116, 307–319. [Google Scholar] [CrossRef]
- Moussaïd, M.; Helbing, D.; Theraulaz, G. How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 2011, 108, 6884–6888. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, K.; Kadow-Griffin, C.; Zeitz, C. Injury occurences at a mass gathering event. J. Emerg. Prim. Health Care 2005, 3, 990115. [Google Scholar]
- New York City Department of Transportation. Street Design Manual; New York City Department of Transportation: New York, NY, USA, 2015.
- New York City Department of City Planning. New York City Pedestrian Level of Service Study: Phase I; New York City Department of City Planning: New York, NY, USA, 2006.
- Viola, R.; Roe, M.; Shin, H. The New York City Pedestrian Safety Study & Action Plan, August 2010; New York City Department of Transportation: New York, NY, USA, 2010.
- Federal Highway Administration. Managing Pedestrians during Evacuation of Metropolitan Areas; FHWA-HOP-07-066; Department of Transportation: Washington, DC, USA, 2007.
- Moudon, A.V.; Hess, P.M.; Snyder, M.C.; Stanilov, K. Effects of site design on pedestrian travel in mixed-use, medium-density environments. Transp. Res. Record 1997, 1578, 48–55. [Google Scholar] [CrossRef]
- Goffmann, E. Behavior in Public Places; Free Press: New York, NY, USA, 1963. [Google Scholar]
- Goffmann, E. Relations in Public: Microstudies in the Public Order; Basic Books: New York, NY, USA, 1971. [Google Scholar]
- Lee, S.-W.; Mase, K. Activity and location recognition using wearable sensors. IEEE Pervasive Comput. 2002, 1, 24–32. [Google Scholar]
- Kouzes, R.T.; Anderson, G.A.; Elbert, S.T.; Gorton, I.; Gracio, D.K. The changing paradigm of data-intensive computing. Computer 2009, 42, 26–34. [Google Scholar] [CrossRef]
- Hey, A.J.G.; Tansley, S.; Tolle, K.M. The Fourth Paradigm: Data-intensive Scientific Discovery; Microsoft Research: Redmond, WA, USA, 2009. [Google Scholar]
- Saha, D.; Mukherjee, A. Pervasive computing: A paradigm for the 21st century. Computer 2003, 36, 25–31. [Google Scholar] [CrossRef]
- Gorton, I.; Greenfield, P.; Szalay, A.; Williams, R. Data-intensive computing in the 21st century. Computer 2008, 41, 30–32. [Google Scholar] [CrossRef]
- Coletta, P.; Dunning, T.H., Jr.; Gropp, W.D.; Keyes, D.E. A Science-Based Case for Large-Scale Simulation; U.S. Department of Energy, Office of Science: Washington, DC, USA, 2003.
- Benioff, M.R.; Lazowska, E.D. Report to the President: Computational Science: Ensuring America’s Competitiveness; President’s Information Technology Advisory Committee: Washington, DC, USA, 2005. [Google Scholar]
- Batty, M. Virtual geography. Futures 1997, 29, 337–352. [Google Scholar] [CrossRef]
- Thomas, B.; Demczuk, V.; Piekarski, W.; Hepworth, D.; Gunther, B. A wearable computer system with augmented reality to support terrestrial navigation. In Proceedings of the Digest of Papers, Second International Symposium on Wearable Computers, Pittsburgh, PA, USA, 19–20 October 1998; Pentland, A., Ed.; IEEE: Los Alamitos, CA, USA, 1998; pp. 168–171. [Google Scholar]
- Eagle, N.; Pentland, A.; Lazer, D. Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. USA 2009, 106, 15274–15278. [Google Scholar] [CrossRef] [PubMed]
- Pentland, A. Automatic mapping and modeling of human networks. Phys. A Stat. Mechan. Appl. 2007, 378, 59–67. [Google Scholar] [CrossRef]
- Rheingold, H. Smart Mobs: The Next Social Revolution; Perseus Books: London, UK, 2002. [Google Scholar]
- Torrens, P.M. Wi-Fi geographies. Ann. Assoc. Am. Geogr. 2008, 98, 59–84. [Google Scholar] [CrossRef]
- Lee, E.A. Cyber physical systems: Design challenges. In Proceedings of the 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (Isorc), Orlando, FL, USA, 5–7 May 2008; IEEE: Los Alamitos, CA, USA, 2008; pp. 363–369. [Google Scholar]
- Hazas, M.; Scott, J.; Krumm, J. Location-aware computing comes of age. Computer 2004, 37, 95–97. [Google Scholar] [CrossRef]
- Raper, J.; Gartner, G.; Karimi, H.; Rizos, C. A critical evaluation of location based services and their potential. J. Locat. Based Serv. 2007, 1, 5–45. [Google Scholar] [CrossRef]
- Krumm, J.; Horvitz, E. Predestination: Where do you want to go today? IEEE Comput. 2007, 40, 105–107. [Google Scholar] [CrossRef]
- Pelechano, N.; Allbeck, J.; Badler, N.I. Virtual Crowds: Methods, Simulation, and Control; Morgan & Claypool: San Rafael, CA, USA, 2008. [Google Scholar]
- Torrens, P.M. Moving agent pedestrians through space and time. Ann. Assoc. Am. Geogr. 2012, 102, 35–66. [Google Scholar] [CrossRef]
- Hara, K.; Sun, J.; Chazan, J.; Jacobs, D.; Froehlich, J.E. An initial study of automatic curb ramp detection with crowdsourced verification using google street view images. In First AAAI Conference on Human Computation and Crowdsourcing; Hartman, B., Horvitz, E., Eds.; Association for the Advancement of Artificial Intelligence: Palo Alto, CA, USA, 2013; pp. 32–33. [Google Scholar]
- Couzin, I.D.; Krause, J. Self-organization and collective behavior in vertebrates. In Advances in the Study of Behavior 32; Roper, T.J., Snowdon, C.T., Rosenblatt, J.S., Slater, P.J.B., Eds.; Academic Press: New York, NY, USA, 2003; pp. 1–75. [Google Scholar]
- Gallup, A.C.; Chong, A.; Couzin, I.D. The directional flow of visual information transfer between pedestrians. Biol. Lett. 2012, 8, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Gallup, A.C.; Hale, J.J.; Sumpter, D.J.; Garnier, S.; Kacelnik, A.; Krebs, J.R.; Couzin, I.D. Visual attention and the acquisition of information in human crowds. Proc. Natl. Acad. Sci. USA 2012, 109, 7245–7250. [Google Scholar] [CrossRef] [PubMed]
- Antoninia, G.; Bierlaireb, M.; Weberb, M. Discrete choice models of pedestrian walking behavior. Transp. Res. Part B Methodol. 2006, 40, 667–687. [Google Scholar] [CrossRef]
- Borgers, A.; Timmermans, H. City centre entry points, store location patterns and pedestrian route choice behaviour: A microlevel simulation model. Socio-Econ. Plan. Sci. 1986, 20, 25–31. [Google Scholar] [CrossRef]
- Ciolek, T.M. Pedestrian behaviour in pedestrian spaces: Some findings of a naturalistic field study. In Understanding the Built Environment—Proceedings of HE Annual Conference of the Anzasca; Szokolay, S.V., Ed.; Australian and New Zealand Architectural Science Association: Canberra, Australia, 1981; pp. 95–112. [Google Scholar]
- Collett, P.; Marsh, P. Patterns of public behavior: Collision avoidance on a pedestrian crossing. Semiotica 1974, 12, 281–300. [Google Scholar] [CrossRef]
- Hine, J. Pedestrian travel experiences: Assessing the impact of traffic on behaviour and perceptions of safety using an in-depth interview technique. J. Transp. Geogr. 1996, 4, 179–199. [Google Scholar] [CrossRef]
- Sherman, E.; Mathur, A.; Smith, R.B. Store environment and consumer purchase behavior: Mediating role of consumer emotions. Psychol. Market. 1997, 14, 361–378. [Google Scholar] [CrossRef]
- Park, C.W.; Iyer, E.S.; Smith, D.C. The effects of situational factors on in-store grocery shopping behavior: The role of store environment and time available for shopping. J. Consum. Res. 1989, 15, 422–433. [Google Scholar] [CrossRef]
- Heppenstall, A.; Evans, A.; Birkin, M. Using hybrid agent-based systems to model spatially-influenced retail markets. J. Artif. Soc. Soc. Simul. 2006, 9. Available online: http://jasss.soc.surrey.ac.uk/9/3/2.html (accessed on 19 September 2016). [Google Scholar]
- Stokes, G.G. On the friction of fluids in motion, and the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 1845, 8, 287–305. [Google Scholar]
- Hughes, R.L. The flow of human crowds. Annu. Rev. Fluid Mechan. 2003, 35, 169–182. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Bovy, P.H.L. Gas-kinetic modeling and simulation of pedestrian flows. Transp. Res. Record 2000, 1710, 28–36. [Google Scholar] [CrossRef]
- Kadanoff, L.P. Simulating hydrodynamics: A pedestrian model. J. Stat. Phys. 1985, 39, 267–283. [Google Scholar] [CrossRef]
- Henderson, L.F. The statistics of crowd fluids. Nature 1971, 229, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, J.C.V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1860, 19, 19–32. [Google Scholar]
- Treuille, A.; Cooper, S.; Popović, Z. Continuum crowds. ACM Trans. Gr. 2006, 25, 1160–1168. [Google Scholar] [CrossRef]
- Wen, X.; Sheng, D.; Huang, J. A hybrid particle swarm optimization for manipulator inverse kinematics control. In Lecture Notes in Computer Science 5226: Advanced Intelligent Computing Theories and Applications with Aspects of Theoretical and Methodological Issues; Huang, D.-S., Wunsch, D.C., II, Levine, D.S., Jo, K.-H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 784–791. [Google Scholar]
- Henein, C.M.; White, T. Macroscopic effects of microscopic forces between agents in crowd models. Physica A 2007, 373, 694–712. [Google Scholar] [CrossRef]
- Chenney, S. Flow tiles. In 2004 ACM Siggraph/Eurographics Symposium on Computer Animation; Badler, N., Desbrun, M., Boulic, R., Pai, D., Eds.; Eurographics Association: Grenoble, France, 2004; pp. 233–242. [Google Scholar]
- Helbing, D.; Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282–4286. [Google Scholar] [CrossRef]
- Helbing, D. A fluid-dynamic model for the movement of pedestrians. Complex Syst. 1992, 6, 391–415. [Google Scholar]
