A Novel Artificial Multiple Intelligence System (AMIS) for Agricultural Product Transborder Logistics Network Design in the Greater Mekong Subregion (GMS)
Abstract
:1. Introduction
- (1)
- We design a logistic network for the trade of agricultural products across GMS countries;
- (2)
- Small and medium (SMEs) farming operations are the research’s target group to promote the design of a logistical export network;
- (3)
- The design of a logistics network for SME’s trade of agricultural products is illustrated using mixed-integer programming;
- (4)
- The novel heuristics is presented for the first time in this study and is compared to well-known heuristics proposed in the literature;
- (5)
- A multi-objective artificial multiple intelligence system is used in conjunction with TOPSIS to optimize the total profit of the system while minimizing the number of containers used to extend the container’s lifetime.
2. Literature Review
3. Problem Definition and Mathematical Model
3.1. Problem Definition
3.2. Mathematical Model Formulation
- Indices
Container loading center i (i = 1, 2, 3, …, I) | |
Farmers j (j = 1, 2, 3, …, J) | |
Container number g (g = 1, 2, 3, …, G) | |
Border k (k = 1, 2, 3, …, K) | |
End market l (l = 1, 2, 3, …, L) | |
Vegetable type v (v = 1, 2, 3, …, V) |
- Parameters
Number of Container Loading Centers (CLC) | |
Number of farmers | |
Total number of containers | |
Number of border checkpoints | |
Number of end markets | |
Distance from farmer j to CLC i (km) | |
Transportation fuel cost from border k to end market l (THB/km) | |
Transportation fuel cost from CLC i to border k (THB/km) | |
Transportation fuel cost from farmer j to CLC i (THB/km) | |
The demand of vegetable v at end market l (ton) | |
Available vegetable v at farmer j | |
Great number, which is set to 50,000 | |
Loading cost of vegetable v to container g (THB/ton) | |
Operating time of trailer head changing of container g at border k | |
Capacity of container g (m2) | |
Distance from CLC i to border k (km) | |
Total number of vegetable types | |
Sale price of vegetable v at end market l (THB) | |
Distance from border k to end market l (km) | |
Operating time of border k per one container | |
Traveling time per kilometer (min per km) | |
Operating cost of changing the trailer head at border k (THB) | |
Space required to pack 1 ton of vegetable v (m2/ton) | |
Time that container g starts to load the vegetables at CLC i (min, starting at 6:00 a.m.) | |
Time that container g must arrive at end market l (number of min, counting from 6:00 a.m. that day) |
- Decision Variables
Number of vegetable v delivered to container g located at CLC i and delivered from farmer j | |
Number of vegetable v packed in container g | |
Arrival time of container g at market l (min, starting at 6:00 a.m.) |
4. The Proposed Methods: Artificial Multiple Intelligence System (AMIS)
4.1. Generate the Initial Set of Work Packages
4.2. Perform the WP Execution Process
4.3. Decode the Initial Work Package (WP)
- (1)
- Sort the position according to the value in position j of WP i () in an increasing order. The results of the sorting are shown in Table 6.
- (2)
- Start the assigning process of all involved actors in the chain. The assigning process is as follows.
- (2.1)
- Fulfill the demand of goods from EM according to the sorting results. The first EM is the list of all needs.
- (2.2)
- The selection of the transportation network (border, CLC and farmers) uses the list as the rule (the first on the list is assigned first).
- (2.3)
- The amount of shipping based on the rule:
- (1)
- Try to use all space in the containers;
- (2)
- Farmers can split their product.
- (2.4)
- The assigning process stops when
- (1)
- There is no product available from the farmers;
- (2)
- All demand is fulfilled;
- (3)
- There are no containers available.
4.4. Update the Heuristic Information
4.5. Repeat the Work Package Execution Process until the Termination Condition Is Met
Algorithm 1. Artificial multiple intelligence system (AMIS) |
Input: Population size (NP), Problem size (D), Mutation rate (F), Recombination rate (R), Number of intelligence boxes (NIB) output: Best_Vector_Solution begin Population = Initialize set of WPs IBPop = Initialize InformationIB(NIB) encode Population to WP while the stopping criterion is not met do for i = 1: NP Vrand1, Vrand2, Vrand3 = Select_Random_Vector (WP) for j = 1:D//Loop for the mutation operator Vy [j]= Vrand1 [j] + F (Vrand2 [j]+ Vrand3 [j]) end for loop//end mutation operator for j = 1:D//Loop for recombination operation if (randj [0,1) < R) then u [j]= Vi [j] else u [j]= Vy [j] end for loop//end recombination operation //selected Intelligence box by RouletteWheelSelection selected_IB = RouletteWheelSelection(IBPop) if (selected_IB = 1) then new_u = AIM (u) else if (selected_IB = 2) new_u = PIM (u) else if (selected_IB = 3) new_u = DIM (u) else if (selected_IB = 4) new_u = BIM (u) elseif (selected_IB = 5) new_u = RT (u) else if (selected_IB = 6) new_u = IT (u) else if (selected_IB = 7) new_u = RT − AIM (u) else if (selected_IB = 8) new_u = SF (u) else if (selected_IB = 9) new_u = RESTART (u) if (CostFunction(new_u) ≤ CostFunction(Vi)) then Vi = new_u //Loop to update the heuristics information of the intelligence box for j = 1: NIB decode WP to obtain the solution for the problem Collect Pareto Front//Calculate TOPSIS end For Loop//End the update to the heuristics information end for Loop end return Best_Vector_Solution end |
4.6. The Methods Compared
5. Computational Results and Framework
5.1. The AMIS’s Effectiveness
5.2. The AMIS’s Behavior in Resolving the Proposed Problem
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, B.K.; Epper, C.A.; Tschopp, D.J.; Long, C.T.M.; Tungani, V.; Burra, D.; Hok, L.; Phengsavanh, P.; Douxchamps, S. Crop-Livestock Integration Provides Opportunities to Mitigate Environmental Trade-Offs in Transitioning Smallholder Agricultural Systems of the Greater Mekong Subregion. Agric. Syst. 2022, 195, 103285. [Google Scholar] [CrossRef]
- Ritzema, R.S.; Douxchamps, S.; Fraval, S.; Bolliger, A.; Hok, L.; Phengsavanh, P.; Long, C.T.M.; Hammond, J.; van Wijk, M.T. Household-Level Drivers of Dietary Diversity in Transitioning Agricultural Systems: Evidence from the Greater Mekong Subregion. Agric. Syst. 2019, 176, 102657. [Google Scholar] [CrossRef]
- Burra, D.D.; Parker, L.; Than, N.T.; Phengsavanh, P.; Long, C.T.M.; Ritzema, R.S.; Sagemueller, F.; Douxchamps, S. Drivers of Land Use Complexity along an Agricultural Transition Gradient in Southeast Asia. Ecol. Indic. 2021, 124, 107402. [Google Scholar] [CrossRef]
- Yang, M.; Sharma, D.; Shi, X.; Mamaril, K.; Jiang, H.; Candlin, A. Power Connectivity in the Greater Mekong Subregion (GMS)—The Need for a Wider Discourse. Energy Policy 2022, 165, 112994. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Zhong, B.; Yang, A.; Jue, K.; Wu, J.; Zhang, L.; Xu, W.; Wu, S.; Zhang, N.; et al. Ecological Environment Assessment for Greater Mekong Subregion Based on Pressure-State-Response Framework by Remote Sensing. Ecol. Indic. 2020, 117, 106521. [Google Scholar] [CrossRef]
- Shibasaki, R.; Shimada, T.; Suzuki, M. Greater Mekong Subregion: Is the Mekong River Shipping Competitive with Other Modes? In Global Logistics Network Modelling and Policy; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- GMS Environment Operations Center Greater Mekong Subregion—Environment Operations Center. Available online: http://www.gms-eoc.org/ (accessed on 3 July 2022).
