Grey Systems Model to Assess Water Quality in Mantaro River in Peru
Abstract
:1. Introduction
2. Literature Review
2.1. About the Case Study
2.2. About the Methodology
- (1)
- The details regarding the elements (parameters) are not fully provided.
- (2)
- The knowledge about the system’s structure is not complete.
- (3)
- The information concerning the system’s boundary is lacking.
- (4)
- The understanding of the system’s behaviors is not comprehensive.
3. Methodology
- Step 1: Determination of categories
- Step 2: Dimension removal
- Step 3: Determination of the triangular functions
- Step 4: Weight for each criterion
- Step 5: Determination of the clustering coefficient
- Step 6: Determination of the maximum clustering coefficient
4. Case of Study
4.1. Definition of Study Objects
4.2. Definition of Assessment Criteria
4.3. Definition of the Grey Classes
4.4. Calculations Using the CTWF Method
- Step 1: Determination of categories
- Step 2: Dimension removal
- Step 3: Determination of the triangular functions
- Step 4: Weight for each criterion
- Step 5: Determination of the clustering coefficient
- Step 6: Determination the maximum clustering coefficient
5. Results and Discussion
5.1. About the Case Study
5.2. About the Methodology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Isaeva, I.I.; Voronin, A.A.; Khoperskov, A.V.; Kharitonov, M.A. Modeling the Territorial Structure Dynamics of the Northern Part of the Volga-Akhtuba Floodplain. Computation 2022, 10, 62. [Google Scholar] [CrossRef]
- Scopus—Document Details—Using a Retention Pond to Capture Agricultural Contaminants from Surface Waters. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85168807628&origin=resultslist&sort=plf-f&src=s&sid=7f8537cfbcb3fbae7cae20025d72297b&sot=b&sdt=b&s=TITLE-ABS-KEY%28water+quality+surface%29&sl=36&sessionSearchId=7f8537cfbcb3fbae7cae20025d72297b (accessed on 10 September 2023).
- Clima de Cambios PUCP Desborde de Relave Minero En Huancavelica Contaminó 3 Ríos. Available online: https://www.pucp.edu.pe/climadecambios/noticias/desborde-de-relave-minero-en-huancavelica-contamino-3-rios/ (accessed on 5 June 2023).
- Fu, X.Q.; Zou, Z.H. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Heikkinen, A.M. Climate Change, Power, and Vulnerabilities in the Peruvian Highlands. Reg. Environ. Chang. 2021, 21, 82. [Google Scholar] [CrossRef]
- Velásquez, R.M.A.; Lara, J.V.M. Electrical Assessment by Lightning Phenomenon in Power Lines of Double Circuit. IEEE Lat. Am. Trans. 2016, 14, 2217–2225. [Google Scholar] [CrossRef]
- Scopus—Document Details—Surface Adsorption Mechanism between Lead(II,IV) and Nanomaghemite Studied on Polluted Water Samples Collected from the Peruvian Rivers Mantaro and Cumbaza. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85160453137&origin=resultslist&sort=plf-f&src=s&sid=cbb4fa490103faa502b4ce395ce724c5&sot=b&sdt=b&s=TITLE-ABS-KEY%28mantaro%29&sl=22&sessionSearchId=cbb4fa490103faa502b4ce395ce724c5 (accessed on 24 July 2023).
- Scopus—Document Details—Lead and Cadmium Bioaccumulation in Fresh Cow’s Milk in an Intermediate Area of the Central Andes of Peru and Risk to Human Health. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85132198992&origin=resultslist&sort=plf-f&src=s&sid=cbb4fa490103faa502b4ce395ce724c5&sot=b&sdt=b&s=TITLE-ABS-KEY%28mantaro+river%29&sl=22&sessionSearchId=cbb4fa490103faa502b4ce395ce724c5 (accessed on 24 July 2023).
- Scopus—Document Details—Bioadsorption by Coffee Leaves in Poluted River Mantaro Water at Central Peru. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85126368489&origin=resultslist&sort=plf-f&src=s&sid=cbb4fa490103faa502b4ce395ce724c5&sot=b&sdt=b&s=TITLE-ABS-KEY%28mantaro+river%29&sl=22&sessionSearchId=cbb4fa490103faa502b4ce395ce724c5 (accessed on 24 July 2023).
