Modeling of Mean-Value-at-Risk Investment Portfolio Optimization Considering Liabilities and Risk-Free Assets
Abstract
:1. Introduction
2. Literature Review
2.1. The Explanation of Mathematical Notations
- (a)
- represents the time an investor starts investing.
- (b)
- represents the time an investor ends investing.
- (c)
- There is one number of risk-free assets in the portfolio.
- (d)
- with represents many risky assets.
- (e)
- represents the total initial investment assets.
- (f)
- represents the expected total initial investment assets at time .
- (g)
- represents the amount of capital allocated to risk-free assets. We assume that the value of is determined in advance.
- (h)
- with represents the amount of capital allocated to the -th risky asset.
- (i)
- with represents the company’s liability to the -th risky asset.
- (j)
- with and represents the covariance between the -th and -th risky assets.
- (k)
- represents the weight of capital allocation on risk-free assets. It can be formulated mathematically as . Since is assumed to be determined in advance, the value of is also known.
- (l)
- represents the weight of the capital allocation on the -th risky asset. It can be formulated mathematically as .
- (m)
- represents the return from the risk-free asset at time . We assume the value has been determined in advance.
- (n)
- represents the return from the -th risky asset at , assumed to be distributed normal random variables with a mean of and a variance of .
- (o)
- represents the total return of the investment portfolio at time .
- (p)
- represents the total return of the investment portfolio without the return of a risk-free asset at time .
- (q)
- represents the price of the risk-free asset at time .
- (r)
- represents the initial spot price of the -th risk asset. The spot price is the asset price when the buyer and seller carry out the transaction [19].
- (s)
- represents the expected spot price of the -th asset at time .
- (t)
- represents the covariance between the -th risky asset and liability.
2.2. The General Optimization Model of the Investment Portfolio
2.3. Quadratic Optimization Model of the Mean-VaR Investment Portfolio
2.4. Asset Liability Model
3. Materials and Methods
3.1. Materials
3.2. Methods
- (1)
- The descriptive analysis was carried out first on the 11 stock return data. The descriptive statistics analyzed were stock code, mean value, variance, covariance, and standard deviation. The mean of each asset was then used to form the vector of return mean . Then, the variance and covariance values formed the covariance matrix.
- (2)
- Next was to generate monthly liability return data from the company via simulation. The covariance between stock asset returns and liability returns was determined first. The covariance value was then used to form the covariance vector of asset and liability returns.
- (3)
- Next was the stage of determining the optimum asset weight in the investment portfolio based on the mean vector, covariance matrix, and covariance vector between assets and liabilities obtained. In this stage, investors’ risk aversion values were determined via simulation.
- (4)
- Based on the results of the optimization of asset weights in the investment portfolio, the formation of an efficient portfolio surface graph was carried out. This graph illustrated the feasible points for a rational investor to invest accordingly.
4. Results and Discussions
4.1. Quadratic Optimization Modeling for Mean-VaR Investment Portfolio with Risk-Free Assets and Liabilities
4.2. Numerical Illustration Results
4.2.1. Descriptive Statistics of Stock Data
4.2.2. Determination of Optimum Weight Allocation
4.3. Discussion