- Morini, C.; Polis, M.C.B.; da Silva, D.; Junior, E.I. Export Barriers for SMEs from Emerging Market: A Model of Analysis for Non-Tech Companies. BAR—Braz. Adm. Rev. 2021, 18, 1–31. [Google Scholar] [CrossRef]
- Junpen, A.; Roemmontri, J.; Boonman, A.; Cheewaphongphan, P.; Thao, P.T.B.; Garivait, S. Spatial and Temporal Distribution of Biomass Open Burning Emissions in the Greater Mekong Subregion. Climate 2020, 8, 90. [Google Scholar] [CrossRef]
- Banomyong, R. The Greater Mekong Sub-Region of Southeast Asia: Improving Logistics Connectivity. In International Series in Operations Research and Management Science; Springer: New York, NY, USA, 2013; Volume 181, pp. 69–96. [Google Scholar]
- Banomyong, R.; Sopadang, A.; Ramingwong, S. Logistics Benchmark Study of the East West Economic Corridor. Bus. Manag. Q. 2010, 1, 1–13. [Google Scholar]
- Ramachandran, P.; Linde, L. Integrating Spatial Support Tools into Strategic Planning-SEA of the GMS North-South Economic Corridor Strategy and Action Plan. Environ. Impact Assess. Rev. 2011, 31, 2. [Google Scholar] [CrossRef]
- Andersson, M.; Banomyong, R. The Implications of Deregulation & Liberalization on the Logistics Service Industry in Lao PDR. Int. J. Prod. Econ. 2010, 128, 68–76. [Google Scholar]
- Munir, R.; Khayyam, U. Ecological Corridors? The Case of China-Pakistan Economic Corridor. Geoforum 2020, 117, 281–284. [Google Scholar] [CrossRef]
- Ozturk, O.; Patrick, J. An Optimization Model for Freight Transport Using Urban Rail Transit. Eur. J. Oper. Res. 2018, 267, 1110–1121. [Google Scholar] [CrossRef]
- Teye, C.; Bell, M.G.H.; Bliemer, M.C.J. Urban Intermodal Terminals: The Entropy Maximising Facility Location Problem. Transp. Res. Part B Methodol. 2017, 100, 64–81. [Google Scholar] [CrossRef]
- Rezaei, J.; Hemmes, A.; Tavasszy, L. Multi-Criteria Decision-Making for Complex Bundling Configurations in Surface Transportation of Air Freight. J. Air Transp. Manag. 2017, 61, 95–105. [Google Scholar] [CrossRef]
- Irawan, C.A.; Jones, D. Formulation and Solution of a Two-Stage Capacitated Facility Location Problem with Multilevel Capacities. Ann. Oper. Res. 2019, 272, 41–67. [Google Scholar] [CrossRef]
- Woudsma, C.; Jakubicek, P. Logistics Land Use Patterns in Metropolitan Canada. J. Transp. Geogr. 2020, 88, 102381. [Google Scholar] [CrossRef]
- Hsu, C.I.; Hung, S.F.; Li, H.C. Vehicle Routing Problem with Time-Windows for Perishable Food Delivery. J. Food Eng. 2007, 80, 465–475. [Google Scholar] [CrossRef]
- Osvald, A.; Stirn, L.Z. A Vehicle Routing Algorithm for the Distribution of Fresh Vegetables and Similar Perishable Food. J. Food Eng. 2008, 85, 285–295. [Google Scholar] [CrossRef]
- Tarantilis, C.D.; Kiranoudis, C.T. Distribution of Fresh Meat. J. Food Eng. 2002, 51, 85–91. [Google Scholar] [CrossRef]
- Tarantilis, C.D.; Kiranoudis, C.T. A Meta-Heuristic Algorithm for the Efficient Distribution of Perishable Foods. J. Food Eng. 2001, 50, 1–9. [Google Scholar] [CrossRef]
- Sethanan, K.; Pitakaso, R. Differential Evolution Algorithms for Scheduling Raw Milk Transportation. Comput. Electron. Agric. 2016, 121, 245–259. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S. Dynamic Rerouting of a Fleet of Vehicles in Agricultural Operations through a Dynamic Multiple Depot Vehicle Routing Problem Representation. Biosyst. Eng. 2018, 171, 63–77. [Google Scholar] [CrossRef]
- Shahabi-Shahmiri, R.; Asian, S.; Tavakkoli-Moghaddam, R.; Mousavi, S.M.; Rajabzadeh, M. A Routing and Scheduling Problem for Cross-Docking Networks with Perishable Products, Heterogeneous Vehicles and Split Delivery. Comput. Ind. Eng. 2021, 157, 107299. [Google Scholar] [CrossRef]
- Akpinar, M.E. A Logistic Optimization for the Vehicle Routing Problem through a Case Study in the Food Industry. Logforum 2021, 17, 387–397. [Google Scholar] [CrossRef]
- Soczówka, P.; Zochowska, R.; Karoń, G. Method of the Analysis of the Connectivity of Road and Street Network in Terms of Division of the City Area. Computation 2020, 8, 54. [Google Scholar] [CrossRef]
- Doerner, K.F.; Gronalt, M.; Hartl, R.F.; Kiechle, G.; Reimann, M. Exact and Heuristic Algorithms for the Vehicle Routing Problem with Multiple Interdependent Time Windows. Comput. Oper. Res. 2008, 35, 3034–3048. [Google Scholar] [CrossRef]