- Scopus—Document Details—Evaluation of the Quality of Drinking Water and Rivers in the Mantaro Valley, Central Peru. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85124007792&origin=resultslist&sort=plf-f&src=s&sid=cbb4fa490103faa502b4ce395ce724c5&sot=b&sdt=b&s=TITLE-ABS-KEY%28mantaro+river%29&sl=22&sessionSearchId=cbb4fa490103faa502b4ce395ce724c5 (accessed on 24 July 2023).
- Scopus—Document Details—Surface Water Quality in the Mantaro River Watershed Assessed after the Cessation of Anthropogenic Activities Due to the COVID-19 Pandemic. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85107620913&origin=resultslist&sort=plf-f&src=s&sid=cbb4fa490103faa502b4ce395ce724c5&sot=b&sdt=b&s=TITLE-ABS-KEY%28mantaro+river%29&sl=22&sessionSearchId=cbb4fa490103faa502b4ce395ce724c5 (accessed on 24 July 2023).
- Caycho Bustamante, M. Denuncia de Contaminación En La Cuenca Del Mantaro; Organismo de Evaluación y Fiscalización Ambiental—OEFA: Lima, Peru, 2012.
- Chuquimantari, O.S. La Urbanización En El Valle Del Mantaro y Su Influencia En La Actividad Agrícola. Ciudad Arquit. 2013, 6, 83–90. [Google Scholar]
- Zhou, L.; Xu, S. Application of Grey Clustering Method. J. Am. Sci. 2006, 2, 53–58. [Google Scholar]
- Delgado, A.; Aguirre, A.; Palomino, E.; Salazar, G. Applying Triangular Whitenization Weight Functions to Assess Water Quality of Main Affluents of Rimac River. In Proceedings of the 2017 Electronic Congress (E-CON UNI), Lima, Peru, 22–24 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Delgado, A.; Romero, I. Environmental Conflict Analysis on a Hydrocarbon Exploration Project Using the Shannon Entropy. In Proceedings of the 2017 Electronic Congress, E-CON UNI 2017, Lima, Peru, 28 June 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Wang, J.; Wang, J.; Wang, B. Improved Fault Diagnosis Method for Power Systems Based on Grey System Theory. In Proceedings of the 2017 International Conference on Dependable Systems and Their Applications (DSA), Beijing, China, 31 October–2 November 2017; p. 171. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Y. Grey Information: Theory and Practical Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Liu, S.; Lin, Y. Grey Systems Theory and Applications; Understanding Complex Systems; Springer: Berlin/Heidelberg, Germany, 2011; Volume 68, ISBN 978-3-642-16157-5. [Google Scholar]
- Prati, L.; Pavanello, R.; Pesarin, F. Assessment of Surface Water Quality by Single Index Pollution. Water Res. 1971, 5, 741–751. [Google Scholar] [CrossRef]
- Scopus—Document Details—Grey-Incidence Clustering Decision-Making Method with Three-Parameter Interval Grey Number Based on Regret Theory. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85040098852&origin=resultslist&sort=r-f&src=s&sid=7f8537cfbcb3fbae7cae20025d72297b&sot=b&sdt=b&s=TITLE-ABS-KEY%28grey+clustering%29&sl=36&sessionSearchId=7f8537cfbcb3fbae7cae20025d72297b (accessed on 10 September 2023).
- Calixto, C.C. Coordinadora Regional Pasco Mesa de Concertación Para la Lucha Contra la Pobreza; GRP: Pasco, Peru, 2019. [Google Scholar]
- Pinto Herrera, H. Ecological and Environmental Disaster in Huancavelica; Universidad Nacional Mayor de San Marcos: Lima, Peru, 2010; pp. 321–338. [Google Scholar]
- Xu, P.; Zhang, Y.; Wu, S.; Feng, Y. The Forecast of the Surface Water Environment of Caohe River. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Y.; Wang, W.; Li, B. Grey-Incidence Clustering Decision-Making Method with Three-Parameter Interval Grey Number Based on Regret Theory. In Proceedings of the 2017 International Conference on Grey Systems and Intelligent Services (GSIS), Stockholm, Sweden, 8–11 August 2017; pp. 211–218. [Google Scholar] [CrossRef]
- Tian, S.; Wang, Z.; Shang, H. Study on the Self-Purification of Juma River. Procedia Environ. Sci. 2011, 11, 1328–1333. [Google Scholar] [CrossRef]
- Delgado, A.; Condori, R.; Hernández, M.; Huamani, E.L.; Andrade-Arenas, L. Artificial Intelligence Model Based on Grey Clustering to Access Quality of Industrial Hygiene: A Case Study in Peru. Computation 2023, 11, 51. [Google Scholar] [CrossRef]
- Scopus—Document Details—Gray Relational Clustering Model for Intelligent Guided Monitoring Horizontal Wells. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85051422009&origin=resultslist&sort=r-f&src=s&sid=7f8537cfbcb3fbae7cae20025d72297b&sot=b&sdt=b&s=TITLE-ABS-KEY%28grey+clustering%29&sl=36&sessionSearchId=7f8537cfbcb3fbae7cae20025d72297b (accessed on 10 September 2023).