4.3.1. Relationship Analyses
4.3.2. Comparation with Other Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
BSSR | BYAN | CITA | HRUM | MBAP | MDKA | MEDC | PSAB | PTBA | PTRO | RUIS | |
BSSR | 0.0186 | 0.0028 | −0.0003 | 0.0068 | 0.0031 | −0.0003 | 0.0114 | −0.0055 | 0.0037 | 0.0030 | 0.0011 |
BYAN | 0.0028 | 0.0242 | 0.0056 | 0.0034 | 0.0130 | 0.0001 | 0.0018 | −0.0005 | 0.0032 | 0.0032 | −0.0017 |
CITA | −0.0003 | 0.0056 | 0.0288 | −0.0069 | 0.0000 | 0.0101 | −0.0075 | 0.0002 | 0.0016 | −0.0061 | −0.0035 |
HRUM | 0.0068 | 0.0034 | −0.0069 | 0.0283 | 0.0066 | −0.0013 | 0.0146 | 0.0053 | −0.0022 | 0.0098 | 0.0055 |
MBAP | 0.0031 | 0.0130 | 0.0000 | 0.0066 | 0.0199 | 0.0002 | 0.0046 | −0.0015 | −0.0077 | 0.0060 | 0.0022 |
MDKA | −0.0003 | 0.0001 | 0.0101 | −0.0013 | 0.0002 | 0.0141 | 0.0044 | 0.0053 | −0.0003 | 0.0032 | −0.0012 |
MEDC | 0.0114 | 0.0018 | −0.0075 | 0.0146 | 0.0046 | 0.0044 | 0.0487 | 0.0032 | 0.0251 | 0.0162 | 0.0053 |
PSAB | −0.0055 | −0.0005 | 0.0002 | 0.0053 | −0.0015 | 0.0053 | 0.0032 | 0.0270 | −0.0035 | 0.0105 | −0.0007 |
PTBA | 0.0037 | 0.0032 | 0.0016 | −0.0022 | −0.0077 | −0.0003 | 0.0251 | −0.0035 | 0.3504 | 0.0341 | −0.0004 |
PTRO | 0.0030 | 0.0032 | −0.0061 | 0.0098 | 0.0060 | 0.0032 | 0.0162 | 0.0105 | 0.0341 | 0.0239 | 0.0003 |
RUIS | 0.0011 | −0.0017 | −0.0035 | 0.0055 | 0.0022 | −0.0012 | 0.0053 | −0.0007 | −0.0004 | 0.0003 | 0.0184 |
Appendix B
5.10 | 0.0060 | 0.0006 | 0.0552 | 0.1620 | 0.0049 | 0.0028 | 0.0002 | 0.0108 | 0.0000 | 0.0369 | 0.2206 | 0.5 | 0.0103 | 0.0138 | 0.7486 |
5.15 | 0.0060 | 0.0006 | 0.0552 | 0.1621 | 0.0048 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0370 | 0.2206 | 0.5 | 0.0103 | 0.0138 | 0.7485 |
5.20 | 0.0060 | 0.0006 | 0.0551 | 0.1621 | 0.0048 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0370 | 0.2206 | 0.5 | 0.0103 | 0.0138 | 0.7484 |
5.25 | 0.0061 | 0.0006 | 0.0550 | 0.1622 | 0.0047 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0371 | 0.2206 | 0.5 | 0.0103 | 0.0138 | 0.7483 |
5.30 | 0.0061 | 0.0006 | 0.0550 | 0.1622 | 0.0047 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0371 | 0.2206 | 0.5 | 0.0103 | 0.0138 | 0.7483 |
5.35 | 0.0061 | 0.0006 | 0.0549 | 0.1623 | 0.0047 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0371 | 0.2206 | 0.5 | 0.0103 | 0.0138 | 0.7481 |
5.40 | 0.0061 | 0.0006 | 0.0548 | 0.1623 | 0.0046 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0372 | 0.2206 | 0.5 | 0.0103 | 0.0138 | 0.7481 |
5.45 | 0.0061 | 0.0006 | 0.0548 | 0.1624 | 0.0046 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0372 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7480 |
5.50 | 0.0061 | 0.0006 | 0.0547 | 0.1624 | 0.0046 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0372 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7479 |
5.55 | 0.0061 | 0.0006 | 0.0546 | 0.1625 | 0.0045 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0372 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7477 |
5.60 | 0.0061 | 0.0006 | 0.0546 | 0.1625 | 0.0045 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0373 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7477 |
5.65 | 0.0062 | 0.0006 | 0.0545 | 0.1626 | 0.0045 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0373 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7476 |
5.70 | 0.0062 | 0.0006 | 0.0545 | 0.1626 | 0.0044 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0373 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7476 |
5.75 | 0.0062 | 0.0006 | 0.0544 | 0.1627 | 0.0044 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0374 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7475 |
5.80 | 0.0062 | 0.0006 | 0.0544 | 0.1627 | 0.0044 | 0.0027 | 0.0002 | 0.0108 | 0.0000 | 0.0374 | 0.2207 | 0.5 | 0.0103 | 0.0138 | 0.7475 |