- Hoogendoorn, S.P.; Daamen, W. Pedestrian behavior at bottlenecks. Transp. Sci. 2005, 39, 147–159. [Google Scholar] [CrossRef]
- Newton, I. Philosophiae Naturalis Principia Mathematica; Royal Society of London for the Improvement of Natural Knowledge: London, UK, 1687. [Google Scholar]
- Basili, P.; Sağlam, M.; Kruse, T.; Huber, M.; Kirsch, A.; Glasauer, S. Strategies of locomotor collision avoidance. Gait Posture 2013, 37, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Cutting, J.E.; Vishton, P.M.; Braren, P.A. How we avoid collisions with stationary and moving obstacles. Psychol. Rev. 1995, 102, 627–651. [Google Scholar] [CrossRef]
- Gérin-Lajoie, M.; Richards, C.L.; Fung, J.; McFadyen, B.J. Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 2008, 27, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Krell, J.; Patla, A.E. The influence of multiple obstacles in the travel path on avoidance strategy. Gait Posture 2002, 16, 15–19. [Google Scholar] [CrossRef]
- Olivier, A.-H.; Marin, A.; Crétual, A.; Berthoz, A.; Pettré, J. Collision avoidance between two walkers: Role-dependent strategies. Gait Posture 2013, 38, 751–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southworth, M. Designing the walkable city. J. Urban Plan. Dev. 2005, 131, 246–257. [Google Scholar] [CrossRef]
- Borgers, A.; Timmermans, H. A model of pedestrian route choice and demand for retail facilities within inner-city shopping areas. Geogr. Anal. 1986, 18, 115–128. [Google Scholar] [CrossRef]
- Garbrecht, D. Pedestrian paths through a uniform environment. Town Plan. Rev. 1971, 42, 71–85. [Google Scholar] [CrossRef]
- Hill, M.R. Walking, Crossing Streets, and Choosing Pedestrian Routes; University of Nebraska Press: Lincoln, NE, USA, 1984. [Google Scholar]
- Hoogendoorn, S.P.; Bovy, P.H.L. Pedestrian route-choice and activity scheduling theory and models. Transp. Res. Part B Methodol. 2004, 38, 169–190. [Google Scholar] [CrossRef]
- Schneider, V.; Könnecke, R. Egress route choice modelling—Concepts and applications. In Pedestrian and Evacuation Dynamics 2008; Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M., Eds.; Springer: Berlin, Germany, 2010; pp. 619–625. [Google Scholar]
- Foltête, J.-C.; Piombini, A. Urban layout, landscape features and pedestrian usage. Landsc. Urban Plan. 2007, 81, 225–234. [Google Scholar] [CrossRef]
- Habicht, A.T.; Braaksma, J.P. Effective width of pedestrian corridors. Transp. Eng. 1984, 110, 80–93. [Google Scholar] [CrossRef]
- Korte, C.; Grant, R. Traffic noise, environmental awareness, and pedestrian behavior. Environ. Behav. 1980, 12, 408–420. [Google Scholar] [CrossRef]
- Owens, P.M. Neighborhood form and pedestrian life: Taking a closer look. Landsc. Urban Plan. 1993, 26, 115–135. [Google Scholar] [CrossRef]
- Shriver, K. Influence of environmental design on pedestrian travel in four austin neighborhoods. Transp. Res. Record 1997, 1578, 64–75. [Google Scholar] [CrossRef]
- Weinstein Agrawal, A.; Schlossberg, M.; Irvin, K. How far, by which route and why? A spatial analysis of pedestrian preference. J. Urban Des. 2008, 13, 81–98. [Google Scholar] [CrossRef]
- Willis, A.; Gjersoe, N.; Havard, C.; Kerridge, J.; Kukla, R. Human movement behaviour in urban spaces: Implications for the design and modelling of effective pedestrian environments. Environ. Plan. B 2004, 31, 805–828. [Google Scholar] [CrossRef]
- Zacharias, J. Pedestrian behavior and perception in urban walking environments. J. Plan. Lit. 2001, 16, 3–18. [Google Scholar] [CrossRef]
- Cambon de Lavalette, B.; Tijus, C.; Poitrenaud, S.; Leproux, C.; Bergeron, J.; Thouez, J.-P. Pedestrian crossing decision-making: A situational and behavioral approach. Safety Sci. 2009, 47, 1248–1253. [Google Scholar] [CrossRef]
- Faria, J.J.; Krause, S.; Krause, J. Collective behavior in road crossing pedestrians: The role of social information. Behav. Ecol. 2010, 21, 1236–1242. [Google Scholar] [CrossRef]
- Granie, M.-A.; Brenac, T.; Montel, M.-C.; Millot, M.; Coquelet, C. Influence of built environment on pedestrian’s crossing decision. Accid. Anal. Prev. 2014, 67, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Hine, J.; Russell, J. Traffic barriers and pedestrian crossing behaviour. J. Transp. Geogr. 1993, 1, 230–239. [Google Scholar] [CrossRef]
- Walton, D.; Sunseri, S. Factors influencing the decision to drive or walk short distances to public transport facilities. Int. J. Sustain. Transp. 2010, 4, 212–226. [Google Scholar] [CrossRef]
- Borst, H.C.; de Vries, S.I.; Graham, J.M.A.; van Dongen, J.E.F.; Bakker, I.; Miedema, H.M.E. Influence of environmental street characteristics on walking route choice of elderly people. J. Environ. Psychol. 2009, 29, 477–484. [Google Scholar] [CrossRef]
- Porter, C.; Suhrbier, J.; Schwartz, W. Forecasting bicycle and pedestrian travel: State of the practice and research needs. Transp. Res. Record J. Transp. Res. Board 1999, 94–101. [Google Scholar] [CrossRef]
- Greenwald, M.; Boarnet, M. Built environment as determinant of walking behavior: Analyzing nonwork pedestrian travel in portland, oregon. Transp. Res. Record J. Transp. Res. Board 2001, 33–41. [Google Scholar] [CrossRef]
- Wagoum, A.U.K.; Seyfried, A.; Holl, S. Modeling the dynamic route choice of pedestrians to assess the criticality of building evacuation. Adv. Complex Syst. 2012, 15, 1–15. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Older, S. Movement of pedestrians on footways in shopping streets. Traffic Eng. Control 1968, 10, 160–163. [Google Scholar]
- Kurose, S.; Borgers, A.W.J.; Timmermans, H.J.P. Classifying pedestrian shopping behaviour according to implied heuristic choice rules. Environ. Plan. B 2001, 28, 405–418. [Google Scholar] [CrossRef]
- Timmermans, H.; van der Hagen, X.; Borgers, A. Transportation systems, retail environments and pedestrian trip chaining behaviour: Modelling issues and applications. Transp. Res. Part B Methodol. 1992, 26, 45–59. [Google Scholar] [CrossRef]
- McFadden, D. The behavioral science of transportation. Transp. Policy 2007, 14, 269–274. [Google Scholar] [CrossRef]
- Batty, M. Exploring isovist fields: Space and shape in architectural and urban morphology. Environ. Plan. B 2001, 28, 123–150. [Google Scholar] [CrossRef]
- Nagy, G. Terrain visibility. Comput. Graph. 1994, 18, 763–773. [Google Scholar] [CrossRef]
- Gibson, J.J. The Perception of the Visual World; Houghton-Mifflin: Boston, MA, USA, 1950. [Google Scholar]
- Lappe, M.; Bremmer, F.; Van den Berg, A. Perception of self-motion from visual flow. Trends Cognit. Sci. 1999, 3, 329–336. [Google Scholar] [CrossRef]
- Turner, A.; Penn, A. Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment. Environ. Plan. Plan. Des. 2002, 29, 473–490. [Google Scholar] [CrossRef]
- Turner, A.; Doxa, M.; O'Sullivan, D.; Penn, A. From isovists to visibility graphs: A methodology for the analysis of architectural space. Environ. Plan. B 2001, 28, 103–121. [Google Scholar] [CrossRef]
- Yin, L.; Shiode, N. 3D spatial-temporal gis modeling of urban environments to support design and planning processes. J. Urban. Int. Res. Placemaking Urban Sustain. 2014, 7, 152–169. [Google Scholar] [CrossRef]
- Sisiopiku, V.; Akin, D. Pedestrian behaviors at and perceptions towards various pedestrian facilities: An examination based on observation and survey data. Transp. Res. Part F Traffic Psychol. Behav. 2003, 6, 249–274. [Google Scholar] [CrossRef]
- Rupprecht, T.; Klingsch, W.; Seyfried, A. Influence of geometry parameters on pedestrian flow through bottleneck. In Pedestrian and Evacuation Dynamics; Peacock, R.D., Kuligowski, E.D., Averill, J.D., Eds.; Springer US: New York, NY, USA, 2011; pp. 71–80. [Google Scholar]
- Liao, W.; Seyfried, A.; Zhang, J.; Boltes, M.; Zheng, X.; Zhao, Y. Experimental study on pedestrian flow through wide bottleneck. Transp. Res. Procedia 2014, 2, 26–33. [Google Scholar] [CrossRef]
- Kretz, T.; Grünebohm, A.; Schreckenberg, M. Experimental study of pedestrian flow through a bottleneck. J. Stat. Mechan. Theory Exp. 2006, 2006, P10014. [Google Scholar] [CrossRef]
- Løvås, G.G. Modeling and simulation of pedestrian traffic flow. Transp. Res. B 1994, 28, 429–443. [Google Scholar] [CrossRef]
- Fruin, J.J. Pedestrian Planning and Design; Metropolitan Association of Urban Designers and Environmental Planners, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Gipps, P.G.; Marksjö, B. A microsimulation model for pedestrian flows. Math. Comput. Simul. 1985, 27, 95–105. [Google Scholar] [CrossRef]
- Thomas, F.; Johnston, O. Disney Animation: The Illusion of Life; Abbeville Press: New York, NY, USA, 1981. [Google Scholar]
- Porter, T. Creating lifelike characters in toy story. SIGART Bull. 1997, 8, 10–14. [Google Scholar] [CrossRef]
- Catmull, E. The problems of computer-assisted animation. ACM SIGGRAPH Comput. Graph. 1978, 12, 348–353. [Google Scholar] [CrossRef]
- Nareyek, A. Ai in computer games. Queue 2004, 1, 58–65. [Google Scholar] [CrossRef]
- Graham-Rowe, D. Virtual extras: Giving each member of a digital crowd its own personality could make animated mob scenes more realistic. Available online: http://www.technologyreview.com/computing/19964/?a=f (accessed on 2 April 2009).
