Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies
Abstract
:1. Introduction
Historical Background of Tick Vaccine Antigens
2. Approaches to Identifying Cocktail Vaccine Antigens
2.1. Single-Antigen Vaccine Efficacy
2.2. Antigen Serum Immuno-Cross-Reactivity
2.3. Antigen Discovery Approaches
2.4. Antigen-Serum-Induced Effect
3. Potential Constraints toward Cocktail Vaccine Efficacy
3.1. Antigenic Competition
3.1.1. Antigen Concentration
- Immunotolerance. This is a condition where the immune system shows a reduced response against an antigenic substance or molecule due to prior exposure. The response is classified into high and low immunotolerance that is triggered by high or low-dose antigen concentrations, respectively [81,82]. Furthermore, the tolerance can be influenced by other factors such as the route of immunization, antigen protein molecular weight, and immunogenicity [83]. Overall, the tolerance induction mechanism is based on whether the antigens are T-cell dependent or independent [84,85]. However, to date, the optimum concentration for formulating cocktail tick vaccine antigens is still unknown and is likely to vary depending on the antigens within the cocktail.
3.1.2. Antigen–Adjuvant Interaction
3.1.3. Animal Genetics
3.2. Subunit Protein Expression System
4. Can We Enhance the Efficacy of Cocktail Vaccines?
4.1. Cocktail Antigen Selection
4.2. Chimera-Based Cocktail Tick Vaccines
4.3. Conjugate Vaccines
4.4. Modification of the Cocktail Vaccination Protocols
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Soneshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brites-Neto, J.; Duarte, K.M.; Martins, T.F. Tick-borne infections in human and animal population worldwide. Vet. World 2015, 8, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Horak, I.G.; Camicas, J.L.; Keirans, J.E. The argasidae, ixodidae and nuttalliellidae (acari: Ixodida): A world list of valid tick names. Exp. Appl. Acarol. 2002, 28, 27–54. [Google Scholar] [CrossRef]
- McLeod, R.; Kristjanson, P. Economic impact of ticks and tick-borne diseases to livestock in Africa, Asia and Australia. In Report to the International Livestock; Research Institute: Nairobi, Kenya, 1999. [Google Scholar]
- de Castrol, J.J. Sustainable tick and tick-borne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997, 71, 77–97. [Google Scholar] [CrossRef]
- Lew-Tabor, A.E.; Rodriguez Valle, M. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis. 2015, 7, 1236–1237. [Google Scholar] [CrossRef]
- Muhanguzi, D.; Byaruhanga, J.; Amanyire, W.; Ndekezi, C.; Ochwo, S.; Nakamwesiga, J.; Mwiine, F.N.; Tweyongyere, R.; Fourie, J.; Madder, M.; et al. Invasive cattle ticks in East Africa: Morphological and molecular confirmation of the presence of Rhipicephalus microplus in south-eastern Uganda. Parasites Vectors 2020, 13, 165. [Google Scholar] [CrossRef] [Green Version]
- Kamani, J.; Apanaskevich, D.A.; Gutiérrez, R.; Nachum-Biala, Y.; Baneth, G.; Harrus, S. Morphological and molecular identification of Rhipicephalus (Boophilus) microplus in Nigeria, West Africa: A threat to livestock health. Exp. Appl. Acarol. 2017, 73, 283–296. [Google Scholar] [CrossRef]
- Adakal, H.; Biguezoton, A.; Zoungrana, S.; Courtin, F.; de Clercq, E.M.; Madder, M. Alarming spread of the Asian cattle tick Rhipicephalus microplus in West Africa-another three countries are affected: Burkina Faso, Mali and Togo. Exp. Appl. Acarol. 2013, 61, 383–386. [Google Scholar] [CrossRef]
- Silatsa, B.A.; Simo, G.; Githaka, N.; Mwaura, S.; Kamga, R.M.; Oumarou, F.; Keambou, C.; Bishop, R.P.; Djikeng, A.; Kuiate, J.R.; et al. A comprehensive survey of the prevalence and spatial distribution of ticks infesting cattle in different agro-ecological zones of Cameroon. Parasite Vectors 2019, 12, 489. [Google Scholar] [CrossRef] [Green Version]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2018, 117, 3–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sánchez, R.; Oleaga, A. Acaricidal activity of fluralaner against Ornithodoros moubata and Ornithodoros erraticus argasid ticks evaluated through in vitro feeding. Vet. Parasitol. 2017, 243, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.; Zoller, H.; Roepke, R.K.A.; Zschiesche, E.; Heckeroth, A.R. Fluralaner activity against life stages of ticks using Rhipicephalus sanguineus and Ornithodoros moubata IN in vitro contact and feeding assays. Parasites Vectors 2015, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Astigarraga, A.; Oleaga-Pérez, A.; Pérez-Sánchez, R.; Encinas-Grandes, A. A study of the vaccinal value of various extracts of concealed antigens and salivary gland extracts against Ornithodoros erraticus and Ornithodoros moubata. Vet. Parasitol. 1995, 60, 133–147. [Google Scholar] [CrossRef]
- Graf, J.F.; Gogolewski, R.; Leach-Bing, N.; Sabatini, G.A.; Molento, M.B.; Bordin, E.L.; Arantes, G.J. Tick control: An industry point of view. Parasitology 2004, 129, 427–442. [Google Scholar] [CrossRef]
- de la Fuente, J.; Kocan, K.M. Strategies for development of vaccines for control of Ixodid tick species. Parasite Immunol. 2006, 28, 275–283. [Google Scholar] [CrossRef]
- Merino, O.; Alberdi, P.; Pérez de la Lastra, J.M.; de la Fuente, J. Tick vaccines and the control of tick-borne pathogens. Front. Cell Infect Microbiol. 2013, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, P.A.; Trimnell, A.R.; Kazimirova, M.; Labuda, M. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol. 2006, 28, 155–163. [Google Scholar] [CrossRef]
- Valle, M.R.; Guerrero, F.D. Anti-tick vaccines in the omics era. Front. Biosci. 2018, 10, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Martín, V.; Manzano-Román, R.; Obolo-Mvoulouga, P.; Oleaga, A.; Pérez-Sánchez, R. Development of vaccines against Ornithodoros soft ticks: An update. Ticks Tick Borne Dis. 2015, 6, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obolo-Mvoulouga, P.; Oleaga, A.; Manzano-Román, R.; Pérez-Sánchez, R. Evaluation of the protective efficacy of Ornithodoros moubata midgut membrane antigens selected using omics and in silico prediction algorithms. Ticks Tick Borne Dis. 2018, 9, 1158–1172. [Google Scholar] [CrossRef] [PubMed]