5.85 | 0.0062 | 0.0006 | 0.0543 | 0.1628 | 0.0043 | 0.0027 | 0.0002 | 0.0107 | 0.0000 | 0.0374 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7473 |
5.90 | 0.0062 | 0.0005 | 0.0543 | 0.1628 | 0.0043 | 0.0027 | 0.0002 | 0.0107 | 0.0000 | 0.0374 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7472 |
5.95 | 0.0062 | 0.0005 | 0.0542 | 0.1628 | 0.0043 | 0.0027 | 0.0002 | 0.0107 | 0.0000 | 0.0375 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7472 |
6.00 | 0.0062 | 0.0005 | 0.0542 | 0.1629 | 0.0043 | 0.0027 | 0.0002 | 0.0107 | 0.0000 | 0.0375 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7471 |
6.05 | 0.0062 | 0.0005 | 0.0541 | 0.1629 | 0.0042 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0375 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7470 |
6.10 | 0.0062 | 0.0005 | 0.0541 | 0.1630 | 0.0042 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0375 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7469 |
6.15 | 0.0063 | 0.0005 | 0.0540 | 0.1630 | 0.0042 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0376 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7469 |
6.20 | 0.0063 | 0.0005 | 0.0540 | 0.1630 | 0.0041 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0376 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7469 |
6.25 | 0.0063 | 0.0005 | 0.0539 | 0.1631 | 0.0041 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0376 | 0.2208 | 0.5 | 0.0103 | 0.0138 | 0.7467 |
6.30 | 0.0063 | 0.0005 | 0.0539 | 0.1631 | 0.0041 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0376 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7467 |
6.35 | 0.0063 | 0.0005 | 0.0538 | 0.1631 | 0.0041 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0377 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7466 |
6.40 | 0.0063 | 0.0005 | 0.0538 | 0.1632 | 0.0040 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0377 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7465 |
6.45 | 0.0063 | 0.0005 | 0.0537 | 0.1632 | 0.0040 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0377 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7465 |
6.50 | 0.0063 | 0.0005 | 0.0537 | 0.1633 | 0.0040 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0377 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7464 |
6.55 | 0.0063 | 0.0005 | 0.0537 | 0.1633 | 0.0040 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0377 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7464 |
6.60 | 0.0063 | 0.0005 | 0.0536 | 0.1633 | 0.0040 | 0.0027 | 0.0002 | 0.0107 | 0.0001 | 0.0378 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7464 |
6.65 | 0.0063 | 0.0005 | 0.0536 | 0.1634 | 0.0039 | 0.0026 | 0.0002 | 0.0107 | 0.0001 | 0.0378 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7462 |
6.70 | 0.0063 | 0.0005 | 0.0535 | 0.1634 | 0.0039 | 0.0026 | 0.0002 | 0.0107 | 0.0001 | 0.0378 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7461 |
6.75 | 0.0064 | 0.0005 | 0.0535 | 0.1634 | 0.0039 | 0.0026 | 0.0002 | 0.0107 | 0.0001 | 0.0378 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7461 |
6.80 | 0.0064 | 0.0005 | 0.0535 | 0.1635 | 0.0039 | 0.0026 | 0.0002 | 0.0107 | 0.0001 | 0.0378 | 0.2209 | 0.5 | 0.0103 | 0.0138 | 0.7461 |
6.85 | 0.0064 | 0.0005 | 0.0534 | 0.1635 | 0.0038 | 0.0026 | 0.0002 | 0.0107 | 0.0001 | 0.0379 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7459 |
6.90 | 0.0064 | 0.0005 | 0.0534 | 0.1635 | 0.0038 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0379 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7459 |
6.95 | 0.0064 | 0.0005 | 0.0534 | 0.1635 | 0.0038 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0379 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7459 |