- Scopus—Document Details—A Study on the Quality Evaluation Index System of Smart Home Care for Older Adults in the Community—Based on Delphi and AHP. Available online: https://www-scopus-com.ezproxybib.pucp.edu.pe/record/display.uri?eid=2-s2.0-85149409641&origin=resultslist&sort=plf-f&src=s&sid=e83d2817ddded2e67cdb1f95dd5eb5dc&sot=b&sdt=b&s=TITLE-ABS-KEY%28AHP+delphi%29&sl=25&sessionSearchId=e83d2817ddded2e67cdb1f95dd5eb5dc (accessed on 10 September 2023).
- Yang, W.; Li, Y.; Wang, H.; Jiang, M.; Cao, M.; Liu, C. Multi-Objective Optimization of High-Power Microwave Sources Based on Multi-Criteria Decision-Making and Multi-Objective Micro-Genetic Algorithm. IEEE Trans. Electron Devices 2023, 70, 3892–3898. [Google Scholar] [CrossRef]
- Sun, X.; Ren, Q.; Hsu, W.L. Framework for Evaluation Index System of Carrying Water Resource. In Proceedings of the 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 23–25 October 2020; pp. 349–352. [Google Scholar] [CrossRef]
- Sun, Y.; Hoi, L.M.; Kei Im, S. Constructing the Evaluation Index System of Chinese-Portuguese Machine Translation Using the Delphi and Analytic Hierarchy Process Methods. In Proceedings of the 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 29–31 January 2023; pp. 190–195. [Google Scholar] [CrossRef]
- She, R.; Fu, D. Research on Evaluation Strategy of Heterogeneous Computing Chip Based on Improved Common Origin Grey Clustering. In Proceedings of the 2023 4th International Conference on Computer Engineering and Application (ICCEA), Hangzhou, China, 7–9 April 2023; pp. 65–69. [Google Scholar] [CrossRef]
- Alex Tume-Bruce, B.A.; Delgado, A.; Huamaní, E.L. Implementation of a Web System for the Improvement in Sales and in the Application of Digital Marketing in the Company Selcom. Int. J. Recent Innov. Trends Comput. Commun. 2022, 10, 48–59. [Google Scholar] [CrossRef]
- Zhao, J. A Method of Power Supply Health State Estimation Based on Grey Clustering and Fuzzy Comprehensive Evaluation. IEEE Access 2023, 11, 12226–12236. [Google Scholar] [CrossRef]
Point | Name | Description | Coordinates UTM-WGS84 | |
---|---|---|---|---|
East | North | |||
1 | P1 | Ichu River, upstream of the Punco Punco water catchment. | 492797 | 8582601 |
2 | P2 | Ichu River, upstream from the city of Huancavelica, before the Municipal slaughterhouse. | 495411 | 8585670 |
3 | P3 | Ichu River, downstream from the city of Huancavelica, 100 m before Santa Rosa bridge. | 505969 | 8586595 |
4 | P4 | Disparate River, downstream of the confluence with the wastewater from El Brocal Hydroelectric Plant. | 501949 | 8585856 |
5 | P5 | Mantaro River, downstream of the wastewater treatment ponds in the Anco district | 544540 | 8597918 |
Point | Name | Description | Coordinates UTM-WGS84 | |
---|---|---|---|---|
East | North | |||
6 | P6 | Escalera River, upstream of mining company. | 492797 | 8582601 |