- Toaleb, N.I.; Gabr, H.S.M.; Abd El-Shafy, S.; Abdel-Rahman, E.H. Evaluation of vaccine candidates purified from the adult ticks of Ornithodoros savignyi (Acari: Argasidae) and Hyalomma dromedarii (Acari: Ixodidae) against tick infestations. J. Parasit. Dis. 2019, 43, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Willadsen, P. Antigen cocktails: Valid hypothesis or unsubstantiated hope? Trends Parasitol. 2008, 24, 164–167. [Google Scholar] [CrossRef]
- Trager, W. Acquired immunity to ticks. J. Parasitol. 1939, 25, 57–81. [Google Scholar] [CrossRef]
- Trager, W. Further observations on acquired immunity to the tick dermacentor variabilis say. J. Parasitol. 1939, 25, 137–139. [Google Scholar] [CrossRef]
- Trager, W. A note on the problem of acquired immunity to argasid ticks. J. Parasitol. Res. 1940, 26, 71–74. [Google Scholar] [CrossRef]
- Wikel, S.K. Immunomodulation of host responses to ectoparasite infestation--an overview. Vet. Parasitol. 1984, 14, 321–339. [Google Scholar] [CrossRef]
- Wang, H.; Nuttall, P.A. Excretion of host immunoglobulin in tick saliva and detection of IgG-binding proteins in tick haemolymph and salivary glands. Parasitology 1994, 109, 525–530. [Google Scholar] [CrossRef]
- Ackerman, S.; Clare, F.B.; McGill, T.W.; Sonenshine, D.E. Passage of host serum components, including antibody, across the digestive tract of Dermacentor variabilis (Say). J. Parasitol. 1981, 67, 737–740. [Google Scholar] [CrossRef]
- Ben-Yakir, D.; Fox, C.J.; Homer, J.T.; Barker, R.W. Quantification of host immunoglobulin in the hemolymph of ticks. J. Parasitol. 1987, 73, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Gough, J.M.; Kemp, D.H. Localization of a low abundance membrane protein (Bm86) on the gut cells of the cattle tick Boophilus microplus by immunogold labeling. J. Parasitol. 1993, 79, 900–907. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Almazán, C.; Canales, M.; Pérez de la Lastra, J.M.; Kocan, K.M.; Willadsen, P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 2007, 8, 23–28. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Rodríguez, M.; Redondo, M.; Montero, C.; García-García, J.C.; Méndez, L.; Serrano, E.; Valdés, M.; Enriquez, A.; Canales, M.; et al. Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus. Vaccine. 1998, 16, 366–373. [Google Scholar] [CrossRef]
- de Vos, S.; Zeinstra, L.; Taoufik, O.; Willadsen, P.; Jongejan, F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp. Appl. Acarol. 2001, 25, 245–261. [Google Scholar] [CrossRef]
- de la Fuente, J.; Moreno-Cid, J.A.; Galindo, R.C.; Almazan, C.; Kocan, K.M.; Merino, O.; Perez de la Lastra, J.M.; Estrada-Peña, A.; Blouin, E.D. Subolesin/Akirin vaccines for the control of arthropod vectors and vector-borne pathogens. Transbound Emerg. Dis. 2013, 60, 172–178. [Google Scholar] [CrossRef]
- Parizi, L.F.; Utiumi, K.U.; Imamura, S.; Onuma, M.; Ohashi, K.; Masuda, A.; da Silva Vaz, I.J. Cross immunity with Haemaphysalis longicornis glutathione S-transferase reduces an experimental Rhipicephalus (Boophilus) microplus infestation. Exp. Parasitol. 2011, 127, 113–118. [Google Scholar] [CrossRef]
- Sabadin, G.A.; Parizi, L.F.; Kiio, I.; Xavier, M.A.; da Silva Matos, R.; Camargo-Mathias, M.I.; Githaka, N.W.; Nene, V.; da Silva Vaz, I.J. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation. Vaccine 2017, 35, 6649–6656. [Google Scholar] [CrossRef]
- Trimnell, A.R.; Davies, G.M.; Lissina, O.; Hails, R.S.; Nuttall, P.A. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine 2005, 23, 329–4341. [Google Scholar] [CrossRef]
- Geraci, N.S.; Spencer Johnston, J.; Paul Robinson, J.; Wikel, S.K.; Hill, C.A. Variation in genome size of argasid and ixodid ticks. Insect Biochem. Mol. Biol. 2007, 37, 399–408. [Google Scholar] [CrossRef]
- Gulia-Nuss, M.; Nuss, A.B.; Meyer, J.M.; Sonenshine, D.E.; Roe, R.M.; Waterhouse, R.M.; Sattelle, D.B.; de la Fuente, J.; Ribeiro, J.M.; Megy, K.; et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016, 7, 10507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrard-Smith, E.; Sala, K.A.; Betancourt, M.; Upton, L.M.; Angrisano, F.; Morin, M.J.; Ghani, A.C.; Churcher, T.S.; Blagborough, A.M. Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density. Elife 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Darghouth, M.A.; Boulter, N.R.; Gharbi, M.; Sassi, L.; Tait, A.; Hall, R. Vaccination of calves with an attenuated cell line of Theileria annulata and the sporozoite antigen SPAG-1 produces a synergistic effect. Vet Parasitol. 2006, 142, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Ndawula, C.J.; Sabadin, G.A.; Parizi, L.F.; da Silva Vaz, I.J. Constituting a glutathione S-transferase-cocktail vaccine against tick infestation. Vaccine 2019, 37, 1918–1927. [Google Scholar] [CrossRef]
- Galay, R.L.; Umemiya-Shirafuji, R.; Mochizuki, M.; Fujisaki, K.; Tanaka, T. RNA interference: A powerful functional analysis tool for studying tick biology and its control. In RNA Interference; Ibrokhim, Y., Ed.; IntechOpen: London, UK, 2016. [Google Scholar]
- de la Fuente, J.; Kocan, K.M. Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. Expert Rev. Vaccines 2003, 2, 583–593. [Google Scholar] [CrossRef]
- Artigas-Jerónimo, S.; de La Fuente, J.; Villar, M. Interactomics and tick vaccine development: New directions for the control of tick-borne diseases. Expert Rev. Proteomics. 2018, 15, 627–635. [Google Scholar] [CrossRef]
- Villar, M.; Marina, A.; de la Fuente, J. Applying proteomics to tick vaccine development: Where are we? Expert Rev. Proteom. 2017, 14, 211–221. [Google Scholar] [CrossRef]
- Aljamali, M.N.; Hern, L.; Kupfer, D.; Downard, S.; So, S.; Roe, B.A.; Sauer, J.R.; Essenberg, R.C. Transcriptome analysis of the salivary glands of the female tick Amblyomma americanum (Acari: Ixodidae). Insect Mol. Biol. 2009, 18, 129–154. [Google Scholar] [CrossRef]
- de la Fuente, J.; Almazán, C.; Blouin, E.F.; Naranjo, V.; Kocan, K.M. RNA interference screening in ticks for identification of protective antigens. Parasitol. Res. 2005, 96, 137–141. [Google Scholar] [CrossRef]
- Marr, E.J.; Sargison, N.D.; Nisbet, A.J.; Burgess, S.T. RNA interference for the identification of ectoparasite vaccine candidates. Parasite Immunol. 2014, 36, 616–626. [Google Scholar] [CrossRef]