7.00 | 0.0064 | 0.0005 | 0.0533 | 0.1636 | 0.0038 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0379 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7458 |
7.05 | 0.0064 | 0.0005 | 0.0533 | 0.1636 | 0.0038 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0379 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7458 |
7.10 | 0.0064 | 0.0005 | 0.0532 | 0.1636 | 0.0037 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0380 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7457 |
7.15 | 0.0064 | 0.0005 | 0.0532 | 0.1637 | 0.0037 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0380 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7457 |
7.20 | 0.0064 | 0.0005 | 0.0532 | 0.1637 | 0.0037 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0380 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7457 |
7.25 | 0.0064 | 0.0005 | 0.0531 | 0.1637 | 0.0037 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0380 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7456 |
7.30 | 0.0064 | 0.0005 | 0.0531 | 0.1637 | 0.0037 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0380 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7456 |
7.35 | 0.0064 | 0.0005 | 0.0531 | 0.1638 | 0.0037 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0380 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7455 |
7.40 | 0.0064 | 0.0005 | 0.0530 | 0.1638 | 0.0036 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0381 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7454 |
7.45 | 0.0064 | 0.0005 | 0.0530 | 0.1638 | 0.0036 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0381 | 0.2210 | 0.5 | 0.0103 | 0.0138 | 0.7454 |
7.50 | 0.0065 | 0.0005 | 0.0530 | 0.1638 | 0.0036 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0381 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7454 |
7.55 | 0.0065 | 0.0005 | 0.0530 | 0.1639 | 0.0036 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0381 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7453 |
7.60 | 0.0065 | 0.0005 | 0.0529 | 0.1639 | 0.0036 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0381 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7453 |
7.65 | 0.0065 | 0.0005 | 0.0529 | 0.1639 | 0.0036 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0381 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7453 |
7.70 | 0.0065 | 0.0005 | 0.0529 | 0.1639 | 0.0035 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0382 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7453 |
7.75 | 0.0065 | 0.0005 | 0.0528 | 0.1640 | 0.0035 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0382 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7451 |
7.80 | 0.0065 | 0.0005 | 0.0528 | 0.1640 | 0.0035 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0382 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7451 |
7.85 | 0.0065 | 0.0005 | 0.0528 | 0.1640 | 0.0035 | 0.0026 | 0.0002 | 0.0106 | 0.0001 | 0.0382 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7451 |
7.90 | 0.0065 | 0.0005 | 0.0528 | 0.1640 | 0.0035 | 0.0026 | 0.0001 | 0.0106 | 0.0001 | 0.0382 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7451 |
7.95 | 0.0065 | 0.0005 | 0.0527 | 0.1641 | 0.0035 | 0.0026 | 0.0001 | 0.0106 | 0.0001 | 0.0382 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7450 |
8.00 | 0.0065 | 0.0005 | 0.0527 | 0.1641 | 0.0034 | 0.0026 | 0.0001 | 0.0106 | 0.0001 | 0.0382 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7450 |
8.05 | 0.0065 | 0.0005 | 0.0527 | 0.1641 | 0.0034 | 0.0026 | 0.0001 | 0.0106 | 0.0001 | 0.0383 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7450 |