- Ma, Z.J.; Wu, Y.; Dai, Y. A Combined Order Selection and Time-Dependent Vehicle Routing Problem with Time Widows for Perishable Product Delivery. Comput. Ind. Eng. 2017, 114, 101–113. [Google Scholar] [CrossRef]
- Zulvia, F.E.; Kuo, R.J.; Nugroho, D.Y. A Many-Objective Gradient Evolution Algorithm for Solving a Green Vehicle Routing Problem with Time Windows and Time Dependency for Perishable Products. J. Clean. Prod. 2020, 242, 118428. [Google Scholar] [CrossRef]
- Chueanun, S.; Suwandechochai, R. Effect of Additional Order in Two-Stage Supply Chain Contract under the Demand Uncertainty. Computation 2021, 9, 37. [Google Scholar] [CrossRef]
- Derigs, U.; Gottlieb, J.; Kalkoff, J.; Piesche, M.; Rothlauf, F.; Vogel, U. Vehicle Routing with Compartments: Applications, Modelling and Heuristics. OR Spectr. 2011, 33, 885–914. [Google Scholar] [CrossRef]
- Mendoza, J.E.; Castanier, B.; Guéret, C.; Medaglia, A.L.; Velasco, N. Constructive Heuristics for the Multicompartment Vehicle Routing Problem with Stochastic Demands. Transp. Sci. 2011, 45, 346–363. [Google Scholar] [CrossRef]
- Reis, S.A.; Leal, J.E. A Deterministic Mathematical Model to Support Temporal and Spatial Decisions of the Soybean Supply Chain. J. Transp. Geogr. 2015, 43, 48–58. [Google Scholar] [CrossRef]
- Pedersen, M.B.; Crainic, T.G.; Madsen, O.B.G. Models and Tabu Search Metaheuristics for Service Network Design with Asset-Balance Requirements. Transp. Sci. 2009, 43, 158–177. [Google Scholar] [CrossRef]
- Andersen, J.; Christiansen, M.; Crainic, T.G.; Grønhaug, R. Branch and Price for Service Network Design with Asset Management Constraints. Transp. Sci. 2011, 45, 33–49. [Google Scholar] [CrossRef]
- Andersen, J.; Crainic, T.G.; Christiansen, M. Service Network Design with Asset Management: Formulations and Comparative Analyses. Transp. Res. Part C Emerg. Technol. 2009, 17, 197–207. [Google Scholar] [CrossRef]
- Andersen, J.; Crainic, T.G.; Christiansen, M. Service Network Design with Management and Coordination of Multiple Fleets. Eur. J. Oper. Res. 2009, 193, 377–389. [Google Scholar] [CrossRef]
- Moccia, L.; Cordeau, J.F.; Laporte, G.; Ropke, S.; Valentini, M.P. Modeling and Solving a Multimodal Transportation Problem with Flexible-Time and Scheduled Services. Networks 2011, 57, 53–68. [Google Scholar] [CrossRef]
- Thiongane, B.; Cordeau, J.F.; Gendron, B. Formulations for the Nonbifurcated Hop-Constrained Multicommodity Capacitated Fixed-Charge Network Design Problem. Comput. Oper. Res. 2015, 53, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Wei, K.; Aneja, Y.P.; Tian, P. Design-Balanced Capacitated Multicommodity Network Design with Heterogeneous Assets. Omega 2017, 67, 145–159. [Google Scholar] [CrossRef]
- Irannezhad, E.; Prato, C.G.; Hickman, M. The Effect of Cooperation among Shipping Lines on Transport Costs and Pollutant Emissions. Transp. Res. Part D Transp. Environ. 2018, 65, 312–323. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, X. Intermodal Hub-and-Spoke Network Design: Incorporating Multiple Stakeholders and Multi-Type Containers. Transp. Res. Part B Methodol. 2011, 45, 724–742. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X. Game Theoretical Transportation Network Design among Multiple Regions. Ann. Oper. Res. 2017, 249, 97–117. [Google Scholar] [CrossRef]
- Neamatian Monemi, R.; Gelareh, S.; Hanafi, S.; Maculan, N. A Co-Opetitive Framework for the Hub Location Problems in Transportation Networks. Optimization 2017, 66, 2089–2106. [Google Scholar] [CrossRef]
- Rao, C.; Goh, M.; Zhao, Y.; Zheng, J. Location Selection of City Logistics Centers under Sustainability. Transp. Res. Part D Transp. Environ. 2015, 36, 29–44. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, D.; Meng, Q. Impact Analysis of Investment Coordination Mechanisms in Regional Low-Carbon Logistics Network Design. Transp. Res. Part D Transp. Environ. 2021, 92, 102735. [Google Scholar] [CrossRef]
- Youd, F. Global Shipping Container Shortage: The Story so Far—Ship Technology. Available online: https://www.ship-technology.com/analysis/global-shipping-container-shortage-the-story-so-far/ (accessed on 3 July 2022).