- Lew-Tabor, A.E.; Bruyeres, A.G.; Zhang, B.; Rodriguez, V.M. Rhipicephalus (Boophilus) microplus tick in vitro feeding methods for functional (dsRNA) and vaccine candidate (antibody) screening. Ticks Tick Borne Dis. 2014, 5, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Antunes, S.; Couto, J.; Ferrolho, J.; Sanches, G.S.; Charrez, J.O.M.; Hernández, N.C.; Mazuz, M.; Villar, M.; Shkap, V.; de la Fuente, J.; et al. Transcriptome and proteome response of Rhipicephalus annulatus tick vector to Babesia bigemina infection. Front. Physiol. 2019, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Villar, M.; de la Fuente, J. A vaccinomics approach for the identification of tick protective antigens for the control of Ixodes ricinus and Dermacentor reticulatus infestations in companion animals. Front. Physiol. 2019, 10, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar, M.; Ayllón, N.; Alberdi, P.; Moreno, A.; Moreno, M.; Tobes, R.; Mateos-Hernández, L.; Weisheit, S.; Bell-Sakyi, L.; de la Fuente, J. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell Proteom. 2015, 14, 3154–3172. [Google Scholar] [CrossRef] [Green Version]
- Chabaud, A.G. Sur la nutrition artificielle des tiques. Ann. Parasitol. Hum. Comp. 1950, 25, 142–144. [Google Scholar] [CrossRef]
- Rau, U.; Hannoun, C. The use of a capillary-tube technique for artificially feeding Argas reflexus reflexus ticks. Bull World Health Organ. 1968, 39, 332–333. [Google Scholar]
- Willadsen, P.; Kemp, D.H.; McKenna, R.V. Bloodmeal ingestion and utilization as a component of host specificity in the tick, Boophilus microplus. Z. Parasitenkd. 1984, 70, 415–420. [Google Scholar] [CrossRef]
- Waladde, S.M.; Young, A.S.; Morzaria, S.P. Artificial feeding of ixodid ticks. Parasitol. Today 1996, 12, 272–278. [Google Scholar] [CrossRef]
- Kuhnert, F. Feeding of hard ticks in vitro: New perspectives for rearing and for the identification of systemic acaricides. ALTEX 1996, 13, 76–87. [Google Scholar]
- Kröber, T.; Guerin, P.M. In vitro feeding assays for hard ticks. Trends Parasitol. 2007, 23, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Antunes, S.; Merino, O.; Mosqueda, J.; Moreno-Cid, J.A.; Bell-Sakyi, L.; Fragkoudis, R.; Weisheit, S.; Pérez de la Lastra, J.M.; Alberdi, P.; Domingos, A.; et al. Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. Parasit. Vectors 2014, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröber, T.; Guerin, P.M. An in vitro feeding assay to test acaricides for control of hard ticks. Pest. Manag. Sci. 2007, 63, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Gonsioroski, A.V.; Bezerra, I.A.; Utiumi, K.U.; Driemeier, D.; Farias, S.E.; da Silva Vaz, I.J.; Masuda, A. Anti-tick monoclonal antibody applied by artificial capillary feeding in Rhipicephalus (Boophilus) microplus females. Exp. Parasitol. 2012, 130, 359–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trentelman, J.J.A.; Teunissen, H.; Kleuskens, J.A.G.M.; de Crommert, J.V.; de la Fuente, J.; Hovius, J.W.R.; Schetters, T.P.M. A combination of antibodies against Bm86 and Subolesin inhibits engorgement of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae in vitro. Parasit. Vectors 2019, 12, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perner, J.; Sobotka, R.; Sima, R.; Konvickova, J.; Sojka, D.; de Oliveira, P.L.; Hajdusek, O.; Kopacek, P. Acquisition of exogenous haem is essential for tick reproduction. Elife 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Osborne, R.W.; Mellor, P.S. Use of a silicone membrane feeding technique in the laboratory maintenance of a colony of Ornithodoros moubata. Trop Anim. Health Prod. 1985, 17, 31–38. [Google Scholar] [CrossRef]
- Hokama, Y.; Lane, R.S.; Howarth, J.A. Maintenance of adult and nymphal Ornithodoros coriaceus (Acari: Argasidae) by artificial feeding through a Parafilm membrane. J. Med. Entomol. 1987, 24, 319–323. [Google Scholar] [CrossRef]
- Schwan, E.V.; Hutton, D.; Shields, K.J.; Townson, S. Artificial feeding and successful reproduction in Ornithodoros moubata moubata (Murray, 1877) (Acarina: Argasidae). Exp. Appl. Acarol. 1991, 13, 107–115. [Google Scholar] [CrossRef]
- Lambertz, C.; Chongkasikit, N.; Jittapalapong, S.; Gauly, M. Immune response of Bos indicus cattle against the anti-tick antigen Bm91 derived from local Rhipicephalus (Boophilus) microplus ticks and its effect on tick reproduction under natural infestation. J. Parasitol. Res. 2012, 90, 7607. [Google Scholar] [CrossRef]
- Final Report: Cattle Vaccination Studies Using Novel Anti-Cattle Tick Antigens Developed during Beef CRC Research. Available online: https://www.mla.com.au/research-and-development/search-rd-reports/final-report-details/Cattle-vaccination-studies-using-novel-anti-cattle-tick-antigens-developed-during-Beef-CRC-research/3636 (accessed on 15 November 2014).
- Hope, M.; Jiang, X.; Gough, J.; Josh, P.; Jonsson, N.; Willadsen, P. Experimental vaccination of sheep and cattle against tick infestation using recombinant 5′-nucleotidase. Parasite Immunol. 2010, 32, 135–142. [Google Scholar] [CrossRef] [Green Version]
- McKenna, R.V.; Riding, G.A.; Jarmey, J.M.; Pearson, R.D.; Willadsen, P. Vaccination of cattle against the Boophilus microplus using a mucin-like membrane glycoprotein. Parasite Immunol. 1998, 20, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, L. Untersuchugen über Eiweisspräzipitine. Deut. Med. Wochschr. 1902, 28, 733. [Google Scholar] [CrossRef] [Green Version]
- Pross, H.F.; Eidinger, D. Antigenic competition: A review of nonspecific antigen-induced suppression. Adv. Immunol. 1974, 18, 133–168. [Google Scholar] [CrossRef]
- Taussig, M.J.; Mozes, E.; Shearer, G.M.; Sela, M. Studies on the mechanism of antigenic competition: Analysis of competition between synthetic polypeptide antigens. Eur. J. Immunol. 1972, 2, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Billeskov, R.; Beikzadeh, B.; Berzofsky, J.A. The effect of antigen dose on T cell-targeting vaccine outcome. Hum. Vaccin. Immunother. 2019, 15, 407–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.T.; Merrifield, N.; Zarchy, T.; Brody, N.I.; Siskind, G.W. Studies on antigenic competition. 3. Effect on antigenic competition on antibody affinity. Immunology 1974, 26, 943–955. [Google Scholar]
- Brody, N.I.; Siskind, G.W. Studies on antigenic competition. J. Exp. Med. 1969, 130, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.L.; Friedman, H. Induction of “low dose” tolerance to a bacterial somatic antigen in neonatal mice. Nat. New Biol. 1971, 233, 82–84. [Google Scholar] [CrossRef]