8.10 | 0.0065 | 0.0005 | 0.0526 | 0.1641 | 0.0034 | 0.0026 | 0.0001 | 0.0106 | 0.0001 | 0.0383 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7449 |
8.15 | 0.0065 | 0.0005 | 0.0526 | 0.1641 | 0.0034 | 0.0026 | 0.0001 | 0.0106 | 0.0001 | 0.0383 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7449 |
8.20 | 0.0065 | 0.0005 | 0.0526 | 0.1642 | 0.0034 | 0.0026 | 0.0001 | 0.0106 | 0.0001 | 0.0383 | 0.2211 | 0.5 | 0.0103 | 0.0138 | 0.7448 |
References
- Siregar, B.; Pangruruk, F.A. Portfolio Optimization Based on Clustering of Indonesia Stock Exchange: A Case Study of Index LQ45. Indones. J. Bus. Anal. 2021, 1, 59–70. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Liu, Y. Modeling Portfolio Optimization Problem by Probability-Credibility Equilibrium Risk Criterion. Math. Probl. Eng. 2016, 2016, 9461021. [Google Scholar] [CrossRef]
- Baumann, P.; Trautmann, N. Portfolio-Optimization Models for Small Investors. Math. Methods Oper. Res. 2013, 77, 345–356. [Google Scholar] [CrossRef]
- Sukono; Rosadi, D.; Maruddani, D.A.I.; Ibrahim, R.A.; Johansyah, M.D. Mechanisms of Stock Selection and Its Capital Weighing in the Portfolio Design Based on the MACD-K-Means-Mean-VaR Model. Mathematics 2024, 12, 174. [Google Scholar] [CrossRef]
- Hidayat, Y.; Purwandari, T.; Sukono; Prihanto, I.G.; Hidayana, R.A.; Ibrahim, R.A. Mean-Value-at-Risk Portfolio Optimization Based on Risk Tolerance Preferences and Asymmetric Volatility. Mathematics 2023, 11, 4761. [Google Scholar] [CrossRef]
- Purwandari, T.; Riaman; Hidayat, Y.; Sukono; Ibrahim, R.A.; Hidayana, R.A. Selecting and Weighting Mechanisms in Stock Portfolio Design Based on Clustering Algorithm and Price Movement Analysis. Mathematics 2023, 11, 4151. [Google Scholar] [CrossRef]
- Novais, R.G.; Wanke, P.; Antunes, J.; Tan, Y. Portfolio Optimization with a Mean-Entropy-Mutual Information Model. Entropy 2022, 24, 369. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, H. The Utility of Wealth. J. Political Econ. 1952, 60, 151–158. [Google Scholar] [CrossRef]
- Sharpe, W.F. A Simplified Model for Portfolio Analysis. Manag. Sci. 1963, 9, 277–293. [Google Scholar] [CrossRef]
- Ivanova, M.; Dospatliev, L. Application of Markowitz Portfolio Optimization on Bulgarian Stock Market from 2013 to 2016. Int. J. Pure Appl. Math. 2018, 117. [Google Scholar] [CrossRef]
- Kulali, I. Portfolio Optimization Analysis with Markowitz Quadratic Mean-Variance Model. Eur. J. Bus. Manag. 2016, 8, 73–79. [Google Scholar]
- Zavera, I.C. Application of Markowitz Model on Romanian Stock Market. HOLISTICA J. Bus. Public Adm. 2017, 8, 97–103. [Google Scholar] [CrossRef]
- Kashirina, I.L.; Azarnova, T.V.; Bondarenko, Y.V.; Shchepina, I.N. Modeling and Optimization of Assets Portfolio with Consideration of Profits Reinvestment. Glob. J. Pure Appl. Math. 2016, 12, 2023–2033. [Google Scholar]
- Steinbach, M.C. Markowitz Revisited: Mean-Variance Models in Financial Portfolio Analysis. Soc. Ind. Appl. Math. 2001, 43, 31–85. [Google Scholar] [CrossRef]
- Banihashemi, S.; Azarpour, A.M.; Navvabpour, H. Portfolio Optimization by Mean-Value at Risk Framework. Appl. Math. Inf. Sci. 2016, 10, 1935–1948. [Google Scholar] [CrossRef]
- Ghaoui, L.E.; Oks, M.; Oustry, F. Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach. Oper. Res. 2003, 51, 543–556. [Google Scholar] [CrossRef]
- Sukono; Lesmana, E.; Napitupulu, H.; Hidayat, Y.; Saputra, J.; Ghazali, P.L.B. Mean-VAR Portfolio Optimisations: An Application of Multiple Index Models with Non-Constant Volatility and Long Memory Effects. Int. J. Innov. Creat. Chang. 2019, 9, 364–381. [Google Scholar]
- Pandiangan, N.; Sukono; Hasbullah, E.S. Comparison of Quadratic Investment Portfolio on Five Stocks of Mining Companies with Risk Free Assets and without Risk Free Assets. J. Phys. Conf. Ser. 2021, 1722, 012069. [Google Scholar] [CrossRef]
