A Pilot Study of the Adverse Events Caused by the Combined Use of Bevacizumab and Vascular Endothelial Growth Factor Receptor-Targeted Vaccination for Patients with a Malignant Glioma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Jain, R.K.; di Tomaso, E.; Duda, D.G.; Loeffler, J.S.; Sorensen, A.G.; Batchelor, T.T. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 2007, 8, 610–622. [Google Scholar] [CrossRef]
- Schmidt, N.O.; Westphal, M.; Hagel, C.; Ergün, S.; Stavrou, D.; Rosen, E.M.; Lamszus, K. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer 1999, 84, 10–18. [Google Scholar] [CrossRef]
- Chaudhry, I.H.; O’Donovan, D.G.; Brenchley, P.E.; Reid, H.; Roberts, I.S. Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 2001, 39, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ahir, B.K.; Engelhard, H.H.; Lakka, S.S. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Mol. Neurobiol. 2020, 57, 2461–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, R.; Tanaka, T.; Miyake, K.; Yoshida, K.; Sasaki, H. Bevacizumab for malignant gliomas: Current indications, mechanisms of action and resistance, and markers of response. Brain. Tumor. Pathol. 2017, 34, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.R.D.; Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target. Ther. 2017, 2, 17040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Gatson, N.N.; Chiocca, E.A.; Kaur, B. Anti-angiogenic gene therapy in the treatment of malignant gliomas. Neurosci. Lett. 2012, 527, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Kurkjian, C.; Kim, E.S. Risks and Benefits with Bevacizumab: Evidence and Clinical Implications. Ther. Adv. Drug. Saf. 2012, 3, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.T.; Mulholland, P.; Neyns, B.; Nabors, L.B.; Campone, M.; Wick, A.; Mason, W.; Mikkelsen, T.; Phuphanich, S.; Ashby, L.S.; et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J. Clin. Oncol. 2013, 31, 3212–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neyns, B.; Sadones, J.; Chaskis, C.; Dujardin, M.; Everaert, H.; Lv, S.; Duerinck, J.; Tynninen, O.; Nupponen, N.; Michotte, A.; et al. Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J. Neurooncol. 2011, 103, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Tamura, R.; Morimoto, Y.; Kosugi, K.; Sato, M.; Oishi, Y.; Ueda, R.; Kikuchi, R.; Nagashima, H.; Hikichi, T.; Noji, S.; et al. Clinical and histopathological analyses of VEGF receptors peptide vaccine in patients with primary glioblastoma—A case series. BMC Cancer 2020, 20, 196. [Google Scholar] [CrossRef] [PubMed]
- Tamura, R.; Fujioka, M.; Morimoto, Y.; Ohara, K.; Kosugi, K.; Oishi, Y.; Sato, M.; Ueda, R.; Fujiwara, H.; Hikichi, T.; et al. A VEGF receptor vaccine demonstrates preliminary efficacy in neurofibromatosis type 2. Nat. Commun. 2020, 11, 2028. [Google Scholar] [CrossRef]
- Tamura, R.; Tanaka, T.; Akasaki, Y.; Murayama, Y.; Yoshida, K.; Sasaki, H. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: Perspectives for therapeutic implications. Med. Oncol. 2020, 37, 2. [Google Scholar] [CrossRef] [Green Version]
- Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.; Carbone, D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 1996, 2, 1096–1103. [Google Scholar] [CrossRef]
- Ohm, J.E.; Gabrilovich, D.I.; Sempowski, G.D.; Kisseleva, E.; Parman, K.S.; Nadaf, S.; Carbone, D.P. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003, 101, 4878–4886. [Google Scholar] [CrossRef]
- Tamura, R.; Tanaka, T.; Ohara, K.; Miyake, K.; Morimoto, Y.; Yamamoto, Y.; Kanai, R.; Akasaki, Y.; Murayama, Y.; Tamiya, T.; et al. Persistent restoration to the immunosupportive tumor microenvironment in glioblastoma by bevacizumab. Cancer Sci. 2019, 110, 499–508. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bähr, O.; et al. Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 21, e201024. [Google Scholar] [CrossRef]
- Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Shibao, S.; Ueda, R.; Saito, K.; Kikuchi, R.; Nagashima, H.; Kojima, A.; Kagami, H.; Pareira, E.S.; Sasaki, H.; Noji, S.; et al. A pilot study of peptide vaccines for VEGF receptor 1 and 2 in patients with recurrent/progressive high grade glioma. Oncotarget 2018, 9, 21569–21579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, R.; Ueda, R.; Saito, K.; Shibao, S.; Nagashima, H.; Tamura, R.; Morimoto, Y.; Sasaki, H.; Noji, S.; Kawakami, Y.; et al. A Pilot Study of Vaccine Therapy with Multiple Glioma Oncoantigen/Glioma Angiogenesis-Associated Antigen Peptides for Patients with Recurrent/Progressive High-Grade Glioma. J. Clin. Med. 2019, 8, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disis, M.L. Mechanism of action of immunotherapy. Semin. Oncol. 2014, 5, S3–S13. [Google Scholar] [CrossRef] [Green Version]
- Falchook, G.S.; Wheler, J.J.; Naing, A.; Piha-Paul, S.A.; Fu, S.; Tsimberidou, A.M.; Hong, D.S.; Janku, F.; Zinner, R.; Jiang, Y.; et al. Dual antiangiogenic inhibition: A phase I dose escalation and expansion trial targeting VEGF-A and VEGFR in patients with advanced solid tumors. Investig. New Drugs 2015, 33, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Feldman, D.R.; Baum, M.S.; Ginsberg, M.S.; Hassoun, H.; Flombaum, C.D.; Velasco, S.; Fischer, P.; Ronnen, E.; Ishill, N.; Patil, S.; et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2009, 27, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
- Mittal, K.; Koon, H.; Elson, P.; Triozzi, P.; Dowlati, A.; Chen, H.; Borden, E.C.; Rini, B.I. Dual VEGF/VEGFR inhibition in advanced solid malignancies: Clinical effects and pharmacodynamic biomarkers. Cancer Biol. Ther. 2014, 15, 975–981. [Google Scholar] [CrossRef]
- Rini, B.I.; Garcia, J.A.; Cooney, M.M.; Elson, P.; Tyler, A.; Beatty, K.; Bokar, J.; Mekhail, T.; Bukowski, R.M.; Budd, G.T.; et al. A phase I study of sunitinib plus bevacizumab in advanced solid tumors. Clin. Cancer. Res. 2009, 15, 6277–6283. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.I.; Garcia, J.A.; Cooney, M.M.; Elson, P.; Tyler, A.; Beatty, K.; Bokar, J.; Ivy, P.; Chen, H.X.; Dowlati, A.; et al. Toxicity of sunitinib plus bevacizumab in renal cell carcinoma. J. Clin. Oncol. 2010, 28, e284–e285. [Google Scholar] [CrossRef]