- Tang, J.; Tang, L.; Wang, X. Solution Method for the Location Planning Problem of Logistics Park with Variable Capacity. Comput. Oper. Res. 2013, 40, 406–417. [Google Scholar] [CrossRef]
- Allahyari, S.; Yaghoubi, S.; van Woensel, T. The Secure Time-Dependent Vehicle Routing Problem with Uncertain Demands. Comput. Oper. Res. 2021, 131, 105253. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.; Tian, P.; Lv, Y.; Fan, H. Time-Dependent Multi-Depot Green Vehicle Routing Problem with Time Windows Considering Temporal-Spatial Distance. Comput. Oper. Res. 2021, 129, 105211. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Guan, X.; Xu, M.; Liu, Y.; Wang, H. Two-Echelon Collaborative Multi-Depot Multi-Period Vehicle Routing Problem. Expert Syst. Appl. 2021, 167, 114201. [Google Scholar] [CrossRef]
- Howard, E. Gardner Intelligence Reframed: Multiple Intelligences for the 21st Century; Basic Books: Hachette UK, 2000. [Google Scholar]
- Conway, A.R.A.; Kovacs, K.; Hao, H.; Rosales, K.P.; Snijder, J.P. Individual Differences in Attention and Intelligence: A United Cognitive/Psychometric Approach. J. Intell. 2021, 9, 34. [Google Scholar] [CrossRef]
- Kelly, D.; Tangney, B. Adapting to Intelligence Profile in an Adaptive Educational System. Interact. Comput. 2006, 18, 385–409. [Google Scholar] [CrossRef]
- Moseley, D.; Baumfield, V.; Elliott, J.; Gregson, M.; Higgins, S.; Miller, J.; Newton, D. Frameworks for Thinking: A Handbook for Teaching and Learning; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Gardner, H.; Hatch, T. Educational Implications of the Theory of Multiple Intelligences. Educ. Res. 1989, 18, 4–10. [Google Scholar] [CrossRef]
- Pitakaso, R.; Sethanan, K.; Jirasirilerd, G.; Golinska-Dawson, P. A Novel Variable Neighborhood Strategy Adaptive Search for SALBP-2 Problem with a Limit on the Number of Machine’s Types. Ann. Oper. Res. 2021, 1–25. [Google Scholar] [CrossRef]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Boston, MA, USA, 2020. [Google Scholar]
- Pitakaso, R.; Sethanan, K. Modified Differential Evolution Algorithm for Simple Assembly Line Balancing with a Limit on the Number of Machine Types. Eng. Optim. 2016, 48, 82. [Google Scholar] [CrossRef]
- LINDO Systems, Inc. LINGO and Optimization Modeling. Available online: https://www.lindo.com/index.php/products/lingo-and-optimization-modeling (accessed on 3 July 2022).
- Chen, S.G. An Optimal Capacity Assignment for the Robust Design Problem in Capacitated Flow Networks. Appl. Math. Model. 2012, 36, 5272–5282. [Google Scholar] [CrossRef]
- Gupta, A.K.; Smith, K.G.; Shalley, C.E. The Interplay between Exploration and Exploitation. Acad. Manag. J. 2006, 49, 693–706. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, S.X.; Zheng, S.Y.; Pan, Y.M. Differential Evolution with Fusion of Local and Global Search Strategies. J. Comput. Sci. 2022, 63, 101746. [Google Scholar] [CrossRef]
- Mei, Y.; Li, X.; Yao, X. Improving Efficiency of Heuristics for the Large Scale Traveling Thief Problem. In Simulated Evolution and Learning; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2014; p. 8886. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Huo, J. A Hybrid Adaptive Large Neighborhood Search Algorithm for the Large-Scale Heterogeneous Container Loading Problem. Expert Syst. Appl. 2022, 189, 115909. [Google Scholar] [CrossRef]
- Li, Y.; Tao, Y.; Wang, F. A Compromised Large-Scale Neighborhood Search Heuristic for Capacitated Air Cargo Loading Planning. Eur. J. Oper. Res. 2009, 199, 553–560. [Google Scholar] [CrossRef]
- Meng, F.; Cao, B.; Chu, D.; Ji, Q.; Zhou, X. Variable Neighborhood Search for Quadratic Multiple Constraint Variable Sized Bin-Packing Problem. Comput. Oper. Res. 2022, 143, 105803. [Google Scholar] [CrossRef]
- Pitakaso, R.; Sethanan, K.; Theeraviriya, C. Variable Neighborhood Strategy Adaptive Search for Solving Green 2-Echelon Location Routing Problem. Comput. Electron. Agric. 2020, 173, 105406. [Google Scholar] [CrossRef]
- Jirasirilerd, G.; Pitakaso, R.; Sethanan, K.; Kaewman, S.; Sirirak, W.; Kosacka-Olejnik, M. Simple Assembly Line Balancing Problem Type 2 by Variable Neighborhood Strategy Adaptive Search: A Case Study Garment Industry. J. Open Innov. Technol. Mark. Complex. 2020, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Worasan, K.; Sethanan, K.; Pitakaso, R.; Moonsri, K.; Nitisiri, K. Hybrid Particle Swarm Optimization and Neighborhood Strategy Search for Scheduling Machines and Equipment and Routing of Tractors in Sugarcane Field Preparation. Comput. Electron. Agric. 2020, 178, 105733. [Google Scholar] [CrossRef]