- Sun, J. The Application of Markowitz Model and Index Model on Portfolio Optimization. In 2022 7th International Conference on Social Sciences and Economic Development (ICSSED 2022); Atlantis Press: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Chaweewanchon, A.; Chaysiri, R. Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning. Int. J. Financ. Stud. 2022, 10, 64. [Google Scholar] [CrossRef]
- Chen, P.; Lezmi, E.; Roncalli, T.; Xu, J. A Note on Portfolio Optimization with Quadratic Transaction Costs. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Pandiangan, N.; Sukono, S.; Hasbullah, E.S. Quadratic Investment Portfolio Based on Value-At-Risk with Risk-Free Assets: For Stocks of the Mining and Energy Sector. Int. J. Energy Econ. Policy 2021, 11, 175–184. [Google Scholar] [CrossRef]
- Stowe, D.L. Portfolio Mathematics with General Linear and Quadratic Constraints. J. Math. Financ. 2019, 09, 675–690. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, H.; Wong, W.-K. Making Markowitz’s Portfolio Optimization Theory Practically Useful. SSRN Electron. J. 2010. [Google Scholar] [CrossRef]
- Hasbullah, E.S.; Halim, N.B.A.S.; Putra, A.S.; Bon, A.T. Mean-Variance Portfolio Optimization on Islamic Stocks by Using Non Constant Mean and Volatility Models and Genetic Algorithm. Int. J. Eng. Technol. 2018, 7, 366. [Google Scholar] [CrossRef]
- Van Mieghem, J.A. Capacity Management, Investment, and Hedging: Review and Recent Developments. Manuf. Serv. Oper. Manag. 2003, 5, 269–302. [Google Scholar] [CrossRef]
- Purwani, S.; Ibrahim, R.A. Using Simple Fixed-Point Iterations to Estimate Generalized Pareto Distribution Parameters. IAENG Int. J. Appl. Math. 2024, 54, 194–204. [Google Scholar]
- Kumari, S.K.; Kumar, P.; Priya, J.; Surya, S.; Bhurjee, A.K. Mean-Value at Risk Portfolio Selection Problem Using Clustering Technique: A Case Study. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2019; p. 020178. [Google Scholar]
- Sukono; Lesmana, E.; Johansyah, M.D.; Napitupulu, H.; Hidayat, Y.; Purwandari, T. Value-at-Risk and Minimum Variance in the Investment Portfolio with Non Constant Volatility. Int. J. Recent Technol. Eng. 2019, 8, 197–202. [Google Scholar] [CrossRef]
- Zhu, H.-N.; Zhang, C.-K.; Jin, Z. Continuous-Time Mean-Variance Asset-Liability Management with Stochastic Interest Rates and Inflation Risks. J. Ind. Manag. Optim. 2020, 16, 813–834. [Google Scholar] [CrossRef]
- Zhou, Z.; Zeng, X.; Xiao, H.; Ren, T.; Liu, W. Multiperiod Portfolio Optimization for Asset-Liability Management with Quadratic Transaction Costs. J. Ind. Manag. Optim. 2018, 15, 1493–1515. [Google Scholar] [CrossRef]
- Sheng, D.-L.; Shen, P. Portfolio Optimization with Asset-Liability Ratio Regulation Constraints. Complexity 2020, 2020, 1435356. [Google Scholar] [CrossRef]
- Platanakis, E.; Sutcliffe, C. Asset–Liability Modelling and Pension Schemes: The Application of Robust Optimization to USS. Eur. J. Financ. 2017, 23, 324–352. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Z.; Zhou, X. Optimal Dynamic Mean-Variance Asset-Liability Management under the Heston Model. Adv. Differ. Equations 2018, 2018, 258. [Google Scholar] [CrossRef]
- Trabelsi, N.; Tiwari, A.K. Market-Risk Optimization among the Developed and Emerging Markets with CVaR Measure and Copula Simulation. Risks 2019, 7, 78. [Google Scholar] [CrossRef]
- Han, C.-H.; Wang, K. Stressed Portfolio Optimization with Semiparametric Method. Financ. Innov. 2022, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, A.; Cocco, F.; Zenios, S.A. Scenario Optimization Asset and Liability Modelling for Individual Investors. Ann. Oper. Res. 2007, 152, 167–191. [Google Scholar] [CrossRef]