- Escudier, B.; Pluzanska, A.; Koralewski, P.; Ravaud, A.; Bracarda, S.; Szczylik, C.; Chevreau, C.; Filipek, M.; Melichar, B.; Bajetta, E.; et al. Bevacizumab Plus Interferon alfa-2a for Treatment of Metastatic Renal Cell Carcinoma: A Randomised, Double-Blind Phase III Trial. Lancet 2007, 370, 2103–2111. [Google Scholar] [CrossRef]
- Norden, A.D.; Young, G.S.; Setayesh, K.; Muzikansky, A.; Klufas, R.; Ross, G.L.; Ciampa, A.S.; Ebbeling, L.G.; Levy, B.; Drappatz, J.; et al. Bevacizumab for recurrent malignant gliomas: Efficacy, toxicity, and patterns of recurrence. Neurology 2008, 70, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Kono, K.; Iinuma, H.; Akutsu, Y.; Tanaka, H.; Hayashi, N.; Uchikado, Y.; Noguchi, T.; Fujii, H.; Okinaka, K.; Fukushima, R.; et al. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J. Transl. Med. 2012, 10, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, B.; Jain, R. Right choice of a method for determination of cut-off values: A statistical tool for a diagnostic test. Asian. J. Med. Sci. 2014, 5, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, T.T.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Plotkin, S.R.; Gerstner, E.; Eichler, A.F.; Drappatz, J.; Hochberg, F.H.; Benner, T.; et al. Phase Ⅱ study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 2010, 28, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.R.; Stemmer-Rachamimov, A.O.; Barker, F.G.; Halpin, C.; Padera, T.P.; Tyrrell, A.; Sorensen, A.G.; Jain, R.K.; di Tomaso, E. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N. Engl. J. Med. 2009, 361, 358–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, V.M.; Ravindran, K.; Graffeo, C.S.; Perry, A.; Van Gompel, J.J.; Daniels, D.J.; Link, M.J. Efficacy and safety of bevacizumab for vestibular schwannoma in neurofibromatosis type 2: A systematic review and meta-analysis of treatment outcomes. J. Neurooncol. 2019, 144, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.A.; Golding, J.F.; Blesing, C.; Evans, D.G.; Ferner, R.E.; Foweraker, K.; Halliday, D.; Jena, R.; McBain, C.; McCabe, M.G.; et al. Toxicity profile of bevacizumab in the UK Neurofibromatosis type 2 cohort. J. Neurooncol. 2017, 131, 117–124. [Google Scholar] [CrossRef]
Vac Group | Vac + Bev Group | p Value | |
---|---|---|---|
Age (mean ± SD (med)) | 55.07 ± 12.35 (59) | 49.69 ± 16.67 (47) | 0.17 |
Sex | M: 7, F: 8 | M: 8, F: 5 | 0.43 |
GB | Primary: 4, Recurrent: 11 | Primary: 2, Recurrent: 11 | 0.47 |
Type of Vaccination | VEGFR1/2: 9, Cocktail ※1: 6 | VEGFR1/2: 4, Cocktail ※1: 9 | 0.12 |
Number of Vaccinations (mean ± SD (med)) | 12.47 ± 3.70 (12) | 10.69 ± 5.14 (10) | 0.16 |
Case | Age/Sex | PH | Diagnosis (IDH/MGMT Methylation) | Type of Vac | CTL Induction (VEGFR1/VEGFR2) | Number of Vac Administrations | Timing of Bev after Vac (days) | Number of Bev Administrations | Complication |
---|---|---|---|---|---|---|---|---|---|
1 | 76/M | Lacunar infarction | Primary GB (WT/unmethyl) | VEGFR1/2 | NT | 16 | 461 | 6 | - |
2 | 50/F | - | Primary GB (WT/unmethyl) | VEGFR1/2 | NT | 2 | 76 | 5 | - |
3 | 41/F | - | Recurrent high-grade glioma | VEGFR1/2 | +/+ | 8 | 13 | 4 | - |
4 | 37/M | - | Recurrent high-grade glioma | VEGFR1/2 | −/− | 17 | 598 | 11 | PE (Grade 4) |
5 | 17/M | - | Recurrent high-grade glioma (WT/unmethyl) | Cocktail ※1 | +/− | 18 | 1 | 2 | - |