- Kanyuk, P. Brain springs: Fast physics for large crowds in wall·e. IEEE Comput. Graph. Appl. 2009, 29, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Regelous, S.J.; Regelous, S.N. Method of generating behavior for a graphics character and robotics devices. U.S. Patent 20090187529 A1, 23 July 2009. [Google Scholar]
- Ryu, D.; Kanyuk, P. Rivers of rodents: An animation-centric crowds pipeline for ratatouille. In ACM SIGGRAPH 2007 Sketches; McMains, S., Pike-Sloan, P., Eds.; ACM: San Diego, CA, USA, 2007. [Google Scholar]
- Baillie-deByl, P. Programming Believable Characters for Computer Games; Charles River Media: Hingham, MA, USA, 2004. [Google Scholar]
- Bainbridge, W.S. The scientific research potential of virtual worlds. Science 2007, 317, 472–476. [Google Scholar] [CrossRef] [PubMed]
- BioWare. Neverwinter Nights; Infrogames/Atari: Lyons, France, 2002. [Google Scholar]
- Blizzard Entertainment. World of Warcraft; Blizzard Entertainment: Irvine, CA, USA, 2004. [Google Scholar]
- Cass, S. Mind games: To beat the competition, video games are getting smarter. IEEE Spectr. 2002, 39, 40–44. [Google Scholar] [CrossRef]
- Coco, D. Creating intelligent creatures. Comput. Graph. World 1997, 20, 22–28. [Google Scholar]
- Jacobson, J.; Hwang, Z. Unreal tournament for immersive interactive theater. Commun. Assoc. Comput. Mach. 2002, 45, 39–42. [Google Scholar] [CrossRef]
- Laird, J.E. Research in human-level ai using computer games. Commun. Assoc. Comput. Mach. 2002, 45, 32–35. [Google Scholar] [CrossRef]
- Laird, J.E.; van Lent, M. Human-level ai's killer application: Interactive computer games. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Sony Online Entertainment. Everquest; Sony Online Entertainment: San Diego, CA, USA, 1999. [Google Scholar]
- Champandard, A. Ai Game Development: Synthetic Creatures with Learning and Reactive Behaviors; New Riders: Indianapolis, IN, USA, 2003. [Google Scholar]
- Reeves, W.T. Inbetweening for computer animation utilizing moving point constraints. ACM SIGGRAPH Comput. Graph. 1981, 15, 263–269. [Google Scholar] [CrossRef]
- Badler, N.I.; Bindiganavale, R.; Granieri, J.P.; Wei, S.; Zhao, Z. Posture interpolation with collision avoidance. In Proceedings of the Computer Animation’94, Geneva, Switzerland, 25–28 May 1994; Anonymous, Ed.; IEEE: Geneva, Switzerland, 1994; pp. 13–20. [Google Scholar]
- Girard, M.; Maciejewski, A.A. Computational Modeling for the Computer Animation of Legged Figures; ACM SIGGRAPH Computer Graphics, 1985; ACM: New York, NY, USA, 1985; pp. 263–270. [Google Scholar]
- Tolani, D.; Goswami, A.; Badler, N.I. Real-time inverse kinematics techniques for anthropomorphic limbs. Graph. Models 2000, 62, 353–388. [Google Scholar] [CrossRef] [PubMed]
- Witkin, A.; Popović, Z. Motion Warping. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), Los Angeles, CA, USA, 6–11 August 1995; Cohen, M., Ed.; Association for Computing Machinery: Los Angeles, CA, USA, 1995; pp. 105–108. [Google Scholar]
- Kovar, L.; Gleicher, M. Flexible automatic motion blending with registration curves. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 26–27 July 2003.
- Dodge, S.; Laube, P.; Weibel, R. Movement similarity assessment using symbolic representation of trajectories. Int. J. Geogr. Inf. Sci. 2012, 26, 1563–1588. [Google Scholar] [CrossRef] [Green Version]
- Dodge, S.; Weibel, R.; Forootan, E. Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Comput. Environ. Urban Syst. 2009, 33, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Dodge, S.; Weibel, R.; Lautenschütz, A.-K. Towards a taxonomy of movement patterns. Inf. Vis. 2008, 7, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Arikan, O.; Forsyth, D.A. Interactive motion generation from examples. ACM Trans. Graph. 2002, 21, 483–490. [Google Scholar] [CrossRef]
- Menache, A. Understanding Motion Capture for Computer Animation and Video Games; Morgan Kauffman: San Diego, CA, USA, 2000. [Google Scholar]
- Safonova, A.; Hodgins, J.K.; Pollard, N.S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 2004, 23, 514–521. [Google Scholar] [CrossRef]
- Bruderlin, A.; Calvert, T.W. Goal-directed, dynamic animation of human walking. Comput. Graph. 1989, 23, 233–242. [Google Scholar] [CrossRef]
- Badler, N.I.; Barsky, B.A.; Zeltzer, D. Making them Move: Mechanics, Control, and Animation of Articulated Figures; Morgan Kauffman: San Francisco, CA, USA, 1991. [Google Scholar]
- Zeltzer, D. Motor control techniques for figure animation. IEEE Comput. Graph. 1982, 2, 53–59. [Google Scholar] [CrossRef]
- McGhee, R.B. Finite state control of quadruped locomotion. Simulation 1967, 9, 135–140. [Google Scholar] [CrossRef]
- Minsky, M.L. Computation: Finite and Infinite Machines; Prentice-Hall: Upper Saddle River, NJ, USA, 1967; p. 334. [Google Scholar]
- Perlin, K.; Hecker, C.; Reynolds, C.; Kirschner, F. Four views of procedural character animation for computer games. In Proceedings of the 2008 ACM SIGGRAPH Symposium on Video Games, Los Angeles, CA, USA, 2008; pp. 61–62.
- Durupinar, F.; Pelechano, N.; Allbeck, J.; Gudukbay, U.; Badler, N.I. The impact of the ocean personality model on the perception of crowds. Comput. Graph. Appl. 2011, 31, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, T.; Mukai, T.; Kuriyama, S. Psychological model for animating crowded pedestrians. Comput. Anim. Virtual Worlds 2005, 16, 343–351. [Google Scholar] [CrossRef]
- Boulic, R.; Noser, H.; Thalmann, D. Automatic derivation of curved human walking trajectories from synthetic vision. In Proceedings of Computer Animation '94; University of Geneva/Swiss Federal Institute of Technology: Geneva, Switzerland, 1994; pp. 93–103. [Google Scholar]
- Renault, O.; Magnenat-Thalmann, N.; Thalmann, D. A vision-based approach to behavioral animation. J. Vis. Comput. Animat. 1990, 1, 18–21. [Google Scholar] [CrossRef]
- Allbeck, J.; Kipper, K.; Adams, C.; Schuler, W.; Zoubanova, E.; Badler, N.; Palmer, M.; Joshi, A. Acumen: Amplifying Control and Understanding of Multiple Entities. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, Bologna, Italy, 15–17 July 2002; pp. 191–198.
