Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning and Purification of Recombinant Lipidated and Non-Lipidated Proteins
2.2. Top-Down Analysis of Recombinant Proteins with LC–MS
2.3. Surface Localization of Heterologously Expressed Proteins on E. coli ClearColi
2.4. Mouse Model for Immunization and Pneumococcal Colonization
2.5. In Vitro Cell Stimulations
2.6. Measurement of Cytokine Levels
2.7. Detection of Antibody Responses by Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Statistical Analyses
3. Results
3.1. Production of Recombinant Lipidated Proteins
3.2. Chemical Characterization and TLR2 Targeting of Recombinant Lipidated Proteins
3.3. Protein Lipidation Enhances the Systemic Antibody Response in an Antigen-, Administration Route-, and Adjuvant-Dependent Manner
3.4. Protein Lipidation Induces IgG Subclass Responses Related to Th1-Type Immunity
3.5. Intranasal Immunization with Lipidated Proteins Enhances the Mucosal Antibody Response in the Nasal Tissue
3.6. Local and Systemic Cytokine Responses Are Not Significantly Driven by Protein Lipidation
3.7. Immunization with Lipidated Antigens Moderately Reduces the Nasal Bacterial Load Compared to Non-Lipidated Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- O’Brien, K.L.; Wolfson, L.J.; Watt, J.P.; Henkle, E.; Deloria-Knoll, M.; McCall, N.; Lee, E.; Mulholland, K.; Levine, O.S.; Cherian, T.; et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet 2009, 374, 893–902. [Google Scholar] [CrossRef]
- Song, J.Y.; Nahm, M.H.; Moseley, M.A. Clinical implications of pneumococcal serotypes: invasive disease potential, clinical presentations, and antibiotic resistance. J. Korean Med. Sci. 2013, 28, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, L.A.; Harrison, L.H.; Flannery, B.; Hadler, J.L.; Schaffner, W.; Craig, A.S.; Jackson, D.; Thomas, A.; Beall, B.; Lynfield, R.; et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J. Infect. Dis. 2007, 196, 1346–1354. [Google Scholar] [CrossRef]
- Miller, E.; Andrews, N.J.; Waight, P.A.; Slack, M.P.; George, R.C. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect. Dis. 2011, 11, 760–768. [Google Scholar] [CrossRef]
- Abdullah, M.R.; Gutierrez-Fernandez, J.; Pribyl, T.; Gisch, N.; Saleh, M.; Rohde, M.; Petruschka, L.; Burchhardt, G.; Schwudke, D.; Hermoso, J.A.; et al. Structure of the pneumococcal l,d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB. Mol. Microbiol. 2014, 93, 1183–1206. [Google Scholar] [CrossRef] [PubMed]
- Kohler, S.; Voss, F.; Gomez Mejia, A.; Brown, J.S.; Hammerschmidt, S. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion. FEBS Lett. 2016, 590, 3820–3839. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Khan, N.; Dehinwal, R.; Kumar, A.; Sehgal, D. Conserved surface accessible nucleoside ABC transporter component SP0845 is essential for pneumococcal virulence and confers protection in vivo. PLoS ONE 2015, 10, e0118154. [Google Scholar] [CrossRef]
- Briles, D.E.; Hollingshead, S.; Brooks-Walter, A.; Nabors, G.S.; Ferguson, L.; Schilling, M.; Gravenstein, S.; Braun, P.; King, J.; Swift, A. The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine 2000, 18, 1707–1711. [Google Scholar] [CrossRef]
- Voss, F.; Kohler, T.P.; Meyer, T.; Abdullah, M.R.; van Opzeeland, F.J.; Saleh, M.; Michalik, S.; van Selm, S.; Schmidt, F.; de Jonge, M.I.; et al. Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation. Front. Immunol. 2018, 9, 2405. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, G.; Chimalapati, S.; Pollard, T.; Lapp, T.; Cohen, J.; Camberlein, E.; Stafford, S.; Periselneris, J.; Aldridge, C.; Vollmer, W.; et al. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J. Immunol. 2014, 193, 3736–3745. [Google Scholar] [CrossRef] [Green Version]
- Bohland, M.; Kress, E.; Stope, M.B.; Pufe, T.; Tauber, S.C.; Brandenburg, L.O. Lack of Toll-like receptor 2 results in higher mortality of bacterial meningitis by impaired host resistance. J. Neuroimmunol. 2016, 299, 90–97. [Google Scholar] [CrossRef]
- Echchannaoui, H.; Frei, K.; Schnell, C.; Leib, S.L.; Zimmerli, W.; Landmann, R. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J. Infect. Dis. 2002, 186, 798–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, F.; Yu, H.; Tian, C.; Li, S.; Jacobs, M.R.; Benedict-Alderfer, C.; Zheng, Q.Y. Role for Toll-like receptor 2 in the immune response to Streptococcus pneumoniae infection in mouse otitis media. Infect. Immun. 2009, 77, 3100–3108. [Google Scholar] [CrossRef] [Green Version]