- Michallet, M.C.; Saltel, F.; Flacher, M.; Revillard, J.P.; Genestier, L. Cathepsin-dependent apoptosis triggered by supraoptimal activation of T lymphocytes: A possible mechanism of high dose tolerance. J. Immunol. 2004, 172, 5405–5414. [Google Scholar] [CrossRef] [Green Version]
- Noscal, G.J. Immunological tolerance in organ transplantation. Fair prospect or fanciful folly? Circulation 1969, 39, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Sundstrom, J.B.; Cherniak, R. T-cell-dependent and T-cell-independent mechanisms of tolerance to glucuronoxylomannan of Cryptococcus neoformans serotype A. Infect. Immun. 1993, 61, 1340–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dintzis, R.Z.; Middleton, M.H.; Dintzis, H.M. Studies on the immunogenicity and tolerogenicity of T-independent antigens. J. Immunol. 1983, 131, 2196–2203. [Google Scholar] [PubMed]
- Baxter, D. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. 2007, 57, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Vogel, F.R. Improving vaccine performance with adjuvants. Clin. Infect. Dis. 2000, 30, 266–270. [Google Scholar] [CrossRef]
- Awate, S.; Babiuk, L.A.; Mutwiri, G. Mechanisms of action of adjuvants. Front. Immunol. 2013, 4, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrie, Y.; Mohammed, A.R.; Kirby, D.J.; McNeil, S.E.; Bramwell, V.W. Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 2008, 364, 272–280. [Google Scholar] [CrossRef]
- García, A.; De Sanctis, J.B. An overview of adjuvant formulations and delivery systems. APMIS 2014, 122, 257–267. [Google Scholar] [CrossRef]
- Brown, S.J.; Shapiro, S.Z.; Askenase, P.W. Characterization of tick antigens inducing host immune resistance. I. Immunization of guinea pigs with Amblyomma americanum-derived salivary gland extracts and identification of an important salivary gland protein antigen with guinea pig anti-tick antibodies. J. Immunol. 1984, 133, 3319–3325. [Google Scholar]
- Imamura, S.; Konnai, S.; da Silva Vaz, I.J.; Yamada, S.; Nakajima, C.; Ito, Y.; Tajima, T.; Yasuda, J.; Simuunza, M.; Onuma, M.; et al. Effects of anti-tick cocktail vaccine against Rhipicephalus appendiculatus. Jpn. J. Vet. Res. 2008, 56, 85–98. [Google Scholar]
- Coumou, J.; Wagemakers, A.; Trentelman, J.J.; Nijhof, A.M.; Hovius, J.W. Vaccination against Bm86 homologues in rabbits does not impair Ixodes ricinus feeding or oviposition. PLoS ONE 2015, 10, e0123495. [Google Scholar] [CrossRef] [Green Version]
- Stills, H.F.J. Adjuvants and antibody production: Dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J. 2005, 46, 280–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellam, R.L.; Smith, D.; Kemp, D.H.; Willadsen, P. Vaccination against ticks. In Animal Parasite Control Utilizing Biotechnology; Yong, W.K., Ed.; CRC Press: Boca Raton, FL, USA, 1992; pp. 303–331. [Google Scholar]
- Parizi, L.F.; Reck, J.J.; Oldiges, D.P.; Guizzo, M.G.; Seixas, A.; Logullo, C.; de Oliveira, P.L.; Termignoni, C.; Martins, J.R.; da Silva Vaz, I.J. Multi-antigenic vaccine against the cattle tick Rhipicephalus (Boophilus) microplus: A field evaluation. Vaccine 2012, 30, 6912–6917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 1. WO2014154847—VACCINE AGAINST RHIPICEPHALUS TICKS. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014154847 (accessed on 2 October 2014).
- Olds, C.L.; Mwaura, S.; Odongo, D.O.; Scoles, G.A.; Bishop, R.; Daubenberger, C. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasit. Vectors 2016, 9, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, S.; Namangala, B.; Tajima, T.; Tembo, E.M.; Yasuda, J.; Ohashi, K.; Onuma, M. Two serine protease inhibitors (serpins) that induce a bovine protective immune response against Rhipicephalus appendiculatus ticks. Vaccine 2006, 24, 2230–2237. [Google Scholar] [CrossRef]
- McDevitt, H.O.; Benacerraf, B. Genetic control of specific immune responses. Adv. Immunol. 1969, 11, 31–74. [Google Scholar] [CrossRef]
- Kennedy, L.J.; Lunt, M.; Barnes, A.; McElhinney, L.; Fooks, A.R.; Baxter, D.N.; Ollier, W.E.R. Factors influencing the antibody response of dogs vaccinated against rabies. Vaccine 2007, 25, 8500–8507. [Google Scholar] [CrossRef]
- Mansfield, K.L.; Burr, P.D.; Snodgrass, D.R.; Sayers, R.; Fooks, A.R. Factors affecting the serological response of dogs and cats to rabies vaccination. Vet. Rec. 2004, 154, 423–426. [Google Scholar] [CrossRef]
- Day, M.J. Immune system development in the dog and cat. J. Comp. Pathol. 2007, 137, 10–15. [Google Scholar] [CrossRef]
- Green, I.; Inman, J.K.; Benacerraf, B. Genetic control of the immune response of guinea pigs to limiting doses of bovine serum albumin: Relationship to the poly-L-lysine gene. Proc. Natl. Acad. Sci. USA 1970, 66, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Nomoto, K.; Mashiba, H.; Takeya, K. Immune response against hamster erythrocytes in the low-responder mouse strains. I. Strain difference in the antibody response to primary antigenic stimulation and its disappearance after pre-sensitization with the antigen in Freund’s complete adjuvant. Jpn. J. Microbiol. 1972, 16, 43–51. [Google Scholar] [CrossRef]
- Mozes, E.; McDevitt, H.O.; Jaton, J.C.; Sela, M. The nature of the antigenic determinant in a genetic control of the antibody response. J. Exp. Med. 1969, 130, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Young, C.R.; O’Connor, G.P.; Griffiths, P. Genetic control of the antibody response to poly(L Tyr, L Glu)-poly(DL Ala) poly(L Lys) in mice: Analysis of (low responder x low responder)F1 hybrids. Immunology 1982, 45, 273–281. [Google Scholar] [PubMed]
- Taussig, M.J.; Mozes, E.; Shearer, G.M.; Sela, M. Antigenic competition and genetic control of the immune response. A hypothesis for intramolecular competition. Cell Immunol. 1973, 8, 299–310. [Google Scholar] [CrossRef]
- Ndawula, C., Jr. Vacina De Glutationa S-Transferases Como Estratégia De Controle De Carrapato. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Algere, Brazil, October 2019. [Google Scholar]
- da Silva Vaz, J.I.; Imamura, S.; Ohashi, K.; Onuma, M. Cloning, expression and partial characterization of a Haemaphysalis longicornis and a Rhipicephalus appendiculatus glutathione S-transferase. Insect Mol. Biol. 2004, 13, 329–335. [Google Scholar] [CrossRef]