- Reynolds, C.W. An evolved, vision-based behavioral model of coordinated group motion. In From Animals to Animats 2; Meyer, J.-A., Roitblat, H.L., Wilson, S.W., Eds.; The MIT Press: Cambridge, MA, USA, 1993; pp. 384–392. [Google Scholar]
- Torrens, P.; McDaniel, A. Modeling geographic behavior in riotous crowds. Ann. Assoc. Am. Geogr. 2013, 103, 20–46. [Google Scholar] [CrossRef]
- Lee, K.H.; Choi, M.G.; Hong, Q.; Lee, J. Group behavior from video: A data-driven approach to crowd simulation. In 2007 ACM Siggraph/Eurographics Symposium on Computer Animation; Gleicher, M., Thalmann, D., Eds.; Eurographics Association: San Diego, CA, USA, 2007; pp. 109–118. [Google Scholar]
- Torrens, P.M.; Li, X.; Griffin, W.A. Building agent-based walking models by machine-learning on diverse databases of space-time trajectory samples. Trans. Geogr. Inf. Sci. 2011, 15, 67–94. [Google Scholar] [CrossRef]
- Lerner, A.; Fitusi, E.; Chrysanthou, Y.; Cohen-Or, D. Fitting behaviors to pedestrian simulations. In Eurographics/ACM Siggraph Symposium on Computer Animation; Grinspun, E., Hodgins, J., Eds.; Association for Computing Machinery: New Orleans, LA, USA, 2009; pp. 199–208. [Google Scholar]
- Cohen, M.F. Interactive spacetime control for animation. ACM SIGGRAPH Comput. Graph. 1992, 26, 293–302. [Google Scholar] [CrossRef]
- Lau, M.; Kuffner, J.J. Precomputed search trees: Planning for interactive goal-driven animation. In Proceedings of the 2006 ACM Siggraph/Eurographics Symposium on Computer Animation; Purgathofer, W., Coquillart, S., Eds.; Eurographics Association: Vienna, Australia, 2006; pp. 299–308. [Google Scholar]
- Paris, S.; Donikian, S.; Bonvalet, N. Environmental abstraction and path planning techniques for realistic crowd simulation. In Computer Animation and Social Agents Conference; Computer Graphics Society: Geneva, Switzerland, 2006. [Google Scholar]
- Guy, S.J.; Chhugani, J.; Curtis, S.; Dubey, P.; Lin, M.; Manocha, D. Pledestrians: A least-effort approach to crowd simulation. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation; Otaduy, M., Popović, Z., Eds.; Association of Computer Machinery: Madrid, Spain, 2010; pp. 119–128. [Google Scholar]
- Guy, S.J.; Chhugani, J.; Kim, C.; Satish, N.; Lin, M.; Manocha, D.; Dubey, P. Clearpath: Highly Parallel Collision Avoidance for Multi-Agent Simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, LA, USA, 1–2 August 2009; Grinspun, E., Hodgins, J., Eds.; The Eurographics Association: New Orleans, LA, USA, 2009; pp. 177–187. [Google Scholar]
- Lee, K.H.; Choi, M.G.; Lee, J. Motion patches: Building blocks for virtual environments annotated with motion data. ACM Trans. Graph. 2006, 25, 898–906. [Google Scholar] [CrossRef]
- Musse, S.R.; Daniel, T. Hierarchical model for real time simulation of virtual human crowds. IEEE Trans. Vis. Comput. Graph. 2001, 7, 152–164. [Google Scholar] [CrossRef]
- Pettré, J.; Ciechomski, P.D.H.; Ma, J.; Yersin, B.; Laumond, J.-P.; Thalmann, D. Real-time navigating crowds: Scalable simulation and rendering. Comput. Animat. Virtual Worlds 2006, 17, 445–455. [Google Scholar] [CrossRef]
- Sung, M.; Gleicher, M.; Chenney, S. Scalable behaviors for crowd simulation. Comput. Graph. Forum 2004, 23, 519–528. [Google Scholar] [CrossRef]
- Tecchia, F.; Loscos, C.; Chrysanthou, Y. Image-based crowd rendering. IEEE Comput. Graph. Appl. 2002, 22, 36–43. [Google Scholar] [CrossRef]
- Grillon, H.; Yersin, B.; Maïm, J.; Thalmann, D. Gaze behaviors for virtual crowd characters. In Cross-Modal Analysis of Speech, Gestures, Gaze and Facial Expressions (Lecture Notes in Artificial intelligence 5641); Goebel, R., Siekmann, J., Wahlster, W., Eds.; Springer: Berlin, Germany, 2009; pp. 201–213. [Google Scholar]
- Cassell, J.; Vilhjálmsson, H.H.; Bickmore, T. Beat: The behavior expression animation toolkit. In Life-Like Characters; Prendinger, H., Ishizuka, M., Eds.; Springer: New York, NY, USA, 2004; pp. 163–185. [Google Scholar]
- Badler, N.I. Artificial intelligence, natural language, and simulation for human animation. In State-of-the-Art in Computer Animation; Magnenat-Thalmann, N., Thalmann, D., Eds.; Springer: Tokyo, Japan, 1989; pp. 19–31. [Google Scholar]
- Reynolds, C.W. Computer Animation with Scripts and Actors. ACM SIGGRAPH Comput. Gr. 1982, 16, 289–296. [Google Scholar] [CrossRef]
- Evans, G.W. Environmental cognition. Psychol. Bull. 1980, 88, 259. [Google Scholar] [CrossRef]
- Gärling, T.; Evans, G.W. Environment, Cognition, and Action: An Integrated Approach; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Tuan, Y.-F. Place: An experiential perspective. Geogr. Rev. 1975, 151–165. [Google Scholar] [CrossRef]
- Allbeck, J.M.; Badler, N.I. Embodied autonomous agents. In Handbook of Virtual Environments; Hale, K.S., Stanney, K.M., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2002; pp. 313–332. [Google Scholar]
- Durupinar, F.; Allbeck, J.; Pelechano, N.; Badler, N. Creating crowd variation with the ocean personality model. In Proceedings of the Autonomous Agents and Multiagent Systems, Estoril, Portugal, 2008; pp. 1217–1220.
- Badler, N.I.; Reich, B.D.; Webber, B.L. Towards personalities for animated agents with reactive and planning behaviors. In Creating Personalities for Synthetic Actors; Trappl, R., Paolo, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 43–57. [Google Scholar]
- Durupinar, F.; Pelechano, N.; Allbeck, J.M.; Gudukbay, U.; Badler, N.I. How the ocean personality model affects the perception of crowds. IEEE Comput. Graph. Appl. 2009, 22–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, W.B.; Willemsen, P.; Gooch, A.A.; Creem–Regehr, S.H.; Loomis, J.M.; Beall, A.C. Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence Teleoperators Virtual Environ. 2004, 13, 560–571. [Google Scholar] [CrossRef]
- Loomis, J.; Blascovich, J.; Beall, A. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 1999, 31, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Blascovich, J.; Loomis, J.; Beall, A.C.; Swinth, K.R.; Hoyt, C.L.; Bailenson, J.N. Immersive virtual environment technology as a methodological tool for social psychology. Psychol. Inq. 2002, 13, 103–124. [Google Scholar] [CrossRef]
- Vishton, P.M.; Cutting, J.E. Wayfinding, displacements, and mental maps: Velocity fields are not typically used to determine one’s aimpoint. J. Exp. Psychol. 1995, 21, 978–995. [Google Scholar] [CrossRef]
- Ekstrom, A.D.; Kahana, M.J.; Caplan, J.B.; Fields, T.A.; Isham, E.A.; Newman, E.L.; Fried, I. Cellular networks underlying human spatial navigation. Nature 2003, 425, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Torrens, P.M. Behavioral intelligence for geospatial agents in urban environments. In IEEE Intelligent Agent Technology (IAT 2007); Lin, T.Y., Bradshaw, J.M., Klusch, M., Zhang, C., Eds.; IEEE: Los Alamitos, CA, USA, 2007; pp. 63–66. [Google Scholar]
- Resnick, M. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds, 15th ed.; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Frank, A.; Bittner, S.; Raubal, M. Spatial and cognitive simulation with multi-agent systems. In Spatial Information Theory; Montello, D.R., Ed.; Springer-Verlag: Berlin, Germany, 2001; pp. 124–139. [Google Scholar]
- Raubal, M. Human wayfinding in unfamiliar buildings: A simulation with a cognizing agent. Cognit. Process. 2001, 2, 363–388. [Google Scholar]
- Raubal, M.; Worboys, M. A formal model of the process of wayfinding in built environments. In Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science; Freksa, C., Mark, D.M., Eds.; Springer-Verlag: Berlin, Germany, 1999; p. 748. [Google Scholar]
- Bitgood, S.; Dukes, S. Not another step! Economy of movement and pedestrian choice point behavior in shopping malls. Environ. Behav. 2006, 38, 394–405. [Google Scholar] [CrossRef]
- Hajibabai, L.; Delavar, M.R.; Malek, M.R.; Frank, A.U. Agent-based simulation of spatial cognition and wayfinding in building fire emergency evacuation. In Geomatics Solutions for Disaster Management; Li, J., Zlatanova, S., Fabbri, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 255–270. [Google Scholar]
- Hochmair, H.; Frank, A.U. Influence of estimation errors on wayfinding-decisions in unknown street networks–analyzing the least-angle strategy. Spat. Cognit. Comput. 2000, 2, 283–313. [Google Scholar]
- Itami, R. Cellular worlds: Models for dynamic conception of landscapes. Landsc. Archit. 1988, 78, 52–57. [Google Scholar]
- Itami, R.; Raulings, R.; MacLaren, G.; Hirst, K.; Gimblett, R.; Zanon, D.; Chladek, P. Rbsim 2: Simulating the complex interactions between human movement and the outdoor recreation environment. J. Nat. Conserv. 2003, 11, 279–296. [Google Scholar] [CrossRef]
- Reineking, T.; Kohlhagen, C.; Zetzsche, C. Efficient wayfinding in hierarchically regionalized spatial environments. In Spatial Cognition vi: Learning, Reasoning, and Talking about Space; Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S., Eds.; Springer: Berlin, Germany, 2008; pp. 56–70. [Google Scholar]
- Raubal, M. Wayfinding: Affordances and agent simulation. In Encyclopedia of Gis; Shekhar, S., Xiong, H., Eds.; Springer US: New York, NY, USA, 2008; pp. 1243–1246. [Google Scholar]
- Schatzki, T.R. Spatial ontology and explanation. Ann. Assoc. Am. Geogr. 1991, 81, 650–670. [Google Scholar] [CrossRef]