- Nitisiri, K.; Sethanan, K.; Pitakaso, R.; Gen, M. Edge Boundary Variable Neighborhood Strategy Adaptive Search for a Vegetable Crop Land Allocation Problem. Int. J. Manag. Sci. Eng. Manag. 2022, 1–9. [Google Scholar] [CrossRef]
- Chainarong, S.; Srichok, T.; Pitakaso, R.; Sirirak, W.; Khonjun, S.; Akararungruangku, R. Variable Neighborhood Strategy Adaptive Search for Optimal Parameters of Ssm-Adc12 Aluminum Friction Stir Welding. Processes 2021, 9, 1805. [Google Scholar] [CrossRef]
- Chainarong, S.; Pitakaso, R.; Sirirak, W.; Srichok, T.; Khonjun, S.; Sethanan, K.; Sangthean, T. Multi-Objective Variable Neighborhood Strategy Adaptive Search for Tuning Optimal Parameters of Ssm-Adc12 Aluminum Friction Stir Welding. J. Manuf. Mater. Process. 2021, 5, 123. [Google Scholar] [CrossRef]
- Rahdar, S.; Ghanbari, R.; Ghorbani-Moghadam, K. Tabu Search and Variable Neighborhood Search Algorithms for Solving Interval Bus Terminal Location Problem[Formula Presented]. Appl. Soft Comput. 2022, 116, 108367. [Google Scholar] [CrossRef]
- Su, S.; Xiong, D.; Yu, H.; Dong, X. A Multiple Leaders Particle Swarm Optimization Algorithm with Variable Neighborhood Search for Multiobjective Fixed Crowd Carpooling Problem. Swarm Evol. Comput. 2022, 72, 101103. [Google Scholar] [CrossRef]
- Xie, X.; Han, Y.; Anderson, A.; Ribeiro-Navarrete, S. Digital Platforms and SMEs’ Business Model Innovation: Exploring the Mediating Mechanisms of Capability Reconfiguration. Int. J. Inf. Manag. 2022, 65, 102513. [Google Scholar] [CrossRef]
- Codini, A.P.; Abbate, T.; Messeni Petruzzelli, A. Business Model Innovation and Exaptation: A New Way of Innovating in SMEs. Technovation 2022, 102548. [Google Scholar] [CrossRef]
- Vyt, D.; Jara, M.; Mevel, O.; Morvan, T.; Morvan, N. The Impact of Convenience in a Click and Collect Retail Setting: A Consumer-Based Approach. Int. J. Prod. Econ. 2022, 248, 108491. [Google Scholar] [CrossRef]
- Wang, B.C.; Qian, Q.Y.; Gao, J.J.; Tan, Z.Y.; Zhou, Y. The Optimization of Warehouse Location and Resources Distribution for Emergency Rescue under Uncertainty. Adv. Eng. Inform. 2021, 48, 101278. [Google Scholar] [CrossRef]
WP | Farmer | Container | Border | EM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 1 | 2 | |
0.32 | 0.70 | 0.82 | 0.53 | 0.32 | 0.23 | 0.68 | 0.26 | 0.16 | 0.40 | 0.78 | 0.86 | 0.21 | 0.25 | 0.91 | 0.69 | 0.23 | |
1 | 0.66 | 0.45 | 0.46 | 0.78 | 0.65 | 0.76 | 0.97 | 0.93 | 0.67 | 0.47 | 0.07 | 0.78 | 0.43 | 0.09 | 0.59 | 0.68 | 0.50 |
2 | 0.27 | 0.39 | 0.79 | 0.14 | 0.40 | 1.00 | 0.31 | 0.43 | 0.11 | 0.16 | 0.20 | 0.44 | 0.15 | 0.11 | 0.96 | 0.01 | 0.44 |
3 | 0.32 | 0.70 | 0.82 | 0.53 | 0.32 | 0.23 | 0.68 | 0.26 | 0.16 | 0.40 | 0.78 | 0.86 | 0.21 | 0.25 | 0.91 | 0.69 | 0.23 |
Demand | ||
---|---|---|
Vegetable A | Vegetable B | |
End market 1 | 1500 | 2000 |
End market 2 | 1800 | 1800 |
Price | ||
---|---|---|
Vegetable A | Vegetable B | |
End market 1 | 910 | 880 |
End market 2 | 920 | 860 |
Amount | ||||
---|---|---|---|---|
Farmer 1 | Farmer 1 | Farmer 2 | Farmer 1 | |
Vegetable A | 1500 | 2500 | 0 | 0 |
Vegetable B | 0 | 0 | 2500 | 2000 |
Capacity | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
CLC 1 | 700 | 600 | 1000 | 800 | 0 | 0 | 0 | 0 |
CLC 2 | 0 | 0 | 0 | 0 | 800 | 700 | 900 | 1000 |
Before Sorting | ||||||||||||||||
Farmer | Container | Border | EM | |||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 1 | 2 |
0.32 | 0.70 | 0.82 | 0.53 | 0.32 | 0.23 | 0.68 | 0.26 | 0.16 | 0.40 | 0.78 | 0.86 | 0.21 | 0.25 | 0.91 | 0.69 | 0.23 |
After Sorting | ||||||||||||||||
Farmer | Container | Border | EM | |||||||||||||
1 | 4 | 2 | 3 | 5 | 2 | 4 | 1 | 6 | 3 | 7 | 8 | 1 | 2 | 3 | 2 | 1 |
0.32 | 0.53 | 0.70 | 0.82 | 0.16 | 0.23 | 0.26 | 0.32 | 0.40 | 0.68 | 0.78 | 0.86 | 0.21 | 0.25 | 0.91 | 0.23 | 0.69 |
Vegetable | Container | Farmer | Border | Total Profit | Makespan | Total Number of Containers Used | |
---|---|---|---|---|---|---|---|
EM 2 | A | 5, 2, 4 | 1–1500 tons 2–300 tons | 1 | 1,656,000 | 398 | 3 |
B | 4, 1, 6 | 4–1800 tons | 1 | 3,186,000 | 401 | 3 | |
EM 1 | A | 3, 7 | 2–2000 | 2 | 1,840,000 | 357 | 2 |
B | 8 | 4–200 3–700 | 2 | 2,632,000 | 276 | 1 | |
Total | 5,818,000 | 401 | 8 |
IB Operators | Group | Value of | |
---|---|---|---|