- Piper, E.K.; Jonsson, N.N.; Gondro, C.; Vance, M.E.; Lew-Tabor, A.; Jackson, L.A. Peripheral cellular and humoral responses to infestation with the cattle tick Rhipicephalus microplus in Santa Gertrudis cattle. Parasite Immunol. 2017, 39. [Google Scholar] [CrossRef] [Green Version]
- Tabor, A.E.; Ali, A.; Rehman, G.; Garcia, G.R.; Zangirolamo, A.F.; Malardo, T.; Jonsson, N.N. Cattle tick Rhipicephalus microplus-host interface: A review of resistant and susceptible host responses. Front. Cell Infect. Microbiol. 2017, 7, 506. [Google Scholar] [CrossRef] [Green Version]
- Kasaija, P.D.; Contreras, M.; Kabi, F.; Mugerwa, S.; de la Fuente, J. Vaccination with recombinant subolesin antigens provides cross-tick species protection in Bos indicus and crossbred cattle in Uganda. Vaccines 2020, 8, 319. [Google Scholar] [CrossRef]
- Almazán, C.; Kocan, K.M.; Blouin, E.F.; de la Fuente, J. Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. Vaccine 2005, 23, 5294–5298. [Google Scholar] [CrossRef]
- Untalan, P.M.; Pruett, J.H.; Steelman, C.D. Association of the bovine leukocyte antigen major histocompatibility complex class II DRB3*4401 allele with host resistance to the Lone Star tick, Amblyomma americanum. Vet. Parasitol. 2007, 145, 190–195. [Google Scholar] [CrossRef]
- Rodrigues, V.; Fernandez, B.; Vercoutere, A.; Chamayou, L.; Andersen, A.; Vigy, O.; Demettre, E.; Seveno, M.; Aprelon, R.; Giraud-Girard, K.; et al. Immunomodulatory Effects of Amblyomma variegatum Saliva on bovine cells: Characterization of cellular responses and identification of molecular determinants. Front. Cell Infect. Microbiol. 2018, 7, 521. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.R.; Garcia, G.R.; Teixeira, F.R.; Brandão, L.G.; Anderson, J.M.; Ribeiro, J.M.C.; Valenzuela, J.G.; Horackova, J.; Veríssimo, C.J.; Katiki, L.M.; et al. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasit. Vectors 2017, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Ghosh, S. Laboratory scale production of recombinant Haa86 tick protein in Pichia pastoris and in Escherichia coli system. Methods Mol. Biol. 2016, 1404, 459–482. [Google Scholar] [CrossRef] [PubMed]
- Bensaci, M.; Bhattacharya, D.; Clark, R.; Hu, L.T. Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine 2012, 30, 6040–6046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, M.A.; Smith, D.R.; Kemp, D.H.; Tellam, R.L. Native and baculovirus-expressed forms of the immuno-protective protein BM86 from Boophilus microplus are anchored to the cell membrane by a glycosyl-phosphatidyl inositol linkage. Insect Mol. Biol. 1993, 1, 139–147. [Google Scholar] [CrossRef]
- Clark, T.G.; Cassidy-Hanley, D. Recombinant subunit vaccines: Potentials and constraints. Dev. Biol. 2005, 121, 153–163. [Google Scholar]
- Willadsen, P.; McKenna, R.V. Vaccination with ‘concealed’ antigens: Myth or reality? Parasite Immunol. 1991, 13, 605–616. [Google Scholar] [CrossRef]
- Dertzbaugh, M.T. Genetically engineered vaccines: An overview. Plasmid 1998, 39, 100–113. [Google Scholar] [CrossRef]
- Sørensen, H.P. Towards universal systems for recombinant gene expression. Microb. Cell Fact 2010, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Fakruddin, M.; Mohammad Mazumdar, R.; Bin Mannan, K.S.; Chowdhury, A.; Hossain, M.N. Critical factors affecting the success of cloning, expression, and mass production of enzymes by recombinant E. coli. ISRN Biotechnol. 2012, 2013, 590587. [Google Scholar] [CrossRef] [Green Version]
- Schetters, T.; Bishop, R.; Crampton, M.; Kopáček, P.; Lew-Tabor, A.; Maritz-Olivier, C.; Miller, R.; Mosqueda, J.; Patarroyo, J.; Rodriguez, V.; et al. Cattle tick vaccine researchers join forces in CATVAC. Parasit. Vectors 2016, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Bhunia, A.K.; Lu, C. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens. Bioelectron. 2006, 22, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Yarmush, M.L.; Golberg, A.; Serša, G.; Kotnik, T.; Miklavčič, D. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotnik, T.; Frey, W.; Sack, M.; Haberl Meglič, S.; Peterka, M.; Miklavčič, D. Electroporation-based applications in biotechnology. Trends Biotechnol. 2015, 33, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Sato, M. Plasmid uptake by bacteria: A comparison of methods and efficiencies. Appl. Microbiol. Biotechnol. 2009, 83, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Logullo, C.; Moraes, J.; Dansa-Petretski, M.; da Silva Vaz, I.J.; Masuda, A.; Sorgine, M.H.F.; Braz, G.R.; Masuda, H.; Oliveira, P.L. Binding and storage of heme by vitellin from the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol. 2002, 32, 1805–1811. [Google Scholar] [CrossRef]
- Logullo, C.; da Silva Vaz, I.J.; Sorgine, M.H.; Paiva-Silva, P.O.; Faria, F.S.; Zingali, R.B.; De Lima, M.F.; Abreu, L.; Oliveira, E.F.; Alves, E.W.; et al. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology 1998, 116, 525–532. [Google Scholar] [CrossRef]
- Hammerl, P.; Hartl, A.; Thalhamer, J. Improvement of antisera raised against complex antigen mixtures by the use of heterologous sources of antigen for immunization. J. Immunol. Methods 1993, 160, 155–161. [Google Scholar] [CrossRef]
- Page, K.R.; Scott, A.L.; Manabe, Y.C. The expanding realm of heterologous immunity: Friend or foe? Cell Microbiol. 2006, 8, 185–196. [Google Scholar] [CrossRef]
- Agrawal, B. Heterologous immunity: Role in natural and vaccine-induced resistance to infections. Front. Immunol. 2019, 10, 2631. [Google Scholar] [CrossRef] [Green Version]
- Covián, C.; Fernández-Fierro, A.; Retamal-Díaz, A.; Vasquez, A.E.; Lay, M.K.; Riedel, C.A.; González, P.A.; Bueno, S.M.; Kalergis, A.M. BCG-Induced Cross-protection and development of trained immunity: Implication for vaccine design. Front. Immunol. 2019, 10, 2806. [Google Scholar] [CrossRef]
