#
On the Use of Benchmarks for Multiple Properties^{ †}

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

- choosing the method giving the best results for two properties, A and B;
- choosing the method giving the best results for property B, knowing that property A is well described.

## 2. When Condensed Information Is Not Sufficient

#### 2.1. Setting the Problem

- when good results are needed for both property A and property B?
- when it is guaranteed (it can be checked) that A is well described, but good results for property B are also needed?

#### 2.2. Two Properties Simultaneously Needed

**Remark 1.**

## 3. Improving the Quality of the Approximations Reduces the Risk of Unreliable Selection

## 4. Conclusions

## Author Contributions

## Conflicts of Interest

## References

- Curtiss, L.A.; Raghavachari, K.; Redfern, P.C.; Pople, J.A. Assessment of Gaussian-3 and density functional theories for a larger experimental test set. J. Chem. Phys.
**2000**, 112, 7374–7383. [Google Scholar] [CrossRef] - Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J. Chem. Phys.
**2005**, 123. [Google Scholar] [CrossRef] - Karton, A.; Daon, S.; Martin, J.M.L. W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles {W4} Data. Chem. Phys. Lett.
**2011**, 510, 165–178. [Google Scholar] [CrossRef] - Goerigk, L.; Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput.
**2010**, 7, 291–309. [Google Scholar] [CrossRef] [PubMed] - Peverati, R.; Truhlar, D.G. Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. Lond. A
**2014**, 372. [Google Scholar] [CrossRef] [PubMed] - Lejaeghere, K.; Van Speybroeck, V.; Van Oost, G.; Cottenier, S. Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci.
**2014**, 39, 1–24. [Google Scholar] [CrossRef] [Green Version] - Wellendorff, J.; Lundgaard, K.T.; Møgelhøj, A.; Petzold, V.; Landis, D.D.; Nørskov, J.K.; Bligaard, T.; Jacobsen, K.W. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Phys. Rev. B
**2012**, 85. [Google Scholar] [CrossRef] - Wellendorff, J.; Lundgaard, K.T.; Jacobsen, K.W.; Bligaard, T. mBEEF: An accurate semi-local Bayesian error estimation density functional. J. Chem. Phys.
**2014**, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mardirossian, N.; Head-Gordon, M. xB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys.
**2014**, 16, 9904–9924. [Google Scholar] - Yu, H.S.; Zhang, W.; Verma, P.; Xiao Heac, X.; Truhlar, D.G. Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals. Phys. Chem. Chem. Phys.
**2015**, 17, 12146–12160. [Google Scholar] [CrossRef] [PubMed] - Goerigk, L.; Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys.
**2011**, 13, 6670–6688. [Google Scholar] [CrossRef] [PubMed] - Hao, P.; Sun, J.; Xiao, B.; Ruzsinszky, A.; Csonka, G.I.; Tao, J.; Glindmeyer, S.; Perdew, J.P. Performance of meta-GGA functionals on general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput.
**2013**, 9, 355–363. [Google Scholar] [CrossRef] [PubMed] - Civalleri, B.; Presti, D.; Dovesi, R.; Savin, A. On choosing the best density functional approximation. In Chemical Modelling: Applications and Theory; Royal Society of Chemistry: London, UK, 2012; Volume 9, pp. 168–185. [Google Scholar]
- Savin, A.; Johnson, E.R. Judging density functional approximations: Some pitfalls of statistics. Top. Curr. Chem.
**2015**, 365, 81–95. [Google Scholar] - Perdew, J.P.; Sun, J.; Garza, A.J.; Scuseria, G. Intensive atomization energy: Re-thinking a metric for electronic-structure-theory methods. Z. Phys. Chem.
**2016**, in press. [Google Scholar] [CrossRef] - Pernot, P.; Civalleri, B.; Presti, D.; Savin, A. Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry. J. Phys. Chem. A
**2015**, 119, 5288–5304. [Google Scholar] [CrossRef] [PubMed] - Slater, J.C. A simplification of the hartree-fock method. Phys. Rev.
**1951**, 81, 385–390. [Google Scholar] [CrossRef] - Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys.
**1980**, 58, 1200–1211. [Google Scholar] [CrossRef] - Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett.
**2008**, 100. [Google Scholar] [CrossRef] [PubMed] - Henderson, T.M.; Izmaylov, A.F.; Scuseria, G.E.; Savin, A. The importance of middle-range hartree-fock-type exchange for hybrid density functionals. J. Chem. Phys.
**2007**, 127. [Google Scholar] [CrossRef] [PubMed] - Henderson, T.M.; Izmaylov, A.F.; Scuseria, G.E.; Savin, A. Assessment of a middle-range hybrid functional. J. Chem. Theory Comput.
**2008**, 4, 1254–1262. [Google Scholar] [CrossRef] [PubMed] - Brown, L.D.; Cai, T.T.; DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci.
**2001**, 16, 101–133. [Google Scholar] - Lejaeghere, K.; Vanduyfhuys, L.; Verstraelen, T.; Speybroeck, V.V.; Cottenier, S. Is the error on first-principles volume predictions absolute or relative? Comput. Mater. Sci.
**2016**, 117, 390–396. [Google Scholar] [CrossRef] - Duan, X.M.; Song, G.L.; Li, Z.H.; Wang, X.J.; Chen, G.H.; Fan, K.N. Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach. J. Chem. Phys.
**2004**, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lejaeghere, K.; Jaeken, J.; Speybroeck, V.V.; Cottenier, S. Ab initio based thermal property predictions at a low cost: An error analysis. Phys. Rev. B
**2014**, 89. [Google Scholar] [CrossRef]