- Wiener, J.M.; Büchner, S.J.; Hölscher, C. Taxonomy of human wayfinding tasks: A knowledge-based approach. Spat. Cognit. Comput. 2009, 9, 152–165. [Google Scholar] [CrossRef]
- Gould, P.; White, R. Mental Maps; Routledge: New York, NY, USA, 1974. [Google Scholar]
- Tuan, Y.-F. Images and mental maps. Ann. Assoc. Am. Geogr. 1975, 65, 205–212. [Google Scholar] [CrossRef]
- Kettani, D.; Moulin, B. A spatial model based on the notions of spatial conceptual map and of object’s influence areas. In Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science; Freksa, C., Mark, D.M., Eds.; Springer: Berlin, Germany, 1999; Volume 1661, pp. 401–416. [Google Scholar]
- Torrens, P.M. High-fidelity behaviours for model people on model streetscapes. Ann. GIS 2014, 20, 139–157. [Google Scholar] [CrossRef]
- Theraulaz, G.; Bonabeau, E.; Deneubourg, J.-L. The origin of nest complexity in social insects. Complexity 1998, 3, 15–25. [Google Scholar] [CrossRef]
- Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Kohler, T.A.; Gumerman, G. Dynamics in Human and Primate Societies; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Box, P. Spatial units as agents: Making the landscape an equal player in agent-based simulations. In Integrating Geographic Information Systems and Agent-Based Modeling Techniques for Simulating Social and Ecological Processes; Gimblett, H.R., Ed.; Oxford University Press: Oxford, UK, 2001; pp. 59–83. [Google Scholar]
- Bonabeau, E.; Théraulaz, G. Swarm smarts. Sci. Am. 2000, 282, 54–61. [Google Scholar] [CrossRef]
- Minar, N.; Burkhart, R.; Langton, C.; Askenazi, M. The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations; Santa Fe Institute: Santa Fe, CA, USA, 1996. [Google Scholar]
- Stefansson, B. Swarm: An object-oriented simulation platform applied to markets and organizations. In Evolutionary Programming VI; Angeline, P., Reynolds, R., McDonnell, J., Eberhart, R., Eds.; Springer-Verlag: New York, NY, USA, 1997; Volume 1213. [Google Scholar]
- Terna, P. Simulation tools for social scientists: Building agent based models with swarm. J. Artif. Soc. Soc. Simul. 1998, 1. Available online: http://jasss.soc.surrey.ac.uk/1/2/4.html (accessed on 19 September 2016). [Google Scholar]
- Patla, A.E.; Vickers, J.N. How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp. Brain Res. 2003, 148, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Caird, J.K.; Hancock, P.A. The perception of arrival time for different oncoming vehicles at an intersection. Ecol. Psychol. 1994, 6, 83–109. [Google Scholar] [CrossRef]
- Olivier, A.-H.; Marin, A.; Crétual, A.; Pettré, J. Minimal predicted distance: A common metric for collision avoidance during pairwise interactions between walkers. Gait Posture 2012, 36, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Tresilian, J.R. Visually timed action: Time-out for ‘tau’? Trends Cognit. Sci. 1999, 3, 301–310. [Google Scholar] [CrossRef]
- Dommes, A.; Wu, Y.-H.; Aquino, J.-P.; Pitti-Ferrandi, H.; Soleille, M.; Martineau-Fleury, S.; Samson, M.; Rigaud, A.-S. Is mild dementia related to unsafe street-crossing decisions? Alzheimer Dis. Assoc. Disord. 2015, 29, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, M.; van Overschelde, S.; de Rycke, M.; Musch, E. Intrinsic and extrinsic factors of turning preferences in humans. Neurosci. Lett. 2006, 393, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Schwaninger, A. Turn right or turn left? Heuristic of adhering to the direction of destination. Appl. Cognit. Psychol. 2011, 25, 703–707. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Tung, Y.-C. Risk analysis of pedestrians’ road-crossing decisions: Effects of age, time gap, time of day, and vehicle speed. Safety Sci. 2014, 63, 77–82. [Google Scholar] [CrossRef]
- Lenck-Santini, P.-P.; Muller, R.U.; Save, E.; Poucet, B. Relationships between place cell firing fields and navigational decisions by rats. J. Neurosci. 2002, 22, 9035–9047. [Google Scholar] [PubMed]
- Alme, C.B.; Miao, C.; Jezek, K.; Treves, A.; Moser, E.I.; Moser, M.-B. Place cells in the hippocampus: Eleven maps for eleven rooms. Proc. Natl. Acad. Sci. USA 2014, 111, 18428–18435. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Wonka, P.; Haegler, S.; Ulmer, A.; Van Gool, L. Procedural modeling of buildings. ACM Trans. Graph. 2006, 25, 614–623. [Google Scholar] [CrossRef]
- Batty, M.; Chapman, D.; Evans, S.; Haklay, M.; Kueppers, S.; Shiode, N.; Smith, A.; Torrens, P.M. Visualizing the city: Communicating urban design to planners and decision-makers. In Planning Support Systems in Practice: Integrating Geographic Information Systems, Models, and Visualization Tools; Brail, R.K., Klosterman, R.E., Eds.; ESRI Press and Center for Urban Policy Research Press: Redlands, CA, USA; New Brunswick, NJ, USA, 2001; pp. 405–443. [Google Scholar]
- Lin, H.; Batty, M.; Jørgensen, S.E.; Fu, B.; Konecny, M.; Voinov, A.; Torrens, P.M.; Lu, G.; Zhu, A.-X.; Wilson, J.P.; et al. Virtual environments begin to embrace process-based geographic analysis. Trans. GIS 2015, 19, 1–5. [Google Scholar] [CrossRef]
- Parker, E.G.; O’Brien, J.F. Real-time deformation and fracture in a game environment. In Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation; Tamstorf, R., Fellner, D., Spencer, S., Eds.; Assocation for Computing Machinery: New Orleans, LA, USA, 2009; pp. 156–166. [Google Scholar]
- Lin, H.; Chen, M.; Lu, G. Virtual geographic environment: A workspace for computer-aided geographic experiments. Ann. Assoc. Am. Geogr. 2013, 103, 465–482. [Google Scholar] [CrossRef]
- Torrens, P.M. High-resolution space-time processes for agents at the built–human interface of urban earthquakes. Int. J. Geogr. Inf. Sci. 2014, 28, 964–986. [Google Scholar] [CrossRef]
- Torrens, P.M.; Nara, A.; Li, X.; Zhu, H.; Griffin, W.A.; Brown, S.B. An extensible simulation environment and movement metrics for testing walking behavior in agent-based models. Comput. Environ. Urban Syst. 2012, 36, 1–17. [Google Scholar] [CrossRef]
- Nara, A.; Torrens, P.M. Spatial and temporal analysis of pedestrian egress behavior and efficiency. In Association of Computing Machinery (ACM) Advances in Geographic Information Systems; Samet, H., Shahabi, C., Schneider, M., Eds.; Association of Computing Machinery: New York, NY, USA, 2007; pp. 284–287. [Google Scholar]
- Nara, A.; Torrens, P.M. Trajectory data mining: Classification and spatio-temporal visualization of mobile objects. In Proceedings of Geocomputation 2011; Cheng, T., Longley, P.A., Ellul, C., Chow, A., Eds.; Geocomputation: London, UK, 2011; pp. 338–345. [Google Scholar]
- Helbing, D.; Molnár, P.; Farkas, I.; Bolay, K. Self-organizing pedestrian movement. Environ. Plan. B 2001, 28, 361–383. [Google Scholar] [CrossRef]
- Cao, C.; Ashton-Miller, J.A.; Schultz, A.B.; Alexander, N.B. Abilities to turn suddenly while walking: Effects of age, gender, and available response time. J. Gerontol. Series A Biol. Sci. Med. Sci. 1997, 52, M88–M93. [Google Scholar] [CrossRef]
- Lasseter, J. Principles of traditional animation applied to 3d computer animation. ACM Siggraph Comput. Graph. 1987, 21, 35–44. [Google Scholar] [CrossRef]
- Faloutsos, P.; van de Panne, M.; Terzopoulos, D. The virtual stuntman: Dynamic characters with a repertoire of autonomous motor skills. Comput. Gr. 2001, 25, 933–953. [Google Scholar] [CrossRef]
- Kapadia, M.; Singh, S.; Reinman, G.; Faloutsos, P. A behavior-authoring framework for multiactor simulations. IEEE Comput. Graph. Appl. 2011, 31, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Devillers, F.; Donikian, S. A scenario language to orchestrate virtual world evolution. In Proceedings of the 2003 ACM Siggraph/Eurographics Symposium on Computer Animation; Parent, R., Singh, K., Breen, D., Lin, M.C., Eds.; Eurographics Association: San Diego, CA, USA, 2003; pp. 265–275. [Google Scholar]
- Lee, J.; Lee, K.H. Precomputing avatar behavior from human motion data. Graph. Models 2006, 68, 158–174. [Google Scholar] [CrossRef]
- Ibañez, R.; Soria, Á.; Teyseyre, A.; Campo, M. Easy gesture recognition for kinect. Adv. Eng. Softw. 2014, 76, 171–180. [Google Scholar] [CrossRef]
- Jacques Junior, J.C.S.; Raupp Musse, S.; Jung, C.R. Crowd analysis using computer vision techniques. IEEE Signal Process. Mag. 2010, 27, 66–77. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Phung, D.Q.; Venkatesh, S.; Bui, H. Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Models. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Hebert, M., Kriegman, D., Eds.; IEEE Computer Society: San Diego, CA, USA, 2005; pp. 955–960. [Google Scholar]
- Makris, D.; Ellis, T. Path detection in video surveillance. Image Vision Comput. 2002, 20, 895–903. [Google Scholar] [CrossRef]
- Singh, S.; Kapadia, M.; Faloutsos, P.; Reinman, G. Steerbench: A benchmark suite for evaluating steering behaviors. Comput. Animat. Virtual Worlds 2009, 20, 533–548. [Google Scholar] [CrossRef]
- Lee, J.-G.; Han, J.; Whang, K.-Y. Trajectory clustering: A partition-and-group framework. In Proceedings of the 2007 ACM Sigmod International Conference on Management of Data, Beijing, China, 11–14 June 2007; Zhou, L., Ling, T.W., Eds.; Association for Computing Machinery: New York, NY, USA, 2007; pp. 593–604. [Google Scholar]