- Welsh, R.M.; Che, J.W.; Brehm, M.A.; Selin, L.K. Heterologous immunity between viruses. Immunol. Rev. 2010, 235, 244–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almazán, C.; Moreno-Cantú, O.; Moreno-Cid, J.A.; Galindo, R.C.; Canales, M.; Villar, M.; de la Fuente, J. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine 2012, 30, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Torina, A.; Moreno-Cid, J.A.; Blanda, V.; Fernández de Mera, I.G.; Pérez de la Lastra, J.M.; Scimeca, S.; Blanda, M.; Scariano, M.E.; Briganò, S.; Disclafani, R.; et al. Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen. Parasit Vectors 2014, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Oldiges, D.P.; Laughery, J.M.; Tagliari, N.J.; Filho, R.V.L.; Davis, W.C.; da Silva Vaz, I.J.; Termignoni, C.; Knowles, D.P.; Suarez, C.E. Transfected Babesia bovis expressing a tick GST as a live vector vaccine. PLoS Negl. Trop. Dis. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Odahara, M.; Yoshizumi, T.; Oikawa, K.; Kimura, M.; Su'etsugu, M.; Numata, K. Cell-penetrating peptide-mediated transformation of large plasmid DNA into Escherichia coli. ACS Synth. Biol. 2019, 8, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Patarroyo, J.H.; Portela, R.W.; De Castro, R.O.; Couto Pimentel, J.; Guzman, F.; Patarroyo, M.E.; Vargas, M.I.; Prates, A.A.; Dias Mendes, M.A. Immunization of cattle with synthetic peptides derived from the Boophilus microplus gut protein (Bm86). Vet. Immunol. Immunopathol. 2002, 88, 163–172. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Lobo, F.P.; Cunha, R.C.; Garcia, M.V.; Andreotti, R. Design of the ATAQ peptide and its evaluation as an immunogen to develop a Rhipicephalus vaccine. Vet. Parasitol. 2016, 221, 30–38. [Google Scholar] [CrossRef]
- Rodríguez-Mallon, A.; Encinosa, P.E.; Méndez-Pérez, L.; Bello, Y.; Fernández, R.R.; Garay, H.; Cabrales, A.; Méndez, L.; Borroto, C.; Mario Pablo Estrada, M.P. High efficacy of a 20 amino acid peptide of the acidic ribosomal protein P0 against the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis. 2015, 6, 530–537. [Google Scholar] [CrossRef]
- Woodruff, M.C.; Kim, E.H.; Luo, W.; Pulendran, B. B cell competition for restricted T cell help suppresses rare-epitope responses. Cell Rep. 2018, 25, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Kedl, R.M.; Rees, W.A.; Hildeman, D.A.; Schaefer, B.; Mitchell, T.; Kappler, J.; Marrack, P. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 2000, 192, 1105–1113. [Google Scholar] [CrossRef]
- Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csordas, B.G.; Cunha, R.C.; Garcia, M.V.; da Silva, S.S.; Leite, F.L.; Andreotti, R. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus) microplus. PLoS ONE 2018, 13, e0191596. [Google Scholar] [CrossRef] [Green Version]
- Blecha, I.M.Z.; Csordas, B.G.; Aguirre, A.A.R.; Cunha, R.C.; Garcia, M.V.; Andreotti, R. Analysis of Bm86 conserved epitopes: Is a global vaccine against Cattle Tick Rhipicephalus microplus possible? Rev. Bras. Parasitol. Vet. 2018, 27, 267–279. [Google Scholar] [CrossRef]
- Ndawula, C.J.; Amaral, X.M.; Villavicencio, B.; Lopes, F.C.; Juliano, M.A.; Parizi, L.F.; Verli, H.; da Silva Vaz, I.J.; Ligabue-Braun, R. Prediction, mapping and validation of tick glutathione S-transferase B-cell epitopes. Ticks Tick Borne Dis. 2020, 11, 101445. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.H. DNA vaccines: Roles against diseases. Germs 2013, 3, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Zhang, J.C.; Cui, X.J.; Zheng, J.J.; Li, R.; Wang, F.; Liu, J.; Hu, Y.H. Evaluation of immune protection induced by DNA vaccines from Haemaphysalis longicornis paramyosin in rabbits. Parasit Vectors 2017, 10, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, I.A.; Wang, Y.; Zhou, Y.; Cao, J.; Zhang, H.; Zhou, J. Cross protection induced by combined Subolesin-based DNA and protein immunizations against adult Haemaphysalis longicornis. Vaccine 2020, 38, 907–915. [Google Scholar] [CrossRef]
- Obeng-Adjei, N.; Hutnick, N.A.; Yan, J.; Chu, J.S.; Myles, D.J.F.; Morrow, M.P.; Sardesai, N.Y.; Weiner, D.B. DNA vaccine cocktail expressing genotype A and C HBV surface and consensus core antigens generates robust cytotoxic and antibody responses in mice and Rhesus macaques. Cancer Gene Ther. 2013, 20, 652–662. [Google Scholar] [CrossRef]
- Uhlír, J.; Grubhoffer, L.; Borský, I.; Dusbábek, F. Antigens and glycoproteins of larvae, nymphs and adults of the tick Ixodes ricinus. Med. Vet. Entomol. 1994, 8, 141–150. [Google Scholar] [CrossRef]
- Lee, R.P.; Jackson, L.A.; Opdebeeck, J.P. Immune responses of cattle to biochemically modified antigens from the midgut of the cattle tick, Boophilus microplus. Parasite Immunol. 1991, 13, 661–672. [Google Scholar] [CrossRef]
- Willadsen, P.; Riding, G.A.; McKenna, R.V.; Kemp, D.H.; Tellam, R.L.; Nielsen, J.N.; Lahnstein, J.; Cobon, G.S.; Gough, J.M. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J. Immunol. 1989, 143, 1346–1351. [Google Scholar] [PubMed]
- Sahdev, S.; Khattar, S.K.; Saini, K.S. Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies. Mol. Cell Biochem. 2008, 307, 249–264. [Google Scholar] [CrossRef]
- Peltola, H.; Käyhty, H.; Sivonen, A.; Mäkelä, H. Haemophilus influenzae type b capsular polysaccharide vaccine in children: A double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 1977, 60, 730–737. [Google Scholar] [PubMed]
- Avery, O.T.; Goebel, W.F. Chemo-immunological studies on conjugated carbohydrate-proteins: II. immunological specificity of synthetic sugar-protein antigens. J. Exp. Med. 1929, 50, 533–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, J.; Berkowitz, C.; Pescetti, J.; Burkart, K.; Samuelson, O.; Gordon, L. Enhanced immunogenicity in young infants of a new Haemophilus influenzae type b(HIB) capsular polysaccharide(PRP)-diphtheria toxoid(D) conjugate vaccine. Pediatr. Res. 1984, 18, 287. [Google Scholar] [CrossRef] [Green Version]
- Mäkelä, P.H. Conjugate vaccines a breakthrough in vaccine development. Southeast Asian J. Trop. Med. Public Health 2003, 34, 249–253. [Google Scholar]
- Mitchison, N.A. T-cell-B-cell cooperation. Nat. Rev. Immunol. 2004, 4, 308–312. [Google Scholar] [CrossRef]
- Avci, F.Y.; Li, X.; Tsuji, M.; Kasper, D.L. Carbohydrates and T cells: A sweet twosome. Semin. Immunol. 2013, 25, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Vechtova, P.; Sterbova, J.; Sterba, J.; Vancova, M.; Rego, R.O.M.; Selinger, M.; Strnad, M.; Golovchenko, M.; Rudenko, N.; Grubhoffer, L. A bite so sweet: The glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018, 11, 594. [Google Scholar] [CrossRef]
- Dinglasan, R.R.; Jacobs-Lorena, M. Insight into a conserved lifestyle: Protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect. Immun. 2005, 73, 7797–7807. [Google Scholar] [CrossRef] [Green Version]