- van Rossum, A.M.; Lysenko, E.S.; Weiser, J.N. Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect. Immun. 2005, 73, 7718–7726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Clarke, T.B.; Weiser, J.N. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J. Clin. Invest. 2009, 119, 1899–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.Q.; Chen, Q.; Wu, Z.Q.; Paton, J.C.; Snapper, C.M. Both innate immunity and type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on toll-like receptor 2. Infect. Immun. 2005, 73, 298–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasilevsky, S.; Chattopadhyay, G.; Colino, J.; Yeh, T.J.; Chen, Q.; Sen, G.; Snapper, C.M. B and CD4+ T-cell expression of TLR2 is critical for optimal induction of a T-cell-dependent humoral immune response to intact Streptococcus pneumoniae. Eur. J. Immunol. 2008, 38, 3316–3326. [Google Scholar] [CrossRef] [PubMed]
- Kovacs-Simon, A.; Titball, R.W.; Michell, S.L. Lipoproteins of bacterial pathogens. Infect. Immun. 2011, 79, 548–561. [Google Scholar] [CrossRef] [Green Version]
- Moffitt, K.; Skoberne, M.; Howard, A.; Gavrilescu, L.C.; Gierahn, T.; Munzer, S.; Dixit, B.; Giannasca, P.; Flechtner, J.B.; Malley, R. Toll-like receptor 2-dependent protection against pneumococcal carriage by immunization with lipidated pneumococcal proteins. Infect. Immun. 2014, 82, 2079–2086. [Google Scholar] [CrossRef] [Green Version]
- Moffitt, K.; Howard, A.; Martin, S.; Cheung, E.; Herd, M.; Basset, A.; Malley, R. T(H)17-Mediated Protection against Pneumococcal Carriage by a Whole-Cell Vaccine Is Dependent on Toll-Like Receptor 2 and Surface Lipoproteins. Clin. Vaccine Immunol. 2015, 22, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Roche, A.M.; King, S.J.; Weiser, J.N. Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice. Infect. Immun. 2007, 75, 2469–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, A.M.; Weiser, J.N. Identification of the targets of cross-reactive antibodies induced by Streptococcus pneumoniae colonization. Infect. Immun. 2010, 78, 2231–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.; Cohen, J.M.; Jose, R.J.; de Vogel, C.; Baxendale, H.; Brown, J.S. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal. Immunol. 2015, 8, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Winkler, R. ESIprot: a universal tool for charge state determination and molecular weight calculation of proteins from electrospray ionization mass spectrometry data. Rapid Commun. Mass Spectrom. 2010, 24, 285–294. [Google Scholar] [CrossRef] [PubMed]
- ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0, 2nd ed.; Microcomputer Power: Ithaca, NY, USA, 2012; p. 496. [Google Scholar]
- Dunn, J.J.; Lade, B.N.; Barbour, A.G. Outer surface protein A (OspA) from the Lyme disease spirochete, Borrelia burgdorferi: high level expression and purification of a soluble recombinant form of OspA. Protein. Expr. Purif. 1990, 1, 159–168. [Google Scholar] [CrossRef]
- Schulze, R.J.; Zuckert, W.R. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol. Microbiol. 2006, 59, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Bouchon, B.; Klein, M.; Bischoff, R.; Van Dorsselaer, A.; Roitsch, C. Analysis of the lipidated recombinant outer surface protein A from Borrelia burgdorferi by mass spectrometry. Anal. Biochem. 1997, 246, 52–61. [Google Scholar] [CrossRef]
- Hantke, K.; Braun, V. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur. J. Biochem. 1973, 34, 284–296. [Google Scholar] [CrossRef]
- Persson, C.G.; Erjefalt, J.S.; Greiff, L.; Erjefalt, I.; Korsgren, M.; Linden, M.; Sundler, F.; Andersson, M.; Svensson, C. Contribution of plasma-derived molecules to mucosal immune defence, disease and repair in the airways. Scand. J. Immunol. 1998, 47, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Basto, A.P.; Piedade, J.; Ramalho, R.; Alves, S.; Soares, H.; Cornelis, P.; Martins, C.; Leitao, A. A new cloning system based on the OprI lipoprotein for the production of recombinant bacterial cell wall-derived immunogenic formulations. J. Biotechnol. 2012, 157, 50–63. [Google Scholar] [CrossRef]