- Daulay, S.N.R.; Halim, N.A.; Hidayana, R.A. Investment Portfolio Optimization with a Mean-Variance Model Without Risk-Free Assets. Int. J. Quant. Res. Model. 2022, 3, 113–117. [Google Scholar] [CrossRef]
- Gusliana, S.A.; Salih, Y. Mean-Variance Investment Portfolio Optimization Model Without Risk-Free Assets in Jii70 Share. Oper. Res. Int. Conf. Ser. 2022, 3, 101–106. [Google Scholar] [CrossRef]
- Sirait, E.P.; Salih, Y.; Hidayana, R.A. Investment Portfolio Optimization Model Using The Markowitz Model. Int. J. Quant. Res. Model. 2022, 3, 124–132. [Google Scholar] [CrossRef]
Stock Code | Mean | Variance | Standard Deviation |
---|---|---|---|
BSSR | 0.0199 | 0.0185 | 0.1362 |
BYAN | 0.0314 | 0.0242 | 0.1556 |
CITA | 0.0374 | 0.0288 | 0.1698 |
HRUM | 0.0214 | 0.0283 | 0.1683 |
MBAP | 0.0272 | 0.0199 | 0.1412 |
MDKA | 0.0469 | 0.0141 | 0.1187 |
MEDC | 0.0354 | 0.0487 | 0.2207 |
PSAB | 0.0135 | 0.0270 | 0.1642 |
PTBA | 0.0855 | 0.3504 | 0.5919 |
PTRO | 0.0340 | 0.0239 | 0.1546 |
RUIS | 0.0135 | 0.0184 | 0.1357 |
Variable | Value(s) |
---|---|
Risk Aversion | |
Minimum Portfolio | |
Maximum Portfolio | |
Optimum Portfolio | |
Optimum Capital Weight Allocation of Each Stocks |
Observation Period | Forecasting Date | Absolute Error of Portfolio Return Mean | ||
---|---|---|---|---|
Model I | Model II | Model III | ||
1 January 2017 to 1 December 2020 | 1 January 2021 | 0.0756 | 0.0134 | 0.0535 |
1 January 2017 to 1 January 2021 | 1 February 2021 | 0.0301 | 0.0281 | 0.0277 |
1 January 2017 to 1 February 2021 | 1 March 2021 | 0.0382 | 0.1150 | 0.0653 |
1 January 2017 to 1 March 2021 | 1 April 2021 | 0.0051 | 0.0799 | 0.0161 |
1 January 2017 to 1 April 2021 | 1 May 2021 | 0.0030 | 0.0390 | 0.0141 |
1 January 2017 to 1 May 2021 | 1 June 2021 | 0.0190 | 0.0149 | 0.0105 |
1 January 2017 to 1 June 2021 | 1 July 2021 | 0.0038 | 0.0128 | 0.0114 |
1 January 2017 to 1 July 2021 | 1 August 2021 | 0.0204 | 0.0207 | 0.0218 |
1 January 2017 to 1 August 2021 | 1 September 2021 | 0.0560 | 0.1102 | 0.0750 |
1 January 2017 to 1 September 2021 | 1 October 2021 | 0.0063 | 0.0394 | 0.0275 |
1 January 2017 to 1 October 2021 | 1 November 2021 | 0.0140 | 0.0715 | 0.0389 |
1 January 2017 to 1 November 2021 | 1 December 2021 | 0.0177 | 0.0089 | 0.0147 |
1 January 2017 to 1 December 2021 | 1 January 2022 | 0.0507 | 0.0270 | 0.0407 |
Mean Absolute Error (MAE) | 0.0261 | 0.0447 | 0.0321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukono; Ghazali, P.L.B.; Johansyah, M.D.; Riaman; Ibrahim, R.A.; Mamat, M.; Sambas, A. Modeling of Mean-Value-at-Risk Investment Portfolio Optimization Considering Liabilities and Risk-Free Assets. Computation 2024, 12, 120. https://doi.org/10.3390/computation12060120
Sukono, Ghazali PLB, Johansyah MD, Riaman, Ibrahim RA, Mamat M, Sambas A. Modeling of Mean-Value-at-Risk Investment Portfolio Optimization Considering Liabilities and Risk-Free Assets. Computation. 2024; 12(6):120. https://doi.org/10.3390/computation12060120
Chicago/Turabian StyleSukono, Puspa Liza Binti Ghazali, Muhamad Deni Johansyah, Riaman, Riza Andrian Ibrahim, Mustafa Mamat, and Aceng Sambas. 2024. "Modeling of Mean-Value-at-Risk Investment Portfolio Optimization Considering Liabilities and Risk-Free Assets" Computation 12, no. 6: 120. https://doi.org/10.3390/computation12060120
APA StyleSukono, Ghazali, P. L. B., Johansyah, M. D., Riaman, Ibrahim, R. A., Mamat, M., & Sambas, A. (2024). Modeling of Mean-Value-at-Risk Investment Portfolio Optimization Considering Liabilities and Risk-Free Assets. Computation, 12(6), 120. https://doi.org/10.3390/computation12060120