ACO-inspired move (AIM) | |||
PSO-inspired move (PIM) | |||
DE-inspired move (DIM) | |||
ABCO-inspired move (BIM) | |||
Restart | |||
Random transit (RT) | |||
Intertransit (IT) | |||
Scaling factor (SF) | |||
RT-AIM | (24) |
Variables | Updated Procedure |
---|---|
Total number of WPs that select IB b from iteration 1 to iteration t | |
Average objective value of all IBs that select IB | |
when | |
Update global best WP | |
Upde IB’s best WP | |
Randomly select the value in the position of all WPs, all positions |
# of Instances | # of Vegetables | # of Farmers | # of CLS | # of Borders | # of End Markets | # of Containers | # of Instances | # of Vegetables | # of Farmers | # of CLS | # of Borders | # of End Markets | # of Containers |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-1 | 3 | 8 | 5 | 3 | 4 | 12 | L-1 | 4 | 110 | 5 | 4 | 11 | 27 |
S-2 | 3 | 10 | 5 | 3 | 4 | 12 | L-2 | 4 | 120 | 6 | 4 | 11 | 27 |
S-3 | 4 | 16 | 6 | 4 | 6 | 14 | L-3 | 4 | 130 | 6 | 4 | 11 | 32 |
S-4 | 4 | 16 | 6 | 5 | 6 | 14 | L-4 | 4 | 140 | 7 | 4 | 11 | 32 |
S-5 | 4 | 20 | 6 | 5 | 6 | 14 | L-5 | 4 | 140 | 7 | 4 | 12 | 32 |
S-6 | 4 | 22 | 6 | 5 | 6 | 15 | L-6 | 4 | 150 | 7 | 4 | 12 | 43 |
S-7 | 4 | 22 | 7 | 5 | 6 | 16 | L-7 | 5 | 150 | 8 | 4 | 12 | 43 |
S-8 | 4 | 22 | 6 | 5 | 7 | 17 | L-8 | 5 | 165 | 8 | 4 | 12 | 43 |
S-9 | 4 | 23 | 7 | 5 | 7 | 17 | L-9 | 5 | 165 | 8 | 5 | 14 | 50 |
S-10 | 4 | 24 | 7 | 5 | 8 | 18 | L-10 | 5 | 165 | 8 | 5 | 15 | 50 |
S-11 | 4 | 25 | 7 | 5 | 8 | 18 | L-11 | 6 | 165 | 9 | 5 | 16 | 60 |
Parameters | Value |
---|---|
(km) | U [10, 130] |
(km) | U [10, 120] |
(mm) | U [20, 150] |
(THB/km) | U [3, 5] |
Transportation fuel cost from CLC i to border k (THB/km) | U [3, 5] |
Transportation fuel cost from farmer j to CLC i (THB/km) | U [3, 5] |
(kg) | U [800, 1500] |
(kg) | U [200, 600] |
(THB/kg) | U [4, 9] |
(min) | U [15, 25] |
(m2) | U [500, 800] |
(THB/kg) | U [1000, 1500] |
U [10, 45] | |
U [15, 25] | |
(m2/kg) | U [0.2, 0.8] |
U [3, 10] | |
(min) | U [400, 550] |
(THB/kg) | U [1000, 2500] |
Lingo | DE | GA | AMIS | ||||||
---|---|---|---|---|---|---|---|---|---|
Profit (THB) | Number of Containers Used | Computational Time (min) | Profit (THB) | Number of Containers Used | Profit (THB) | Number of Containers Used | Number of Containers Used | Number of Containers Used | |
S-1 | 1,506,483 | 7 | 43.34 | 1,506,483 | 7 | 1,506,483 | 7 | 1,506,483 | 7 |
S-2 | 1,396,667 | 7 | 48.82 | 1,396,667 | 7 | 1,396,667 | 7 | 1,396,667 | 7 |
S-3 | 2,953,586 | 9 | 75.28 | 2,934,171 | 9 | 2,953,586 | 9 | 2,953,586 | 9 |
S-4 | 3,287,781 | 10 | 80.13 | 3,287,781 | 10 | 3,267,148 | 10 | 3,287,781 | 10 |
S-5 | 3,952,272 | 10 | 92.45 | 3,944,837 | 10 | 3,952,272 | 10 | 3,952,272 | 10 |
S-6 | 5,430,174 | 11 | 99.84 | 5,430,174 | 12 | 5,409,188 | 12 | 5,430,174 | 11 |
S-7 | 6,337,066 | 13 | 117.37 | 6,278,967 | 13 | 6,337,066 | 13 | 6,337,066 | 13 |
S-8 | 6,630,979 | 13 | 124.94 | 6,630,979 | 13 | 6,630,979 | 13 | 6,630,979 | 13 |
S-9 | 6,724,513 | 14 | 187.56 | 6,698,138 | 15 | 6,687,127 | 15 | 6,724,513 | 14 |
S-10 | 6,929,796 | 15 | 230.18 | 6,845,673 | 16 | 6,855,643 | 16 | 6,929,796 | 15 |
S-11 | 7,147,344 | 15 | 256.69 | 6,991,436 | 16 | 7,021,286 | 16 | 7,147,344 | 15 |
Profit (THB) | % Difference from the Optimal Solution | Profit (THB) | Time (min) | Number of Containers Used | ||||
---|---|---|---|---|---|---|---|---|
Lingo | DE | GA | AMIS | Lingo | DE | GA | AMIS | |
S-1 | 215,211.86 | 215,211.86 | 215,211.86 | 215,211.86 | 0.00 | 0.00 | 0.00 | 0.00 |
S-2 | 199,523.86 | 199,523.86 | 199,523.86 | 199,523.86 | 0.00 | 0.00 | 0.00 | 0.00 |
S-3 | 328,176.22 | 326,019.00 | 328,176.22 | 328,176.22 | 0.00 | 0.66 | 0.00 | 0.00 |
S-4 | 328,778.10 | 328,778.10 | 326,714.80 | 328,778.10 | 0.00 | 0.00 | 0.63 | 0.00 |
S-5 | 395,227.20 | 394,483.70 | 395,227.20 | 395,227.20 | 0.00 | 0.19 | 0.00 | 0.00 |
S-6 | 493,652.18 | 452,514.50 | 450,765.67 | 493,652.18 | 0.00 | 8.33 | 8.69 | 0.00 |
S-7 | 487,466.62 | 482,997.46 | 487,466.62 | 487,466.62 | 0.00 | 0.92 | 0.00 | 0.00 |
S-8 | 510,075.31 | 510,075.31 | 510,075.31 | 510,075.31 | 0.00 | 0.00 | 0.00 | 0.00 |
S-9 | 480,322.36 | 446,542.53 | 445,808.47 | 480,322.36 | 0.00 | 7.03 | 7.19 | 0.00 |
S-10 | 461,986.40 | 427,854.56 | 428,477.69 | 461,986.40 | 0.00 | 7.39 | 7.25 | 0.00 |
S-11 | 476,489.60 | 436,964.75 | 438,830.38 | 476,489.60 | 0.00 | 8.30 | 7.90 | 0.00 |
Avg. | 397,900.88 | 383,724.15 | 384,207.10 | 397,900.88 | 0.00 | 2.98 | 2.88 | 0.00 |