7 | P7 | Escalera River, downstream of mining company. | 495411 | 8585670 |
8 | P8 | Pallcapampa River, upstream of Corralpampa town (mining company). | 505969 | 8586595 |
9 | P9 | Pallcapampa River, downstream of Corralpampa town (mining company). | 501949 | 8585856 |
Criterion | Description | Units | Notation |
---|---|---|---|
pH | Hydrogen potential | pH unit | C1 |
DO | Dissolved oxygen | mg/L | C2 |
BOD | Biochemical oxygen demand | mg/L | C3 |
Cd | Cadmium | mg/L | C4 |
As | Arsenic | mg/L | C5 |
Pb | Lead | mg/L | C6 |
Grey Classes | |
---|---|
λ1 | Uncontaminated |
λ2 | Acceptable |
λ3 | Moderately contaminated |
λ4 | Contaminated |
λ5 | Highly contaminated |
Criteria | λ1 | λ2 | λ3 | λ4 | λ5 |
---|---|---|---|---|---|
C1 | 7.2 | 7.25 | 8 | 8.5 | 9 |
C2 | 8 | 7 | 6 | 5 | 4 |
C3 | 1 | 2 | 4.5 | 9 | 13.5 |
C4 | 0.01 | 0.05 | 0.09 | 0.13 | 0.17 |
C5 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
C6 | 0.01 | 0.05 | 0.05 | 0.09 | 0.13 |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | |
---|---|---|---|---|---|---|---|---|---|
C1 | 8.50000 | 8.40000 | 8.10000 | 9.00000 | 8.90000 | 7.00000 | 7.90000 | 8.50000 | 7.60000 |
C2 | 4.33000 | 4.30000 | 3.80000 | 3.80000 | 5.40000 | 3.50000 | 3.20000 | 3.80000 | 3.30000 |
C3 | 2.00000 | 2.00000 | 3.00000 | 2.00000 | 2.00000 | 30.00000 | 6.00000 | 2.00000 | 2.00000 |
C4 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.04593 | 0.01941 | 0.01941 | 0.00136 |
C5 | 0.00189 | 0.00299 | 0.03706 | 0.01354 | 0.01061 | 0.15093 | 0.04318 | 0.00131 | 0.15038 |
C6 | 0.00020 | 0.00020 | 0.00390 | 0.00320 | 0.00130 | 0.47940 | 0.03640 | 0.00020 | 0.00460 |
λ1 | λ2 | λ3 | λ4 | λ5 | |
---|---|---|---|---|---|
C1 | 0.9011 | 0.9074 | 1.0013 | 1.0638 | 1.1264 |
C2 | 1.3333 | 1.1667 | 1.0000 | 0.8333 | 0.6667 |
C3 | 0.1667 | 0.3333 | 0.7500 | 1.5000 | 2.2500 |
C4 | 0.1111 | 0.5556 | 1.0000 | 1.4444 | 1.8889 |
C5 | 0.3333 | 0.6667 | 1.0000 | 1.3333 | 1.6667 |
C6 | 0.1515 | 0.7576 | 0.7576 | 1.3636 | 1.9697 |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | |
---|---|---|---|---|---|---|---|---|---|
C1 | 1.0638 | 1.0513 | 1.0138 | 1.1264 | 1.1139 | 0.8761 | 0.9887 | 1.0638 | 0.9512 |
C2 | 0.7217 | 0.7167 | 0.6333 | 0.6333 | 0.9000 | 0.5833 | 0.5333 | 0.6333 | 0.5500 |
C3 | 0.3333 | 0.3333 | 0.5000 | 0.3333 | 0.3333 | 5.0000 | 1.0000 | 0.3333 | 0.3333 |
C4 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.5103 | 0.2157 | 0.2157 | 0.0151 |
C5 | 0.0063 | 0.0100 | 0.1235 | 0.4513 | 0.0354 | 0.5031 | 0.1439 | 0.0044 | 0.5013 |
C6 | 0.0030 | 0.0030 | 0.0591 | 0.0485 | 0.0197 | 7.2636 | 0.5515 | 0.0030 | 0.0697 |
P1 | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
f1j(x) | 0.00000 | 0.67000 | 0.16667 | 1.00000 | 1.00000 | 1.00000 |
f2j(x) | 0.00000 | 0.33000 | 0.83333 | 0.00000 | 0.00000 | 0.00000 |
f3j(x) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
f4j(x) | 0.50000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