- Giannotti, F.; Nanni, M.; Pinelli, F.; Pedreschi, D. Trajectory pattern mining. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: San Jose, CA, USA, 2007; pp. 330–339. [Google Scholar]
- Vieira, M.R.; Frías-Martínez, V.; Oliver, N.; Frías-Martínez, E. Characterizing dense urban areas from mobile phone-call data: Discovery and social dynamics. In Proceedings of the 2010 IEEE Second International Conference on Social Computing (socialcom), Minneapolis, MN, USA, 20–22 August 2010; Pentland, A.S., Ed.; IEEE: Los Alamitos, CA, USA, 2010; pp. 241–248. [Google Scholar]
- Versichele, M.; Neutens, T.; Goudeseune, S.; van Bossche, F.; van de Weghe, N. Mobile mapping of sporting event spectators using bluetooth sensors: Tour of flanders 2011. Sensors 2012, 12, 14196–14213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Spek, S.; van Schaick, J.; de Bois, P.; de Haan, R. Sensing human activity: GPS tracking. Sensors 2009, 9, 3033–3055. [Google Scholar] [CrossRef] [PubMed]
- Meynberg, O.; Cui, S.; Reinartz, P. Detection of high-density crowds in aerial images using texture classification. Remote Sens. 2016, 8, 470. [Google Scholar] [CrossRef]
- Mowafi, Y.; Zmily, A.; Abou-Tair, D.E.D.; Abu-Saymeh, D. Tracking human mobility at mass gathering events using wisp. In Proceedings of the Second International Conference on Future Generation Communication Technologies (Fgct 2013), London, UK, 12–13 November 2013; Ariwa, E., Ed.; IEEE: Los Alamitos, CA, USAQ, 2013; pp. 157–162. [Google Scholar]
- Eagle, N.; Pentland, A. Reality mining: Sensing complex social systems. Pers. Ubiquitous Comput. 2006, 10, 255–268. [Google Scholar] [CrossRef]
- Pentland, A. Honest Signals: How They Shape Our World; MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Frías-Martínez, V.; Virseda, J. Cell phone analytics: Scaling human behavior studies into the millions. Inf. Technol. Int. Dev. 2013, 9, 35–50. [Google Scholar]
- Zhang, A.X.; Noulas, A.; Scellato, S.; Mascolo, C. Hoodsquare: Modeling and recommending neighborhoods in location-based social networks. In Proceedings of the 2013 International Conference on Social Computing (Socialcom), Washington, DC, USA, 8–14 September 2013; Pentland, A.S., Ed.; IEEE: New York, NY, USA, 2013; pp. 69–74. [Google Scholar]
- Ferreira, N.; Poco, J.; Vo, H.T.; Freire, J.; Silva, C.T. Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zheng, C.; Tian, Y.; Liang, R. Large-scale taxi o/d visual analytics for understanding metropolitan human movement patterns. J. Vis. 2015, 18, 185–200. [Google Scholar] [CrossRef]
- Wakamiya, S.; Lee, R.; Sumiya, K. Crowd-sourced cartography: Measuring socio-cognitive distance for urban areas based on crowd’s movement. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; Dey, A.K., Ed.; ACM: New York, NY, USA, 2012; pp. 935–942. [Google Scholar]
- Li, B.; Zhang, D.; Sun, L.; Chen, C.; Li, S.; Qi, G.; Yang, Q. Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (Percom Workshops), Seattle, WA, USA, 21–25 March 2011; Cook, D., Ed.; IEEE: Seattle, WA, USA, 2011; pp. 63–68. [Google Scholar]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef]
- Jacobs, A. The pathologies of big data. Commun. ACM 2009, 52, 36–44. [Google Scholar] [CrossRef]
- Kavan, L.; Dobbyn, S.; Collins, S.; Žára, J.; O’Sullivan, C. Polypostors: 2D polygonal impostors for 3D crowds. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games; ACM: Redwood City, CA, USA, 2008; pp. 149–155. [Google Scholar]
- Dobbyn, S.; Hamill, J.; O’Conor, K.; O’Sullivan, C. Geopostors: A real-time geometry/impostor crowd rendering system. ACM Trans. Graph. 2005, 24, 933–933. [Google Scholar] [CrossRef]
- Shoulson, A.; Marshak, N.; Kapadia, M.; Badler, N.I. Adapt: The agent development and prototyping testbed. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Gleicher, M.; Shin, H.J.; Kovar, L.; Jepsen, A. Snap-together motion: Assembling run-time animations. ACM Trans. Graph. 2003, 22, 702. [Google Scholar] [CrossRef]
- Yersin, B.; Ma, J.; Pettr, J.; Thalmann, D. Crowd patches: Populating large-scale virtual environments for real-time applications. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, Boston, MA, USA, 27 February–1 March 2009; ACM: Boston, MA, USA, 2009; pp. 207–214. [Google Scholar]
- Shum, H.P.H.; Komura, T.; Shiraishi, M.; Yamazaki, S. Interaction patches for multi-character animation. ACM Trans. Graph. 2008, 27, 1–8. [Google Scholar] [CrossRef]
- Kovar, L.; Gleicher, M.; Pighin, F. Motion graphs. ACM Trans. Graph. 2002, 21, 473–482. [Google Scholar] [CrossRef]
- Latombe, J.-C. Motion planning: A journey of robots, molecules, digital actors, and other artifacts. Int. J. Robot. Res. 1999, 18, 1119–1128. [Google Scholar] [CrossRef]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef]
- Sud, A.; Gayle, R.; Anderson, E.; Guy, S.; Lin, M.; Manocha, D. Real-time navigation of independent agents using adaptive roadmaps. In ACM Symposium on Virtual Reality Software and Technology 2007; Majumder, A., Hodges, L., Cohen-Or, D., Eds.; Association for Computing Machinery: Irvine, CA, USA, 2007. [Google Scholar]
- Gayle, R.; Sud, A.; Andersen, E.; Guy, S.J.; Lin, M.C.; Manocha, D. Interactive navigation of heterogeneous agents using adaptive roadmaps. IEEE Trans. Vis. Comput. Graph. 2009, 15, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Sud, A.; Andersen, E.; Curtis, S.; Lin, M.C.; Manocha, D. Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Trans. Vis. Comput. Graph. 2008, 14, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Benenson, I.; Torrens, P.M. Geosimulation: Automata-based Modeling of Urban Phenomena; John Wiley & Sons: London, UK, 2004. [Google Scholar]
- Sipper, M. Evolution of Parallel Cellular Machines: The Cellular Programming Approach; Springer: Berlin, Germany, 1997. [Google Scholar]
- Ulicny, B.; Thalmann, D. Towards interactive real-time crowd behavior simulation. Comput. Graph. Forum 2003, 21, 767–775. [Google Scholar] [CrossRef]
- Kielar, P.M.; Handel, O.; Biedermann, D.H.; Borrmann, A. Concurrent hierarchical finite state machines for modeling pedestrian behavioral tendencies. Transp. Res. Procedia 2014, 2, 576–584. [Google Scholar] [CrossRef]
- Crooks, A.T.; Heppenstall, A.J.; See, L.M.; Batty, M. Agent-Based Models of Geographical Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
- Batty, M. Agent-based pedestrian modeling. Environ. Plan. B 2001, 28, 321–326. [Google Scholar] [CrossRef]
- Crooks, A.; Hudson-Smith, A.; Dearden, J. Agent street: An environment for exploring agent-based models in second life. J. Artif. Soc. Soc. Simul. 2009, 12, 10. [Google Scholar]
- Heppenstall, A.; Malleson, N.; Crooks, A. “Space, the final frontier”: How good are agent-based models at simulating individuals and space in cities? Systems 2016, 4, 9. [Google Scholar] [CrossRef]
- Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals; The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Sycara, K.P. Multiagent systems. AI Mag. 1998, 19, 79–92. [Google Scholar]
- Kaminka, G.A.; Veloso, M.M.; Schaffer, S.; Sollitto, C.; Adobbati, R.; Marshall, A.N.; Scholer, A.; Tejada, S. Gamebots: A flexible test bed for multiagent team research. Commun. Assoc. Comput. Mach. 2002, 45, 43–45. [Google Scholar] [CrossRef]
- Pelechano, N.; Badler, N.I. Modeling crowd and trained leader behavior during building evacuation. IEEE Comput. Graph. Appl. 2006, 26, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Neumann, J.; Burks, A.W. Theory of Self-Reproducing Automata; University of Illinois Press: Urbana-Champaign, IL, USA, 1966. [Google Scholar]
- Blue, V.; Adler, J. Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B 2001, 35, 293–312. [Google Scholar] [CrossRef]
- Dijkstra, J.; Timmermans, H.J.P.; Jessurun, A.J. A multi-agent cellular automata system for visualising simulated pedestrian activity. In Theoretical and Practical Issues on Cellular Automata; Bandini, S., Worsch, T., Eds.; Springer-Verlag: London, UK, 2000; pp. 29–36. [Google Scholar]
- Torrens, P.M.; Benenson, I. Geographic automata systems. Int. J. Geogr. Inf. Sci. 2005, 19, 385–412. [Google Scholar] [CrossRef]
- Banquet, J.-P.; Gaussier, P.; Quoy, M.; Revel, A.; Burnod, Y. A hierarchy of associations in hippocampo-cortical systems: Cognitive maps and navigation strategies. Neural Comput. 2005, 17, 1339–1384. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.; Kang, S.M.; Batty, M.; Barthélemy, M. Structure of urban movements: Polycentric activity and entangled hierarchical flows. PLoS ONE 2011, 6, e15923. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Batty, M. Virtual Geographic Environments: A Primer; ESRI Press: Redlands, CA, USA, 2011. [Google Scholar]
- Xu, B.; Lin, H.; Gong, J.; Tang, S.; Hu, Y.; Nasser, I.A.; Jing, T. Integration of a computational grid and virtual geographic environment to facilitate air pollution simulation. Comput. Geosci. 2013, 54, 184–195. [Google Scholar] [CrossRef]
- Lin, H.; Chen, M.; Lu, G.; Zhu, Q.; Gong, J.; You, X.; Wen, Y.; Xu, B.; Hu, M. Virtual geographic environments (vges): A new generation of geographic analysis tool. Earth-Sci. Rev. 2013, 126, 74–84. [Google Scholar] [CrossRef]