DE | GA | AMIS | |
---|---|---|---|
Lingo | 0.028 | 0.036 | 1.00 |
DE | 0.408 | 0.038 | |
GA | 0.36 |
No. | w1 = 0.2 | w1 = 0.5 | w1 = 0.8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lingo | DE | GA | AMIS | Lingo | DE | GA | AMIS | Lingo | DE | GA | AMIS | |
1 | 205,819.2 | 205,819.2 | 205,819.2 | 205,819.2 | 215,211.9 | 215,211.9 | 215,211.9 | 215,211.9 | 231,287.4 | 231,287.4 | 231,287.4 | 231,287.4 |
2 | 192,837.7 | 192,837.7 | 192,837.7 | 192,837.7 | 199,523.9 | 199,523.9 | 199,523.9 | 199,523.9 | 212,891.7 | 212,891.7 | 212,891.7 | 212,891.7 |
3 | 326,200.4 | 324,490.6 | 325,837.2 | 326,200.4 | 328,176.2 | 326,019 | 328,176.2 | 328,176.2 | 332,934.1 | 329,018.6 | 328,995.2 | 332,934.1 |
4 | 327,012.8 | 325,989.7 | 326,089.6 | 327,012.8 | 328,778.1 | 328,778.1 | 326,714.8 | 328,778.1 | 338,912.5 | 329,981.7 | 330,192.9 | 338,912.5 |
5 | 382,824.2 | 387,168.2 | 387,181.9 | 382,824.2 | 395,227.2 | 394,483.7 | 395,227.2 | 395,227.2 | 401,288.6 | 400,192.3 | 401,288.6 | 401,288.6 |
6 | 479,813.5 | 443,326.8 | 443,476.1 | 479,813.5 | 493,652.2 | 452,514.5 | 450,765.7 | 493,652.2 | 501,230.7 | 501,230.7 | 499,817.1 | 501,230.7 |
7 | 467,618.7 | 451,298.3 | 458,719.5 | 467,618.7 | 487,466.7 | 482,997.5 | 487,466.7 | 487,466.7 | 494,817.2 | 488,192.8 | 494,817.2 | 494,817.2 |
8 | 487,891.4 | 467,791.1 | 469,810.8 | 487,891.4 | 510,075.3 | 510,075.3 | 510,075.3 | 510,075.3 | 524,892.7 | 511,248.2 | 512,391.8 | 524,892.7 |
9 | 477,918.1 | 439,817.9 | 448,199.3 | 477,918.1 | 480,322.4 | 446,542.5 | 445,808.5 | 480,322.4 | 498,814.8 | 468,172.9 | 469,812.3 | 498,814.8 |
10 | 458,981.5 | 412,394.8 | 419,289.5 | 458,981.5 | 461,986.4 | 427,854.6 | 428,477.7 | 461,986.4 | 488,918.3 | 451,092.1 | 451,998.7 | 488,918.3 |
11 | 458,991.8 | 422,129.4 | 425,982.1 | 458,991.8 | 476,489.6 | 436,964.8 | 438,830.4 | 476,489.6 | 498,192.1 | 470,291.3 | 479,187.5 | 498,192.1 |
Avg. | 387,809.9 | 360,527.3 | 373,022.1 | 387,809.9 | 397,900.9 | 383,724.2 | 384,207.1 | 397,900.9 | 411,289.1 | 399,418.2 | 401,152.8 | 411,289.1 |
Lingo V.16 (Best Solution Found within 480 h) | DE | GA | AMIS | |||||
---|---|---|---|---|---|---|---|---|
Profit (THB) | No. of Containers | Profit (THB) | No. of Containers | Profit (THB) | No. of Containers | Profit (THB) | No. of Containers | |
L-1 | 5,981,728 | 21 | 6,012,384 | 21 | 6,118,891 | 22 | 6,345,981 | 20 |
L-2 | 5,991,827 | 23 | 6,329,541 | 23 | 6,499,819 | 23 | 6,761,892 | 22 |
L-3 | 6,234,198 | 24 | 7,171,828 | 23 | 7,299,818 | 23 | 7,419,282 | 23 |
L-4 | 6,549,182 | 26 | 7,412,947 | 26 | 7,587,129 | 26 | 7,887,817 | 25 |
L-5 | 6,771,274 | 27 | 7,539,981 | 27 | 7,689,912 | 26 | 7,901,248 | 25 |
L-6 | 8,981,928 | 39 | 9,338,127 | 38 | 9,488,712 | 38 | 10,981,728 | 37 |
L-7 | 9,123,847 | 39 | 10,081,724 | 38 | 10,188,184 | 38 | 11,012,947 | 36 |
L-8 | 9,421,178 | 41 | 10,281,721 | 39 | 10,398,471 | 39 | 11,367,919 | 37 |
L-9 | 10,238,123 | 42 | 11,482,749 | 40 | 10,898,183 | 40 | 12,128,378 | 40 |
L-10 | 10,871,281 | 45 | 10,898,127 | 44 | 11,998,274 | 44 | 12,239,177 | 42 |
L-11 | 12,398,719 | 55 | 14,059,279 | 50 | 14,388,712 | 50 | 15,236,832 | 48 |
Lingo | DE | GA | AMIS | |
---|---|---|---|---|
L-1 | 284,844.2 | 286,304.0 | 278,131.4 | 317,299.1 |
L-2 | 260,514.2 | 275,197.4 | 282,600.8 | 307,358.7 |
L-3 | 259,758.3 | 311,818.6 | 317,383.4 | 322,577.5 |
L-4 | 251,891.6 | 285,113.3 | 291,812.7 | 315,512.7 |
L-5 | 250,787.9 | 279,258.6 | 295,765.8 | 316,049.9 |
L-6 | 230,305.8 | 245,740.2 | 249,702.9 | 296,803.5 |
L-7 | 233,944.8 | 265,308.5 | 268,110.1 | 305,915.2 |
L-8 | 229,784.8 | 263,633.9 | 266,627.5 | 307,241.1 |
L-9 | 243,764.8 | 287,068.7 | 272,454.6 | 303,209.5 |
L-10 | 241,584.0 | 247,684.7 | 272,688.0 | 291,409.0 |
L-11 | 225,431.3 | 281,185.6 | 287,774.2 | 317,434.0 |
Avg. | 246,601.1 | 275,301.2 | 280,277.4 | 309,164.5 |
DE | GA | AMIS | |
---|---|---|---|
Lingo | 0.0038 | 0.0044 | 0.0038 |
DE | 0.1156 | 0.0038 | |
GA | 0.0038 |
Types of AMIS | AMIS-DI | AMIS-IN | AMIS-AT | AMIS |
---|---|---|---|---|
ACO-inspired move (AIM) | ● | ● | ||
PSO-inspired move (PIM) | ● | ● | ||
DE-inspired move (DIM) | ● | ● | ● | |
ABCO-inspired move (BIM) | ● | ● | ● | |
Restart | ● | ● | ||
Random transit (RT) | ● | ● | ● | |
Intertransit (IT) | ● | ● | ● | |
Scaling factor (SF) | ● | ● | ||
RT-AIM | ● | ● |
AMIS-DI | AMIS-IN | AMIS-AT | AMIS | |
---|---|---|---|---|
L-1 | 287,239.0 | 289,918.5 | 291,827.8 | 317,299.1 |