f5j(x) | 0.50000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
λ1 | λ2 | λ3 | λ4 | λ5 | |
---|---|---|---|---|---|
C1 | 0.0371 | 0.1124 | 0.1552 | 0.2084 | 0.2341 |
C2 | 0.0514 | 0.1255 | 0.1494 | 0.1834 | 0.2029 |
C3 | 0.2741 | 0.2789 | 0.1992 | 0.1427 | 0.1202 |
C4 | 0.3084 | 0.1883 | 0.1494 | 0.1481 | 0.1432 |
C5 | 0.1028 | 0.1569 | 0.1494 | 0.1605 | 0.1623 |
C6 | 0.2262 | 0.1381 | 0.1973 | 0.1569 | 0.1373 |
P1 | C1 | C2 | C3 | C4 | C5 | C6 | Result |
---|---|---|---|---|---|---|---|
f1j(x) | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.7030 |
f2j(x) | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.3132 |
f3j(x) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0000 |
f4j(x) | 1.000 | 0.330 | 0.000 | 0.000 | 0.000 | 0.000 | 0.2681 |
f5j(x) | 0.000 | 0.670 | 0.000 | 0.000 | 0.000 | 0.000 | 0.2249 |
POINT | λ1 | λ2 | λ3 | λ4 | λ5 | Level |
---|---|---|---|---|---|---|
P1 | 0.7030 | 0.3132 | 0.0000 | 0.2681 | 0.2249 | Uncontaminated |
P2 | 0.5328 | 0.2226 | 0.0000 | 0.1091 | 0.0823 | Uncontaminated |
P3 | 0.5104 | 0.1532 | 0.0576 | 0.1637 | 0.0206 | Uncontaminated |
P4 | 0.5442 | 0.1915 | 0.0000 | 0.0000 | 0.2057 | Uncontaminated |
P5 | 0.5062 | 0.2536 | 0.0519 | 0.0182 | 0.1852 | Uncontaminated |
P6 | 0.1262 | 0.2052 | 0.0000 | 0.0000 | 0.2263 | Highly Contaminated |
P7 | 0.3460 | 0.0365 | 0.1422 | 0.1870 | 0.1207 | Uncontaminated |
P8 | 0.4905 | 0.2281 | 0.0000 | 0.0910 | 0.1029 | Uncontaminated |
P9 | 0.5059 | 0.2567 | 0.1077 | 0.0364 | 0.0000 | Uncontaminated |
Influenced by | Monitoring Points | Max Clustering Coefficient | Level |
---|---|---|---|
Domestic wastewater | P4 | 0.5442 | Uncontaminated |
P2 | 0.5328 | Uncontaminated | |
P1 | 0.5317 | Uncontaminated | |
P3 | 0.5104 | Uncontaminated | |
P5 | 0.5062 | Uncontaminated | |
Mining activities | P9 | 0.5059 | Uncontaminated |
P8 | 0.4905 | Uncontaminated | |
P7 | 0.3460 | Uncontaminated | |
P6 | 0.2263 | Highly contaminated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, A.; Culqui, J.; Lazo, M.; Guerrero, V.; Delgado, I. Grey Systems Model to Assess Water Quality in Mantaro River in Peru. Computation 2023, 11, 223. https://doi.org/10.3390/computation11110223
Delgado A, Culqui J, Lazo M, Guerrero V, Delgado I. Grey Systems Model to Assess Water Quality in Mantaro River in Peru. Computation. 2023; 11(11):223. https://doi.org/10.3390/computation11110223
Chicago/Turabian StyleDelgado, Alexi, Joshis Culqui, Marisabel Lazo, Valeria Guerrero, and Isabel Delgado. 2023. "Grey Systems Model to Assess Water Quality in Mantaro River in Peru" Computation 11, no. 11: 223. https://doi.org/10.3390/computation11110223
APA StyleDelgado, A., Culqui, J., Lazo, M., Guerrero, V., & Delgado, I. (2023). Grey Systems Model to Assess Water Quality in Mantaro River in Peru. Computation, 11(11), 223. https://doi.org/10.3390/computation11110223