Exploring Soliton Solutions for Fractional Nonlinear Evolution Equations: A Focus on Regularized Long Wave and Shallow Water Wave Models with Beta Derivative
Abstract
:1. Introduction
2. Methodology
3. Mathematical Analysis
3.1. The Space-Time Fractional Regularized Wave (FRLW) Equation
3.2. The Time Fractional Weakly Nonlinear Shallow-Water Wave Equation
4. Comparison
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Akbar, M.A.; Wazwaz, A.M.; Mahmud, F.; Baleanu, D.; Roy, R.; Barman, H.K.; Mahmoud, W.; Al Sharif, M.A.; Osman, M.S. Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 2022, 43, 106079. [Google Scholar] [CrossRef]
- Devnath, S.; Akbar, M.A.; Gómez-Aguilar, J.F. Diverse optical soliton solutions of two space-time fractional nonlinear evolution equations by the extended Kudryashov method. Phys. Scr. 2023, 98, 115235. [Google Scholar] [CrossRef]
- Islam, M.T.; Akter, M.A.; Gomez-Aguilar, J.F.; Akbar, M.A.; Pérez-Careta, E. Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350037. [Google Scholar] [CrossRef]
- Su, X.; Chen, W.; Xu, W. Characterizing the rheological behaviors of non-Newtonian fluid via a viscoelastic component: Fractal dashpot. Adv. Mech. Eng. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Ryehan, S. Numerically Unveiling Hidden Chaotic Dynamics in Nonlinear Differential Equations with Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu Fractional Derivatives. arXiv 2023, arXiv:2307.03251. [Google Scholar]
- Suzuki, J.L.; Gulian, M.; Zayernouri, M.; D’Elia, M. Fractional modeling in action: A survey of nonlocal models for subsurface transport, turbulent flows, and anomalous materials. J. Peridyn. Nonlocal Model. 2023, 5, 392–459. [Google Scholar] [CrossRef]
- Torvik, P.J.; Bagley, D.L. Fractional derivatives in the description of damping materials and phenomena. In The Role of Damping in Vibration and Noise Control; ASME: New York, NY, USA, 1987; pp. 125–135. [Google Scholar]
- Caputo, M.; Fabrizio, M. Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Al-Shawba, A.A.; Abdullah, F.A.; Azmi, A.; Akbar, M.A.; Nisar, K.S. Compatible extension of the (G′/G)-expansion approach for equations with conformable derivative. Heliyon 2023, 9, e15717. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Khan, M.A. Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 2023, 206, 1–20. [Google Scholar] [CrossRef]
- El-shamy, O.; El-barkoki, R.; Ahmed, H.M.; Abbas, W.; Samir, I. Exploration of new solitons in optical medium with higher-order dispersive and nonlinear effects via improved modified extended tanh function method. Alex. Eng. J. 2023, 68, 611–618. [Google Scholar] [CrossRef]
- Yao, S.W.; Islam, M.E.; Akbar, M.A.; Inc, M.; Adel, M.; Osman, M.S. Analysis of parametric effects in the wave profile of the variant Boussinesq equation through two analytical approaches. Open Phys. 2022, 20, 778–794. [Google Scholar] [CrossRef]
- Devnath, S.; Khan, K.; Akbar, M.A. Numerous analytical wave solutions to the time-fractional unstable nonlinear Schrödinger equation with beta derivative. Partial Differ. Equ. Appl. Math. 2023, 8, 100537. [Google Scholar] [CrossRef]
- Devnath, S.; Khatun, M.M.; Akbar, M.A. Analytical solutions and soliton behaviors in the space fractional Heisenberg ferromagnetic spin chain equation. Partial Differ. Equ. Appl. Math. 2024, 11, 100783. [Google Scholar] [CrossRef]
- Ma, Y.L.; Li, B.Q.; Fu, Y.Y. A series of the solutions for the Heisenberg ferromagnetic spin chain equation. Math. Methods Appl. Sci. 2018, 41, 3316–3322. [Google Scholar] [CrossRef]
- Malik, S.; Almusawa, H.; Kumar, S.; Wazwaz, A.M.; Osman, M.S. A (2+1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions. Results Phys. 2021, 23, 104043. [Google Scholar] [CrossRef]
- Bashir, M.A.; Alhakim, L.A. New F expansion method and its applications to modified KdV equation. J. Math. Res. 2013, 5, 83. [Google Scholar] [CrossRef]
- Islam, M.S.; Khan, K.; Akbar, M.A. Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations. J. Egypt. Math. Soc. 2017, 25, 13–18. [Google Scholar] [CrossRef]
- Devnath, S.; Khan, S.; Akbar, M.A. Exploring solitary wave solutions to the simplified modified camassa-holm equation through a couple sophisticated analytical approaches. Results Phys. 2024, 59, 107580. [Google Scholar] [CrossRef]
- Ratas, M.; Salupere, A.; Majak, J. Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids. Math. Model Anal. 2021, 26, 147–169. [Google Scholar] [CrossRef]
- Benjamin, T.B.; Bona, J.L.; Mahony, J.J. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1972, 272, 47–78. [Google Scholar]
- Akbar, M.A.; Abdullah, F.A.; Khatun, M.M. Comprehensive geometric-shaped soliton solutions of the fractional regularized long wave equation in ocean engineering. Alex. Eng. J. 2023, 72, 593–604. [Google Scholar] [CrossRef]