L-2 | 283,018.8 | 289,137.6 | 287,139.3 | 307,358.7 |
L-3 | 311,082.4 | 312,018.2 | 312,811.7 | 322,577.5 |
L-4 | 306,719.1 | 305,891.5 | 304,879.3 | 315,512.7 |
L-5 | 307,718.5 | 306,081.4 | 307,918.6 | 316,049.9 |
L-6 | 278,909.7 | 282,389.9 | 283,918.5 | 296,803.5 |
L-7 | 284,438.4 | 283,369.2 | 282,399.1 | 305,915.2 |
L-8 | 281,298.6 | 288,183.9 | 287,183.5 | 307,241.1 |
L-9 | 292,398.9 | 291,928.5 | 290,148.7 | 303,209.5 |
L-10 | 282,398.4 | 283,391.7 | 284,712.4 | 291,409.0 |
L-11 | 308,471.5 | 309,812.4 | 308,712.3 | 317,434.0 |
Avg. | 293,063.0 | 294,738.4 | 294,695.6 | 309,164.6 |
AMIS-IN | AMIS-AT | AMIS | |
---|---|---|---|
AMIS-DI | 0.1096 | 0.1096 | 0.0034 |
AMIS-IN | 0.1096 | 0.0034 | |
AMIS-AT | 0.0034 |
#Iterations | DE | GA | AMIS | ||||
---|---|---|---|---|---|---|---|
#Pareto Points | Ratio | #Pareto Points | Ratio | #Pareto Points | Ratio | ||
1 | 150 | 18 | 0.12 | 17 | 0.11 | 24 | 0.16 |
2 | 150 | 20 | 0.13 | 19 | 0.13 | 25 | 0.17 |
3 | 250 | 22 | 0.09 | 24 | 0.10 | 32 | 0.13 |
4 | 250 | 25 | 0.10 | 23 | 0.09 | 30 | 0.12 |
5 | 400 | 28 | 0.07 | 30 | 0.08 | 37 | 0.09 |
6 | 400 | 31 | 0.08 | 27 | 0.07 | 39 | 0.10 |
7 | 650 | 33 | 0.05 | 32 | 0.05 | 43 | 0.07 |
8 | 650 | 32 | 0.05 | 33 | 0.05 | 44 | 0.07 |
9 | 920 | 37 | 0.04 | 35 | 0.04 | 51 | 0.06 |
10 | 920 | 38 | 0.04 | 36 | 0.04 | 54 | 0.06 |
ARP | 0.08 | 0.07 | 0.10 | ||||
ANP | 0.06 | 0.06 | 0.08 |
Farmers | Vegetable Types | Borders | End Markets | Profit (THB) | Number of Containers Used | |
---|---|---|---|---|---|---|
CLC-1 | 6, 7, 18, 26, 47, 48, 49, 50, 60, 74, 86, 87, 114, 115, 116, 131, 132, 133, 134, 163, 164 | 1, 4, 6 | 2, 4, 5 | 5, 10, 12, 16 | 168,827 | 6 |
CLC-2 | 2, 15, 24, 37, 38, 39, 59, 66, 71, 72, 90, 102, 103, 104, 105, 127, 128, 129, 130, 143, 144, 145, 146, 160, 161, 162, 165 | 1, 4, 5, 6 | 2, 3, 4, 5 | 3, 5, 7, 9, 13 | 2,049,835 | 7 |
CLC-3 | 5, 21, 29, 30, 31, 56, 69, 70, 77, 88, 89, 112, 113, 147, 148, 149 | 2, 3, 4, 5 | 1, 2, 4 | 1, 3, 4, 10 | 1,782,910 | 5 |
CLC-4 | 3, 17, 40, 43, 44, 45, 46, 78, 79, 80, 81, 82, 117, 118, 119, 120 | 1, 3, 4, 6 | 3, 4, 5 | 8, 11, 13, 14 | 1,698,129 | 5 |
CLC-5 | 8, 9, 10, 11, 25, 65, 67, 68, 91, 92, 93, 94, 110, 111, 150, 151, 152 | 2, 3, 4, 5 | 1, 2, 3, 3 | 2, 4, 7, 8 | 1,495,643 | 5 |
CLC-6 | 16, 22, 51, 52, 53, 54, 55, 83, 84, 85, 121, 122, 123, 124, 153, 154, 155, 156 | 1, 4, 6 | 1, 2, 3 | 1, 4, 5, 6 | 1,769,154 | 5 |
CLC-7 | 1, 19, 27, 28, 57, 61, 62, 73, 74, 106, 107, 108, 109, 157, 158, 159 | 3, 4, 5, 6 | 3, 4, 5 | 8, 12, 13, 16 | 1,625,233 | 5 |
CLC-8 | 12, 20, 32, 33, 34, 35, 36, 42, 95, 96, 97, 125, 126 | 3, 5, 6 | 3, 4, 5 | 7, 8, 9, 14 | 1,311,389 | 4 |
CLC-9 | 4, 13, 14, 23, 41, 58, 63, 64, 75, 76, 98, 99, 101, 135, 136, 137, 138, 139, 140, 141, 142 | 2, 4, 5, 6 | 1, 2, 3, 4, 5 | 1, 5, 6, 12, 15 | 1,825,712 | 6 |
Total | 15,236,832 | 48 | ||||
Maximum | 2,049,835 | 7 | ||||
Average | 1,692,981 | 5.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitakaso, R.; Nanthasamroeng, N.; Srichok, T.; Khonjun, S.; Weerayuth, N.; Kotmongkol, T.; Pornprasert, P.; Pranet, K. A Novel Artificial Multiple Intelligence System (AMIS) for Agricultural Product Transborder Logistics Network Design in the Greater Mekong Subregion (GMS). Computation 2022, 10, 126. https://doi.org/10.3390/computation10070126
Pitakaso R, Nanthasamroeng N, Srichok T, Khonjun S, Weerayuth N, Kotmongkol T, Pornprasert P, Pranet K. A Novel Artificial Multiple Intelligence System (AMIS) for Agricultural Product Transborder Logistics Network Design in the Greater Mekong Subregion (GMS). Computation. 2022; 10(7):126. https://doi.org/10.3390/computation10070126
Chicago/Turabian StylePitakaso, Rapeepan, Natthapong Nanthasamroeng, Thanatkij Srichok, Surajet Khonjun, Nantawatana Weerayuth, Thachada Kotmongkol, Peema Pornprasert, and Kiatisak Pranet. 2022. "A Novel Artificial Multiple Intelligence System (AMIS) for Agricultural Product Transborder Logistics Network Design in the Greater Mekong Subregion (GMS)" Computation 10, no. 7: 126. https://doi.org/10.3390/computation10070126
APA StylePitakaso, R., Nanthasamroeng, N., Srichok, T., Khonjun, S., Weerayuth, N., Kotmongkol, T., Pornprasert, P., & Pranet, K. (2022). A Novel Artificial Multiple Intelligence System (AMIS) for Agricultural Product Transborder Logistics Network Design in the Greater Mekong Subregion (GMS). Computation, 10(7), 126. https://doi.org/10.3390/computation10070126