- Torrens, P.M. Slipstreaming human geosimulation in virtual geographic environments. Ann. GIS 2015, 21, 325–344. [Google Scholar] [CrossRef]
- Couclelis, H.; Golledge, R.; Gale, N.; Tobler, W. Exploring the anchorpoint hypothesis of spatial cognition. J. Environ. Psychol. 1987, 7, 99–122. [Google Scholar] [CrossRef]
- Evans, G.W.; Skorpanich, M.A.; Gärling, T.; Bryant, K.J.; Bresolin, B. The effects of pathway configuration, landmarks and stress on environmental cognition. J. Environ. Psychol. 1984, 4, 323–335. [Google Scholar] [CrossRef]
- Daamen, W.; Hoogendoorn, S.P. Experimental research of pedestrian walking behavior. Transp. Res. Record 2003, 1828, 20–30. [Google Scholar] [CrossRef]
- Spiers, H.J.; Maguire, E.A. The dynamic nature of cognition during wayfinding. J. Environ. Psychol. 2008, 28, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, J.F.; Lv, P.; Fan, Z.H. Least visible path analysis in raster terrain. Int. J. Geogr. Inf. Sci. 2008, 22, 645–656. [Google Scholar] [CrossRef]
- Fujimura, K. Path planning with multiple objectives. IEEE Robot. Autom. Mag. 1996, 3, 33–38. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Liu, Y.-S.; Gao, G.; Han, X.-G.; Lai, C.-Y.; Gu, M. The ifc-based path planning for 3D indoor spaces. Adv. Eng. Inf. 2013, 27, 189–205. [Google Scholar] [CrossRef]
- Pettré, J.; Laumond, J.-P.; Thalmann, D. A navigation graph for real-time crowd animation on multilayered and uneven terrain. In Proceedings of the First International Workshop on Crowd Simulation; Thalmann, D., Ed.; V-CROWDS: Lausanne, Switzerland, 2005; pp. 81–90. [Google Scholar]
- Tang, W.; Wan, T.R.; Patel, S. Real-time crowd movement on large scale terrains. In Theory and Practice of Computer Graphics; Lever, P., Ed.; IEEE Computer Society: New York, NY, USA, 2003; pp. 146–153. [Google Scholar]
- Samet, H. The quadtree and related hierarchical data structures. ACM Comput. Surv. 1984, 16, 187–260. [Google Scholar] [CrossRef]
- Wang, T.-K.; Dang, Q.; Pan, P.-Y. Path planning approach in unknown environment. Int. J. Autom. Comput. 2010, 7, 310–316. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Ahuja, N. Gross motion planning—A survey. ACM Comput. Surv. 1992, 24, 219–291. [Google Scholar] [CrossRef]
- Cousins, J.H.; Siegel, A.W.; Maxwell, S.E. Way finding and cognitive mapping in large-scale environments: A test of a developmental model. J. Exp. Child Psychol. 1983, 35, 1–20. [Google Scholar] [CrossRef]
- Cornell, E.H.; Heth, C.D.; Alberts, D.M. Place recognition and way finding by children and adults. Memory Cognit. 1994, 22, 633–643. [Google Scholar] [CrossRef]
- Baskaya, A.; Wilson, C.; Özcan, Y.Z. Wayfinding in an unfamiliar environment different spatial settings of two polyclinics. Environ. Behav. 2004, 36, 839–867. [Google Scholar] [CrossRef]
- Lawton, C.A. Strategies for indoor wayfinding: The role of orientation. J. Environ. Psychol. 1996, 16, 137–145. [Google Scholar] [CrossRef]
- Meilinger, T.; Frankenstein, J.; Bülthoff, H.H. When in doubt follow your nose—A wayfinding strategy. Front. Psychol. 2014, 5, 1363. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.J. Effects of signage and floor plan configuration on wayfinding accuracy. Environ. Behav. 1991, 23, 553–574. [Google Scholar] [CrossRef]
- Meilinger, T.; Knauff, M. Ask for directions or use a map: A field experiment on spatial orientation and wayfinding in an urban environment. J. Spat. Sci. 2008, 53, 13–23. [Google Scholar] [CrossRef]
- Golledge, R.G. Place recognition and wayfinding: Making sense of space. Geoforum 1992, 23, 199–214. [Google Scholar] [CrossRef]
- Siegel, A.W.; White, S.H. The development of spatial representations of large-scale environments. Adv. Child Dev. Behav. 1975, 10, 9–55. [Google Scholar] [PubMed]
- Stern, E.; Portugali, J. Environmental cognition and decision making in urban navigation. In Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes; Johns Hopkins University Press: Baltimore, MD, USA, 1999; pp. 99–118. [Google Scholar]
- Caduff, D.; Timpf, S. On the assessment of landmark salience for human navigation. Cognit. Process. 2008, 9, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Baumann, O.; Bellgrove, M.A.; Mattingley, J.B. From objects to landmarks: The function of visual location information in spatial navigation. Front. Psychol. 2012, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montello, D.R.; Lovelace, K.L.; Golledge, R.A.; Self, C.M. Sex-related differences and similarities in geographical and environmental spatial abilities. Ann. Assoc. Am. Geogr. 1999, 89, 515–534. [Google Scholar] [CrossRef]
- Kato, Y.; Takeuchi, Y. Individual differences in wayfinding strategies. J. Environ. Psychol. 2003, 23, 171–188. [Google Scholar] [CrossRef]
- Devlin, A.S.; Bernstein, J. Interactive wayfinding: Use of cues by men and women. J. Environ. Psychol. 1995, 15, 23–38. [Google Scholar] [CrossRef]
- Raubal, M.; Egenhofer, M.J. Comparing the complexity of wayfinding tasks in built environments. Environ. Plan. B Plan. Des. 1998, 25, 895–913. [Google Scholar] [CrossRef]
- Hochmair, H.H. Investigating the effectiveness of the least-angle strategy for wayfinding in unknown street networks. Environ. Plan. B 2005, 32, 673. [Google Scholar] [CrossRef]
- Claramunt, C.; Winter, S. Structural salience of elements of the city. Environ. Plan. B Plan. Des. 2007, 34, 1030–1050. [Google Scholar] [CrossRef]
- Dogu, U.; Erkip, F. Spatial factors affecting wayfinding and orientation: A case study in a shopping mall. Environ. Behav. 2000, 32, 731–755. [Google Scholar] [CrossRef]
- Kneidl, A.; Hartmann, D.; Borrmann, A. A hybrid multi-scale approach for simulation of pedestrian dynamics. Transp. Res. Part C Emerg. Technol. 2013, 37, 223–237. [Google Scholar] [CrossRef]
- Van den Berg, J.; Patil, S.; Sewall, J.; Manocha, D.; Lin, M. Interactive navigation of multiple agents in crowded environments. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games; Haines, E., McGuire, M., Eds.; Association for Computing Machinery: Redwood City, CA, USA, 2008; pp. 139–147. [Google Scholar]
- Yersin, B.; Maïm, J.; de Heras Ciechomski, P.; Schertenleib, S.; Thalmann, D. Steering a Virtual Crowd Based on a Semantically Augmented Navigation Graph. In Proceedings of the First International Workshop on Crowd Simulation (V-CROWDS’05), Lausanne, Switzerland, 24–25 November 2005.
- Paris, S.; Pettré, J.; Donikian, S. Pedestrian reactive navigation for crowd simulation: A predictive approach. Comput. Graph. Forum 2007, 26, 665–674. [Google Scholar] [CrossRef]
- Nieuwenhuisen, D.; Kamphuis, A.; Overmars, M.H. High quality navigation in computer games. Sci. Comput. Progr. 2007, 67, 91–104. [Google Scholar] [CrossRef]
- Raubal, M. Ontology and epistemology for agent-based wayfinding simulation. Int. J. Geogr. Inf. Sci. 2001, 15, 653–665. [Google Scholar] [CrossRef]
- Hägerstrand, T. Diorama, path and project. Tijdschrift Voor Econ. Soc. Geografie 1982, 73, 323–339. [Google Scholar] [CrossRef]
- Kwan, M.-P.; Janelle, D.; Goodchild, M.F. Accessibility in space and time: A theme in spatially integrated social science. J. Geogr. Syst. 2003, 5, 1–3. [Google Scholar] [CrossRef]
- Chen, X.; Kwan, M.-P. Choice set formation with multiple flexible activities under space-time constraints. Int. J. Geogr. Inf. Sci. 2012, 26, 941–961. [Google Scholar] [CrossRef]
- Kwan, M.-P. GIS methods in time-geographic research: Geocomputation and geovisualization of human activity patterns. Geografiska Ann. B 2004, 86, 205–218. [Google Scholar] [CrossRef]
- Torrens, P.M.; O’Sullivan, D. Cellular automata and urban simulation: Where do we go from here? Environ. Plan. B 2001, 28, 163–168. [Google Scholar] [CrossRef]
- Eberly, D.H. Game Physics; CRC Press: New York, NY, USA, 2010. [Google Scholar]
- Fischer, J.; Mikhael, J.G.; Tenenbaum, J.B.; Kanwishe, N. Functional neuroanatomy of intuitive physical inference. Proc. Natl. Acad. Sci. 2016, 113, E5072–E5081. [Google Scholar] [CrossRef] [PubMed]
- Haklay, M.; O’Sullivan, D.; Thurstain-Goodwin, M.; Schelhorn, T. “So go downtown”: Simulating pedestrian movement in town centres. Environ. Plan. B 2001, 28, 343–359. [Google Scholar] [CrossRef]
- Batty, M.J.; Desyllas, J.; Duxbury, E. Safety in numbers? Modelling crowds and designing control for the notting hill carnival. Urban Stud. 2003, 40, 1573–1590. [Google Scholar] [CrossRef]
- Batty, M.J.; Desyllas, J.; Duxbury, E. The discrete dynamics of small-scale spatial events: Agent-based models of mobility in carnivals and street parades. Int. J. Geograph. Inf. Sci. 2003, 17, 673–697. [Google Scholar] [CrossRef]
- Grajetzki, W.; Shiode, N. Digital egypt: Reconstructions from egypt on the world wide web. In Advanced Spatial Analysis: The Casa Book of GIS; Batty, M., Ed.; ESRI Press: Redlands, CA, USA, 2003; pp. 21–41. [Google Scholar]
- Shiode, N. 3D urban models: Recent developments in the digital modeling of urban environments in three-dimensions. GeoJournal 2001, 52, 263–269. [Google Scholar] [CrossRef]
- Maïm, J.; Haegler, S.; Yersin, B.; Mueller, P.; Thalmann, D.; van Gool, L. Populating ancient pompeii with crowds of virtual romans. In Proceedings of the Eighth International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST’07), Brighton, UK, 26–30 November 2007.