**Figure 1.**Diagrammatic explanation that method X can be better than method Y for property A and property B when taken separately, but method Y is better when both A and B are needed. Blue disks: cases when the method works well for property A; orange disks: cases when the method works well for property B; (

**left**) method X; (

**right**) method Y.

**Table 1.**Probability that a given method gives “good” results for the lattice constants ${p}_{M,LC}$, for the bulk moduli ${p}_{M,BM}$, and for both of them ${p}_{M,LC\cap BM}$. The uncertainty on all reported values, estimated by the Agresti–Coull formula [22], is about $0.1$ for a data set of size 28.

Method | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{LC}}$ | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{BM}}$ | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{LC}\mathbf{\cap}\mathit{BM}}$ | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{BM}\mathbf{|}\mathit{LC}}$ |
---|---|---|---|---|

LDA | $0.54$ | $0.29$ | $0.21$ | $0.40$ |

PBEsol | $0.61$ | $0.36$ | $0.21$ | $0.35$ |

HISS | $0.79$ | $0.39$ | $0.21$ | $0.27$ |

**Table 2.**Probability that a given method gives “good” results for lattice constants ${p}_{M,LC}$, for bulk moduli ${p}_{M,BM}$, and for both of them ${p}_{M,LC\cap BM}$. The uncertainty on all reported values, estimated by the Agresti–Coull formula [22], is about $0.1$ for a data set of size 28. Results are obtained using corrected methods.

Corrected Method | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{LC}}$ | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{BM}}$ | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{LC}\mathbf{\cap}\mathit{BM}}$ | ${\mathit{p}}_{\mathit{M}\mathbf{,}\mathit{BM}\mathbf{|}\mathit{LC}}$ |
---|---|---|---|---|

LDA | $0.79$ | $0.32$ | $0.25$ | $0.32$ |

PBEsol | $1.00$ | $0.46$ | $0.46$ | $0.46$ |

HISS | $0.89$ | $0.54$ | $0.46$ | $0.52$ |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Civalleri, B.; Dovesi, R.; Pernot, P.; Presti, D.; Savin, A.
On the Use of Benchmarks for Multiple Properties. *Computation* **2016**, *4*, 20.
https://doi.org/10.3390/computation4020020

**AMA Style**

Civalleri B, Dovesi R, Pernot P, Presti D, Savin A.
On the Use of Benchmarks for Multiple Properties. *Computation*. 2016; 4(2):20.
https://doi.org/10.3390/computation4020020

**Chicago/Turabian Style**

Civalleri, Bartolomeo, Roberto Dovesi, Pascal Pernot, Davide Presti, and Andreas Savin.
2016. "On the Use of Benchmarks for Multiple Properties" *Computation* 4, no. 2: 20.
https://doi.org/10.3390/computation4020020