- Abdel-Salam, E.A.; Yousif, E.A. Solution of nonlinear space-time fractional differential equations using the fractional Riccati expansion method. Math. Probl. Eng. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D. Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Physica A 2018, 492, 155–167. [Google Scholar] [CrossRef]
- Maarouf, N.; Maadan, H.; Hilal, K. Lie symmetry analysis and explicit solutions for the time-fractional regularized long-wave equation. Int. J. Differ. Equ. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Aminikhah, H.; Refahi Sheikhani, A.H.; Rezazadeh, H. Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives. Sci. Iran 2016, 23, 1048–1054. [Google Scholar] [CrossRef]
- Jhangeer, A.; Muddassar, M.; Kousar, M.; Infal, B. Multistability and dynamics of fractional regularized long wave equation with conformable fractional derivatives. Ain Shams Eng. J. 2021, 12, 2153–2169. [Google Scholar] [CrossRef]
- Islam, S.R.; Khan, K.; Akbar, M.A. Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations. SpringerPlus 2015, 4, 124. [Google Scholar] [CrossRef]
- Korkmaz, A.; Hepson, O.E.; Hosseini, K.; Rezazadeh, H.; Eslami, M. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 2020, 32, 567–574. [Google Scholar] [CrossRef]
- Jhangeer, A.; Faridi, W.A.; Asjad, M.I.; Inc, M. A comparative study about the propagation of water waves with fractional operators. J. Ocean Eng. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Abdel-Aty, A.H.; Khater, M.M.; Attia, R.A.; Eleuch, H. Exact traveling and nano-solitons wave solitons of the ionic waves propagating along microtubules in living cells. Mathematics 2020, 8, 697. [Google Scholar] [CrossRef]
- Alotaibi, M.F.; Omri, M.; Khalil, E.M.; Abdel-Khalek, S.; Bouslimi, J.; Khater, M.M. Abundant solitary and semi-analytical wave solutions of nonlinear shallow water wave regime model. J. Ocean Eng. Sci. 2022; in press. [Google Scholar]
- Khater, M.M. Abundant accurate solitonic water and ionic liquid wave structures of the nanoparticle hybrid system. Comput. Appl. Math. 2022, 41, 177. [Google Scholar] [CrossRef]
- Ashraf, F.; Javeed, T.; Ashraf, R.; Rana, R.; Akgül, A.; Rezapour, S.; Hafeez, M.B. Some new soliton solutions to the higher dimensional Burger-Huxley and Shallow water waves equation with couple of integration architectonic. Results Phys. 2022, 43, 106048. [Google Scholar] [CrossRef]
- Zahran, E.H.M. Exact traveling wave solutions for Nano-solitons of Ionic waves propagation along Microtubules in living cells and Nano-Ionic currents of MTs. World J. Nano Sci. Eng. 2015, 5, 78–87. [Google Scholar] [CrossRef]
Results Obtained by Akbar et al. [25] | Results Obtained in This Article |
---|---|
For , solution (24) can be written as: | For , , , , , solution can be written as: |
For , solution (24) can be written as: | For , , , , , solution can be written as: |
For , solution (32) can be written as: | For , , , , , solution can be written as: |
For , solution (32) can be written as: | For , , , , , solution can be written as: . |
Results Obtained by Abdel-Aty et al. [34] | Results Obtained in This Article |
---|---|
Substituting and integrating solutions (16) and (17): , , where and are constants. | For solution and can be expressed as: , , where , and are constants. |
Results obtained by Ashraf et al. [37] | Results obtained in this article |
Solution 46 can be expressed as: , where, and are constants. | For , , solution can be expressed as: , where , and are constants. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devnath, S.; Helmi, M.M.; Akbar, M.A. Exploring Soliton Solutions for Fractional Nonlinear Evolution Equations: A Focus on Regularized Long Wave and Shallow Water Wave Models with Beta Derivative. Computation 2024, 12, 187. https://doi.org/10.3390/computation12090187
Devnath S, Helmi MM, Akbar MA. Exploring Soliton Solutions for Fractional Nonlinear Evolution Equations: A Focus on Regularized Long Wave and Shallow Water Wave Models with Beta Derivative. Computation. 2024; 12(9):187. https://doi.org/10.3390/computation12090187
Chicago/Turabian StyleDevnath, Sujoy, Maha M. Helmi, and M. Ali Akbar. 2024. "Exploring Soliton Solutions for Fractional Nonlinear Evolution Equations: A Focus on Regularized Long Wave and Shallow Water Wave Models with Beta Derivative" Computation 12, no. 9: 187. https://doi.org/10.3390/computation12090187
APA StyleDevnath, S., Helmi, M. M., & Akbar, M. A. (2024). Exploring Soliton Solutions for Fractional Nonlinear Evolution Equations: A Focus on Regularized Long Wave and Shallow Water Wave Models with Beta Derivative. Computation, 12(9), 187. https://doi.org/10.3390/computation12090187