- Woodland, D.L. Jump-starting the immune system: Prime-boosting comes of age. Trends Immunol. 2004, 25, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Shetty, V.U.; Chaudhuri, P.; Sabella, C. Rationale for the immunization schedule: Why is it the way it is? Pediatr. Rev. 2019, 40, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Lu, S. Heterologous prime-boost vaccination. Curr. Opin. Immunol. 2009, 21, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Blobel, N.J.; Ramirez-Valdez, A.; Ishizuka, A.S.; Lynn, G.M.; Seder, R.A. Antigenic competition affects the magnitude and breadth of CD8 T cell immunity following immunization with a nanoparticle neoantigen cancer vaccine. J. Immunol. 2017, 198, 20. [Google Scholar]
- Willadsen, P.; Smith, D.; Cobon, G.; McKenna, R.V. Comparative vaccination of cattle against Boophilus microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91. Parasite Immunol. 1996, 18, 241–246. [Google Scholar] [CrossRef]
- Riding, G.A.; Jarmey, J.; McKenna, R.V.; Pearson, R.; Cobon, G.S.; Willadsen, P. A protective “concealed” antigen from Boophilus microplus. Purification, localization, and possible function. J. Immunol. 1994, 153, 5158–5166. [Google Scholar]
- Seixas, A.; Leal, A.T.; Nascimento-Silva, M.C.; Masuda, A.; Termignoni, C.; da Silva Vaz, I.J. Vaccine potential of a tick vitellin-degrading enzyme (VTDCE). Vet. Immunol. Immunopathol. 2008, 124, 332–340. [Google Scholar] [CrossRef]
- Leal, A.T.; Seixas, A.; Pohl, P.C.; Ferreira, C.A.S.; Logullo, C.; Oliveira, P.L.; Farias, S.E.; Termignoni, C.; da Silva Vaz, I.J.; Masuda, A. Vaccination of bovines with recombinant Boophilus Yolk pro-Cathepsin. Vet. Immunol. Immunopathol. 2006, 114, 341–345. [Google Scholar] [CrossRef]
- Pérez-Sánchez, R.; Manzano-Román, R.; Obolo-Mvoulouga, P.; Oleaga, A. In silico selection of functionally important proteins from the mialome of Ornithodoros erraticus ticks and assessment of their protective efficacy as vaccine targets. Parasites Vectors 2019, 12, 508. [Google Scholar] [CrossRef] [Green Version]
Cocktail Constituting Antigens | Subunit Protein Expression System | Cocktail Vaccination Schedule | Target Tick Species or Pathogen | Single Antigen Vaccine Efficacy (E) * | Cocktail Antigen Vaccine Efficacy (E) * | References |
---|---|---|---|---|---|---|
Rhipicephalus microplus-gut glycoprotein (Bm86) and R. microplus-putative carboxydipeptidase (Bm91) | Bacterial (Escherichia coli) | Dose: 100 μg per antigen | Rhipicephalus (Boophilus) microplus | Bm86: 80% | Overall dual efficacy data not reported. | [95,171,172] |
Adjuvant: Montanide 888 (Seppic) and Marcol 52. | ||||||
Intervals: not indicated (two doses) | Bm91: 37% * Reduction in egg weights relative to controls | * Number of engorged ticks, egg weight and Tick weight/egg weight | ||||
Model: Cattle | ||||||
Rhipicephalus microplus-mucine-like glycoprotein (BMA7) and R. microplus-gut glycoprotein (Bm86) | Protein chromatography | Dose: 219 μg per antigen | Rhipicephalus (Boophilus) microplus | BMA7: * Reduction in egg weights relative to controls. | Overall dual efficacy data not reported. | [74,95] |
Adjuvant: Montanide ISA 70 V. | ||||||
Intervals: four weeks (two doses) | (overall efficacy data not reported) | * Reduction in egg weights relative to controls. | ||||
Model: Cattle | Bm86: 80% | |||||
Ixodes scapularis-putative protein: 4E6, Nucleotidase-like (4F8 and Subolesin (4D8) | Bacterial (Escherichia coli) | Dose: 50μg per antigen | Ixodes scapularis | 4E6: 40 ± 38% | 58 ± 11% * Number of engorged ticks and oviposition | [114] |
Adjuvant: FIA (Freund’s complete adjuvant) | 4F8: 33 ± 9% | |||||
Intervals: 0, 6, 12, 14 weeks | 4D8: 71 ± 36% * Number of ticks and oviposition | |||||
Model: Sheep | ||||||
Ixodes scapularis-putative proteins: Nucleotidase-like (4F8) and Subolesin (4D8) | Bacterial (Escherichia coli) | Dose: 50μg per antigen | Ixodes scapularis | Larvae | Not done | [138] |
Adjuvant: FIA (Freund’s complete adjuvant) | 4F8: 62%, 4D8: 71%, 4E6: 63% * Number of replete larvae and moulting-inhibition | |||||
or I. scapularis-putative proteins synthetic peptide (4E6) | Intervals: 0, 4, 7 weeks | |||||
Model: Rabbits and mice | scapularis | |||||
Nymphs | Nymphs | |||||
4D8: 35%, 0% | 63%, 0% * Inhibition of nymph infestation and weight of engorged nymph | |||||
4F8: 39%, 0% | ||||||
4E6: 0%, 0% * Inhibition of nymph infestation and weight of engorged nymph | ||||||
Nymphs | Nymphs | |||||
Dermacentor variabilis | 4D8: 22%, 32% | 8%, 0% * Inhibition of nymph infestation and weight of engorged nymphs | ||||
4F8: 0%, 0 % | ||||||
4E6: 5%, 27% * Inhibition of nymph infestation and weight of engorged nymphs | ||||||
Nymphs | Nymphs | |||||
Amblyomma americanum | 4D8: 17%, 3% | 12%, 16% | ||||
4F8: 9%, 1% | * Inhibition of nymph infestation and weight of engorged nymphs | |||||
4E6: 29%, 0% * Inhibition of nymph infestation and weight of engorged nymphs | ||||||
Rhipicephalus appendiculatus serpin-1 (rRAS-1), serpin-2 (rRAS-2) | Bacterial (Escherichia coli) | Dose: 500 μg per antigen | Rhipicephalus appendiculatus | (Not done) | 61.4% * Reduction in nymph engorgement and 28 (male) and 43% (female) * increased tick mortality | [99] |
Adjuvant: Freund’s complete adjuvant (FIA) (Priming dose), and Freund’s incomplete adjuvant (FAC) (booster dose) | ||||||
Intervals: 14 days (three doses) | ||||||
Model: Cattle | ||||||
Rhipicephalus appendiculatus-protein: serpin-3 (rRAS-3), serpin-4 (rRAS-4) and a 36kDa immuno-dominant protein (rRIM36) | Bacterial (Escherichia coli) | Dose: 300–350 μg per antigen | Rhipicephalus appendiculatus | Note done | 39.5% * uninfected-tick mortality | [92] |
Adjuvants: Freund’s complete adjuvant (FCA) (Priming dose) and Freundś incomplete adjuvant (FIA) (booster doses) | Theileria parva | 48.5% * T. parva infected-tick mortality | ||||
Intervals: 14 days (three doses) | ||||||
Model: Cattle | ||||||
Rhipicephalus microplus-5´-nucleotidase (4F8) and R. microplus-gut glycoprotein (Bm86) | 4F8: Bacterial (Escherichia coli) | Dose: 80 and 100 μg per antigen in the respective models | Rhipicephalus microplus | 4F8: Overall efficacy data not reported | Overall efficacy data not reported. | [73] |