- Patla, A.E.; Vickers, J.N. Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport 1997, 1, 3661–3665. [Google Scholar] [CrossRef]
- Cutting, J.E.; Kozlowski, L.T. Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychon. Soc. 1977, 9, 353–356. [Google Scholar] [CrossRef]
- Heasley, K.; Buckley, J.G.; Scally, A.; Twigg, P.; Elliott, D.B. Stepping up to a new level: Effects of blurring vision in the elderly. Invest. Ophthalmol. Visual Sci. 2004, 45, 2122–2128. [Google Scholar] [CrossRef]
- Lowrey, C.R.; Watson, A.; Vallis, L.A. Age-related changes in avoidance strategies when negotiating single and multiple obstacles. Exp. Brain Res. 2007, 182, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Patla, A.E. Gaze behaviors during adaptive human locomotion: Insights into how vision is used to regulate locomotion. In Optic Flow and Beyond; Vaina, L.M., Beardsley, S.A., Rushton, S.K., Eds.; Springer: Berlin, Germany, 2004; pp. 383–399. [Google Scholar]
- Zettel, J.L.; Scovil, C.Y.; McIlroy, W.E.; Maki, B.E. Gaze behavior governing balance recovery in an unfamiliar and complex environment. Neurosci. Lett. 2007, 422, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Cutting, J.E.; Alliprandini, P.M.Z.; Wang, R.F. Seeking one’s heading through eye movements. Psychnomic Bull. Rev. 2000, 7, 490–498. [Google Scholar] [CrossRef]
- Torrens, P.M. Geosimulation approaches to traffic modeling. In Transport Geography and Spatial Systems; Stopher, P., Button, K., Haynes, K., Hensher, D., Eds.; Pergamon: London, UK, 2005; pp. 549–565. [Google Scholar]
- Toffoli, T.; Margolus, N. Cellular Automata Machines: A New Environment for Modeling; The MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Terzopoulous, D.; Tu, X.; Grzeszczuk, R. Artificial fishes: Autonomous location, perception, behavior, and learning in a simulated physical world. Artif. Life 1994, 1, 327–351. [Google Scholar] [CrossRef]
- Ondřej, J.; Pettré, J.; Olivier, A.-H.; Donikian, S. A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 2010, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.W. Steering behaviors for autonomous characters. In Proceedings of the Game Developers Conference, 1999; Game Developers Conference, Ed.; Miller Freeman Game Group: San Jose, CA, USA, 1999; pp. 763–782. [Google Scholar]
- Appel, A. Some techniques for shading machine renderings of solids. In Proceedings of the Afips Spring Joint Computer Conference; Assocation of Computing Machinery: Atlantic City, NJ, USA, 1968; Volume 32, pp. 37–45. [Google Scholar]
- Driemeyer, T. Rendering with Mental Ray; Springer Wien: New York, NY, USA, 2005. [Google Scholar]
- Rodriguez, R.; Cerezo, E.; Baldassarri, S.; Seron, F.J. New approaches to culling and lod methods for scenes with multiple virtual actors. Comput. Graph. 2010, 34, 729–741. [Google Scholar] [CrossRef]
- Shao, W.; Terzopoulos, D. Autonomous pedestrians. Graph. Models 2007, 69, 246–274. [Google Scholar] [CrossRef]
- Mohsenin, M.; Sevtsuk, A. The impact of street properties on cognitive maps. J. Archit. Urbanism 2013, 37, 301–309. [Google Scholar] [CrossRef]
- Crooks, A.; Croitoru, A.; Lu, X.; Wise, S.; Irvine, J.M.; Stefanidis, A. Walk this way: Improving pedestrian agent-based models through scene activity analysis. ISPRS Int. J. Geo-Inf. 2015, 4, 1627–1656. [Google Scholar] [CrossRef]
- Wiener, J.M.; Franz, G.; Rossmanith, N.; Reichelt, A.; Mallot, H.A.; Bulthoff, H.H. Isovist analysis captures properties of space relevant for locomotion and experience. Perception 2007, 36, 1066. [Google Scholar] [CrossRef] [PubMed]
- Benedikt, M.L. To take hold of space: Isovists and isovist fields. Environ. Plan. B 1979, 6, 47–65. [Google Scholar] [CrossRef]
- Davis, L.S.; Benedikt, M.L. Computational models of space: Isovists and isovist fields. Comput. Graph. Image Process. 1979, 11, 49–72. [Google Scholar] [CrossRef]
- Terzopoulos, D. Multilevel computational processes for visual surface reconstruction. Comput. Vis. Graph. Image Process. 1983, 24, 52–96. [Google Scholar] [CrossRef]
- Kosslyn, S.M.; Shwartz, S.P. A simulation of visual imagery. Cognit. Sci. 1977, 1, 265–295. [Google Scholar] [CrossRef]
- Meyer, J.-A.; Guillot, A. From sab90 to sab94: Four years of animat research. In From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior; Cliff, D., Husbands, P., Meyer, J.-A., Wilson, S., Eds.; The MIT Press: Cambridge, MA, USA, 1994; pp. 2–11. [Google Scholar]
- Blinn, J. Where am I? What am I looking at? (cinematography). IEEE Comput. Graph. Appl. 1988, 8, 76–81. [Google Scholar] [CrossRef]
- Terzopoulos, D.; Qureshi, F. Virtual vision. In Distributed Video Sensor Networks; Bhanu, B., Ravishankar, C.V., Roy-Chowdhury, A.K., Aghajan, H., Terzopoulos, D., Eds.; Springer: London, UK, 2011; pp. 163–177. [Google Scholar]
- Sprague, N.; Ballard, D.; Robinson, A. Modeling embodied visual behaviors. ACM Trans. Appl. Percept. 2007, 4, 11. [Google Scholar] [CrossRef]
- Rabie, T.F.; Terzopoulos, D. Active perception in virtual humans. In Vision Interface (vi 2000); Dudek, G., Cheriet, M., Eds.; Canadian Image Processing and Pattern Recognition Society/International Association for Pattern Recognition: Montreal, Canada, 2000; pp. 16–22. [Google Scholar]
- Terzopoulos, D. Perceptive agents and Systems in Virtual Reality. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Osaka, Japan, 1–3 October 2003; Nakatsu, R., Kishino, F., Eds.; Association for Computing Machinery: Osaka, Japan, 2003; pp. 1–3. [Google Scholar]
- Fujikake, H.; Higuchi, T.; Imanaka, K.; Maloney, L.T. Directional bias in the body while walking through a doorway: Its association with attentional and motor factors. Exp. Brain Res. 2011, 210, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.W. Flocks, herds, and schools: A distributed behavioral model. Comput. Graph. 1987, 21, 25–34. [Google Scholar] [CrossRef]
- Lemercier, S.; Jelic, A.; Kulpa, R.; Hua, J.; Fehrenbach, J.; Degond, P.; Appert-Rolland, C.; Donikian, S.; Pettré, J. Realistic following behaviors for crowd simulation. Comput. Graph. Forum 2012, 31, 489–498. [Google Scholar] [CrossRef]
- Zhang, Y.; Pettré, J.; Peng, Q.; Donikian, S. Data based steering of virtual human using a velocity-space approach. In Proceedings of the Second International Workshop on Motion in Games (Lecture Notes in Computer Science 5884); Egges, A., Geraerts, R., Overmars, M., Eds.; Springer-Verlag: Zeist, The Netherlands, 2009; pp. 170–181. [Google Scholar]
- Toussaint, Y.; Fagard, J. A counterclockwise bias in running. Neurosci. Lett. 2008, 442, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Hatin, B.; Sykes Tottenham, L.; Oriet, C. The relationship between collisions and pseudoneglect: Is it right? Cortex 2012, 48, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Wolovich, W.A.; Elliott, H. A computational technique for inverse kinematics. In 23rd IEEE Conference on Decision and Control; Haddad, A.H., Ed.; IEEE Control Systems Society: Las Vegas, NV, USA, 1984; Volume 23, pp. 1359–1369. [Google Scholar]
- Van de Panne, M. From footprints to animation. Comput. Graph. Forum 1997, 16, 211–223. [Google Scholar] [CrossRef]
- Badler, N.I.; Manoochehri, K.H.; Walters, G. Articulated figure positioning by multiple constraints. Comput. Graph. Appl. 1987, 7, 28–38. [Google Scholar] [CrossRef]
- Wang, L.-C.T.; Chen, C.C. A combined optimization method for solving the inverse kinematics problem of mechanical manipulators. IEEE Trans. Robot. Autom. 1991, 7, 489–499. [Google Scholar] [CrossRef]
- Zhao, J.; Badler, N.I. Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Trans. Graph. 1994, 13, 313–336. [Google Scholar] [CrossRef]
- Eberly, D.H. 3D Game Engine Architecture: A Practical Approach to Real-Time Computer Graphics, 2nd ed.; Morgan Kauffman: San Francisco, CA, USA, 2007. [Google Scholar]
- Eberly, D.H. 3D Game Engine Design; Morgan Kauffman: San Francisco, CA, USA, 2005. [Google Scholar]
- Schneider, P.J.; Eberly, D.H. Geometric Tools for Computer Graphics; Morgan Kauffman: San Francisco, CA, USA, 2003. [Google Scholar]
- Ericson, C. Real-time Collision Detection; Morgan Kauffman: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. Comput. Graph. Appl. IEEE 2001, 21, 34–47. [Google Scholar] [CrossRef]
- Helbich, M.; van Emmichoven, M.J.Z.; Dijst, M.J.; Kwan, M.-P.; Pierik, F.H.; de Vries, S.I. Natural and built environmental exposures on children’s active school travel: A dutch global positioning system-based cross-sectional study. Health Place 2016, 39, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.; Croitoru, A.; Crooks, A.T.; Stefanidis, A. Crowdsourcing a collective sense of place. PLoS ONE 2016, 11, e0152932. [Google Scholar] [CrossRef] [PubMed]
- Townsend, A.M. Life in the real-time city: Mobile telephones and urban metabolism. J. Urban Technol. 2000, 7, 85–104. [Google Scholar] [CrossRef]
- Townsend, A. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; W. W. Norton: New York, NY, USA, 2013. [Google Scholar]
- Shiode, S.; Shiode, N. Inverse distance-weighted interpolation on a street network. In New Frontiers in Urban Analysis: In Honor of Atsuyuki Okabe; Asami, Y., Sadahiro, Y., Ishikawa, T., Eds.; CRC Press: Boaca Raton, FL, USA, 2010; pp. 179–197. [Google Scholar]
- Shiode, S. Analysis of a distribution of point events using the network-based quadrat method. Geogr. Anal. 2008, 40, 380–400. [Google Scholar] [CrossRef]
- Okabe, A.; Okunuki, K.-I.; Shiode, S. The sanet toolbox: New methods for network spatial analysis. Trans. GIS 2006, 10, 535–550. [Google Scholar] [CrossRef]
- Greenfield, A. Everyware: The Dawning Age of Ubiquitous Computing; Peachpit Press: New York, NY, USA, 2006. [Google Scholar]
- The Economist. Data, Data Everywhere: A Special Report on Managing Information; The Economist Group: London, UK, 2010. [Google Scholar]
- Hudson-Smith, A.; Crooks, A.; Gibin, M.; Milton, R.; Batty, M. Neogeography and web 2.0: Concepts, tools and applications. J. Locat. Based Serv. 2009, 3, 118–145. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrens, P.M. Computational Streetscapes. Computation 2016, 4, 37. https://doi.org/10.3390/computation4030037
Torrens PM. Computational Streetscapes. Computation. 2016; 4(3):37. https://doi.org/10.3390/computation4030037
Chicago/Turabian StyleTorrens, Paul M. 2016. "Computational Streetscapes" Computation 4, no. 3: 37. https://doi.org/10.3390/computation4030037
APA StyleTorrens, P. M. (2016). Computational Streetscapes. Computation, 4(3), 37. https://doi.org/10.3390/computation4030037