6 | 38/M | - | Recurrent high-grade glioma | Cocktail | −/− | 11 | 7 | 9 | CI (Grade 2) |
7 | 47/F | - | Recurrent GB | Cocktail | +/+ | 8 | 7 | 3 | - |
8 | 73/M | - | Recurrent high-grade glioma (WT/unmethyl) | Cocktail | NT | 8 | 42 | 1 | - |
9 | 68/F | Asthma Hyperlipidemia | Recurrent GB (WT/unmethyl) | Cocktail | NT | 18 | 7 | 14 | - |
10 | 61/M | Hyperlipidemia | Recurrent GB (WT/methyl) | Cocktail | −/+ | 6 | 1 | 6 | - |
11 | 38/F | - | Recurrent GB (WT/methyl) | Cocktail | NT | 11 | 35 | 9 | CI (Grade2) |
12 | 55/M | Nasal sinuses inflammation | Recurrent GB (WT/unmethyl) | Cocktail | NT | 6 | 168 | 3 | - |
13 | 45/M | - | Recurrent GB (WT/unmethyl) | Cocktail | NT | 10 | 8 | 9 | - |
Case | Age/Sex | PH | Diagnosis (IDH/MGMT Methylation) | Type of Vac | CTL Induction (VEGFR1/VEGFR2) | Number of Vac Administrations | Complication |
---|---|---|---|---|---|---|---|
1 | 52/M | - | Primary GB (WT/unmethyl) | VEGFR1/2 | +/+ | 14 | - |
2 | 64/M | - | Primary GB (WT/unmethyl) | VEGFR1/2 | NT/NT | 5 | - |
3 | 50/F | Pituitary adenoma Asthma | Primary GB (WT/methyl) | VEGFR1/2 | +/+ | 14 | - |
4 | 60/F | - | Primary high-grade glioma (WT/methyl) | VEGFR1/2 | NT/NT | 14 | - |
5 | 75/F | - | Recurrent GB (WT/NA) | VEGFR1/2 | +/− | 10 | CI (Grade 2) |
6 | 62/F | Duodenal ulcer | Recurrent high-grade glioma (WT/unmethyl) | VEGFR1/2 | +/− | 11 | - |
7 | 68/M | - | Recurrent high-grade glioma (mutant/mechyl) | VEGFR1/2 | +/− | 12 | - |
8 | 59/M | Ischemic heart disease Colon polyp | Recurrent GB (WT/NA) | VEGFR1/2 | +/− | 8 | - |
9 | 62/M | Recurrent GB (WT/unmethyl) | VEGFR1/2 | +/− | 10 | - | |
10 | 38/M | - | Recurrent GB (WT/methyl) | Cocktail ※1 | +/− | 18 | - |
11 | 66/F | - | Recurrent GB (NA/NA) | Cocktail | −/− | 12 | - |
12 | 34/F | - | Recurrent high-grade glioma (mutant/unmethyl) | Cocktail | +/+ | 20 | - |
13 | 36/F | - | Recurrent GB (mutant/unmethyl) | Cocktail | NT/NT | 11 | - |
14 | 55/M | - | Recurrent GB (WT/unmethyl) | Cocktail | NT/NT | 14 | CI (Grade 2) |
15 | 45/F | - | Recurrent high-grade glioma (mutant/methyl) | Cocktail | NT/NT | 14 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamura, R.; Morimoto, Y.; Sato, M.; Hikichi, T.; Yoshida, K.; Toda, M. A Pilot Study of the Adverse Events Caused by the Combined Use of Bevacizumab and Vascular Endothelial Growth Factor Receptor-Targeted Vaccination for Patients with a Malignant Glioma. Vaccines 2020, 8, 498. https://doi.org/10.3390/vaccines8030498
Tamura R, Morimoto Y, Sato M, Hikichi T, Yoshida K, Toda M. A Pilot Study of the Adverse Events Caused by the Combined Use of Bevacizumab and Vascular Endothelial Growth Factor Receptor-Targeted Vaccination for Patients with a Malignant Glioma. Vaccines. 2020; 8(3):498. https://doi.org/10.3390/vaccines8030498
Chicago/Turabian StyleTamura, Ryota, Yukina Morimoto, Mizuto Sato, Tetsuro Hikichi, Kazunari Yoshida, and Masahiro Toda. 2020. "A Pilot Study of the Adverse Events Caused by the Combined Use of Bevacizumab and Vascular Endothelial Growth Factor Receptor-Targeted Vaccination for Patients with a Malignant Glioma" Vaccines 8, no. 3: 498. https://doi.org/10.3390/vaccines8030498