Bm86 (Yeast: Pichia pastoris) | Adjuvant: ISA50, QuilA and ISA773 (Seppic) | Bm86: 81% | ||||
Model: Sheep and cattle | * Number of engorged ticks, egg weight and tick weight/egg weight | * Number of engorged ticks, egg weight and tick weight/egg weight | ||||
Haemaphysalis longicornis-Recombinant Glutathione-S. transferase (rGST-Hl), Rhipicephalus microplus-vitellin-degrading cysteine endopeptidase (VTDCE) and R. microplus-Boophilus Yolk Cathepsin (BYC) | Bacterial (Escherichia coli) | Dose: 200 μg per antigen | Rhipicephalus microplus | rGST-Hl: 57% | 51.3–61.6% | [38,96,173,174] |
Adjuvant: Montanide 888 and Marcol 52 | VTDCE: 21% | * Number of engorged ticks | ||||
Intervals: three weeks (three doses) | BYC: 25.24% * Number of of engorged ticks, egg weight and larva-emergence | |||||
Model: Cattle | ||||||
Rhipicephalus microplus- gut glycoprotein (Bm86) and Ixodes scapularis-Subolesin (4D8) | Bacterial (Escherichia coli) | Dose: 100 μg each antigen | Rhipicephalus microplus | Bm86: 79% | 99% * Number of engorged ticks, oviposition and larval emergence | [97] |
Adjuvant: Montanide ISA50V2 (Seppic France). | Rhipicephalus annulatus | 4D8: 58 ± 11% * Number of engorged ticks and oviposition | ||||
Intervals: four weeks (three doses) | ||||||
Model: Cattle | ||||||
Ixodes ricinus-Recombinant gut glycoproteins: 86-1 (rIr86-1) and 86-2 (Ir86-2) | Bacterial (Escherichia coli) | Dose: 50 μg per antigen | Ixodes ricinus | rIr86-1 and Ir86-2 | Overall efficacy data not reported. | [93] |
Adjuvant: Freundś complete adjuvant (FCA) (Priming dose) and Freundś incomplete adjuvant (FIA) (booster doses) | Overall efficacy data not reported. | * Number of engorged ticks and oviposition | ||||
Intervals: 3 weeks (3 doses) | * Number of engorged ticks and oviposition | |||||
Model: Rabbits | ||||||
Rhipicephalus appendiculatus histamine binding proteins (HBPM, HBPF1, HBPF2), | Bacterial (Escherichia coli) | Dose: 50 μg per antigen | Rhipicephalus | Not done | Overall efficacy data not reported. | [98] |
R. appendiculatus-cement cone full-protein (TRPFL) and truncated-TRP protein (TRP18-89) | Adjuvant: Montanide ISA 50 V. | appendiculatus | * Number of engorged ticks and egg weight | |||
R. appendiculatus-subolesin homologue (4D8), and Theileria parva sporozoite antigen (p67C) | Intervals: four weeks (three doses) | Theileria parva | ||||
Model: Cattle | ||||||
Rhipicephalus microplus-protein: 39 (Rm39), 180 (Rm180), 239 (Rm239) and 76 (Rm76) | Bacterial (Escherichia coli) | Dose: 100 μg and 25 μg | Rhipicephalus (Boophilus) microplus | Note done | 73.2% * Number of engorged ticks, oviposition and larval emergence | [117] |
Adjuvant: Aluminium hydroxide | ||||||
Intervals: three weeks (three doses) | ||||||
Model: Cattle | ||||||
Amblyomma variegatum-Recombinant Glutathione-S-transferase (rGST-Av) and Rhipicephalus decoloratus-Recombinant Glutathione-S-transferase (rGST-Rd) | Bacterial (Escherichia coli) | Dose: 100 μg per antigen | Rhipicephalus sanguineus | Note done | 37.27% * Number of engorged ticks | [45] |
Adjuvant: Montanide 888 (Seppic) and Marcol 52. | ||||||
Intervals: 14 days (three doses) | ||||||
Rhipicephalus australis-peptide: 4, 6 and 7 conjugated with key limpet haemocyanin (KLH) | Chemical synthesis | Dose: 200 μg | Rhipicephalus australis | Peptide 4-KLH 65% | 47% * Number of engorged ticks, tick number/egg weights, and egg fertility | [72] |
Adjuvants: Freundś complete adjuvant (FCA) (Priming dose), Freundś incomplete adjuvant (FIA) (booster doses) | Peptide-6-KLH 63% | |||||
(Peptide 4-KLH, Peptide-6-KLH, Peptide 7–KLH) | Intervals: Day 0, 4, 7 weeks (three doses) | Peptide 7–KLH 45% | ||||
Model: Cattle Bos taurus Herefords | * Number of ticks, tick number/egg weights, and egg fertility | |||||
Amblyomma variegatum-Recombinant Subolesin (rSUB-Av), | Bacterial (Escherichia coli) | Dose: 100 μg | Rhipicephalus appendiculatus | rSUB-Ra: 47%, 50% (B. indicus) and 90%, 89% and 51% (cross-breed) | 92%, 51% (B. indicus) and 74%, 69% and 71% (cross-breed) | [113] |
Rhipicephalus appendiculatus-Recombinant Subolesin (rSUB-Ra) | Adjuvant: Montanide ISA50V2 (Seppic France) | Rhipicephalus decoloratus | rSUB-Ra: 68%, 58% (B. indicus) and 89%, 94% and 69% (cross-breed) | |||
Interval: 30 days (two doses) | Amblyomma variegatum | rSUB-Av: 86%, 47% (B. indicus) and 83%, 76% and 72% (cross-breed) | * Number of engorged ticks, egg oviposition and egg fertility. | |||
Rhipicephalus decoloratus-Recombinant Subolesin (rSUB-Rd) | Model: Cattle (Bovis indicus and cross-breed) | * Number of engorged ticks, egg oviposition and egg fertility | ||||
Ornithodorus erraticus midgut-epitope-based recombinant proteins: chitinases (OeCHl), 60S acidic ribosomal protein P0 (OeRPP0), secreted protein PK-4 (OePK4) and tetraspanins (TSPs = OeTSP1 + OeTSP2) | Bacterial (Escherichia coli) | Dose: 100 μg | Ornithodorus erraticus and | O. erraticus: OeCHl (30.2%), OeRPP0 (57.5%), OePK4 (57.8%) and (TSPs = OeTSP1 + OeTSP2) (56%) | O. erraticus: OeCHl + OeRPP0 + OePK4 + TSPs (66.3%) | [175] |
Adjuvant: Montanide ISA 50 V2 (Seppic, France) | O. moubata | O. moubata: OeCHl (19.6%), OeRPP0 (0%), OePK4 (8.1%) and (TSPs = OeTSP1 + OeTSP2) (11.1%) | O. moubata: OeCHl + OeRPP0 + OePK4 + TSPs (25.6%) | |||
Interval: 14 days (three doses) | * Reduction of: ingested blood (in males, females and Nymph-3), mortality (of males, females and Nymph-3), moulting (of nymphs-3), oviposition (females) and fertility (females | |||||
Model: rabbits | * Reduction of ingested blood (in males, females, and Nymph-3), mortality (of males, females, and Nymph-3), moulting (of Nymph-3), oviposition (females) and fertility (females |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndawula, C., Jr.; Tabor, A.E. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines 2020, 8, 457. https://doi.org/10.3390/vaccines8030457
Ndawula C Jr., Tabor AE. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines. 2020; 8(3):457. https://doi.org/10.3390/vaccines8030457
Chicago/Turabian StyleNdawula, Charles, Jr., and Ala E. Tabor. 2020. "Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies" Vaccines 8, no. 3: 457. https://doi.org/10.3390/vaccines8030457
APA StyleNdawula, C., Jr., & Tabor, A. E. (2020). Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines, 8(3), 457. https://doi.org/10.3390/vaccines8030457