- Buwitt-Beckmann, U.; Heine, H.; Wiesmuller, K.H.; Jung, G.; Brock, R.; Akira, S.; Ulmer, A.J. TLR1- and TLR6-independent recognition of bacterial lipopeptides. J. Biol. Chem. 2006, 281, 9049–9057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchings, M.I.; Palmer, T.; Harrington, D.J.; Sutcliffe, I.C. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em. Trends Microbiol. 2009, 17, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Gururajan, M.; Jacob, J.; Pulendran, B. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS ONE 2007, 2, e863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganley-Leal, L.M.; Liu, X.; Wetzler, L.M. Toll-like receptor 2-mediated human B cell differentiation. Clin. Immunol. 2006, 120, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Debache, K.; Guionaud, C.; Alaeddine, F.; Hemphill, A. Intraperitoneal and intranasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites. Parasitology 2010, 137, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Mozdzanowska, K.; Zharikova, D.; Cudic, M.; Otvos, L.; Gerhard, W. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol. J. 2007, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Mureithi, M.W.; Finn, A.; Ota, M.O.; Zhang, Q.; Davenport, V.; Mitchell, T.J.; Williams, N.A.; Adegbola, R.A.; Heyderman, R.S. T cell memory response to pneumococcal protein antigens in an area of high pneumococcal carriage and disease. J. Infect. Dis. 2009, 200, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Pido-Lopez, J.; Kwok, W.W.; Mitchell, T.J.; Heyderman, R.S.; Williams, N.A. Acquisition of pneumococci specific effector and regulatory CD4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue. PLoS Pathog. 2011, 7, e1002396. [Google Scholar] [CrossRef] [Green Version]
- Lux, A.; Aschermann, S.; Biburger, M.; Nimmerjahn, F. The pro- and anti-inflammatory activities of immunoglobulin G. Ann. Rheum. Dis. 2010, 69 (Suppl. 1), i92–i96. [Google Scholar] [CrossRef]
- Nimmerjahn, F.; Ravetch, J.V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 2005, 310, 1510–1512. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.L.; Yu, Y.L.; Kung, Y.C.; Liao, P.Y.; Liu, K.J.; Tseng, Y.T.; Lin, Y.C.; Hsieh, S.S.; Chong, P.C.; Yang, C.Y. The immunomodulatory activity of meningococcal lipoprotein Ag473 depends on the conformation made up of the lipid and protein moieties. PLoS ONE 2012, 7, e40873. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Agrawal, A.; Doughty, B.; Gerwitz, A.; Blenis, J.; Van Dyke, T.; Pulendran, B. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol. 2003, 171, 4984–4989. [Google Scholar] [CrossRef]
- Hirschfeld, M.; Weis, J.J.; Toshchakov, V.; Salkowski, C.A.; Cody, M.J.; Ward, D.C.; Qureshi, N.; Michalek, S.M.; Vogel, S.N. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 2001, 69, 1477–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, F.; Strominger, J.L. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem. 2001, 276, 37692–37699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.J.; Gross, J.; Bogaert, D.; Finn, A.; Bagrade, L.; Zhang, Q.; Kolls, J.K.; Srivastava, A.; Lundgren, A.; Forte, S.; et al. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 2008, 4, e1000159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Jiang, B.; Guo, Y.; Li, W.; Tian, Y.; Sonnenberg, G.F.; Weiser, J.N.; Ni, X.; Shen, H. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal. Immunol. 2017, 10, 250–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliahmadi, E.; Gramlich, R.; Grutzkau, A.; Hitzler, M.; Kruger, M.; Baumgrass, R.; Schreiner, M.; Wittig, B.; Wanner, R.; Peiser, M. TLR2-activated human langerhans cells promote Th17 polarization via IL-1beta, TGF-beta and IL-23. Eur. J. Immunol. 2009, 39, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.M.; Pappu, B.P.; Peng, J.; Martinez, G.J.; Zhang, Y.; Chung, Y.; Ma, L.; Yang, X.O.; Nurieva, R.I.; Tian, Q.; et al. Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 2010, 32, 692–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.M.; Khandavilli, S.; Camberlein, E.; Hyams, C.; Baxendale, H.E.; Brown, J.S. Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-cell responses to nasopharyngeal colonisation. PLoS ONE 2011, 6, e25558. [Google Scholar] [CrossRef]
Primer Name/Restriction Enzyme | Purpose | Sequence (5′-3′) * |
---|---|---|
DacB_pETLip_forw NdeI | Heterologous lipidation and expression of DacB (SP_0629) | 5′-GCGCCATATGCAAGAAAAAACAAAAAATGAAGATGGAGAAACTAAGAC-3′ |
DacB_pETLip_rev BamHI | 5′-GCGGATCCTTAATGATGATGATGATGATGATCGACGTAGTCTCCGCC-3′ | |
PnrA_pETLip_forw NdeI | Heterologous lipidation and expression of PnrA (SP_0845) | 5′-GCGCCATATGGGTAACCGCTCTTCTCGTA-3′ |
PnrA_pETLip_rev BamHI | 5′-GCGCGGATCCTTAATGATGATGATGATGATGTTTTTCAGGAACTTTTACGC-3′ |
Protein | Theoretical Mass * [Da] | Retention Time [min] | Measured Mass [Da] | Mean Mass Difference ** [Da] |
---|---|---|---|---|
Non-lipidated proteins | ||||
DacB | 26,614 | 3.4 | 26,615.1 ± 2 | +1.1 |
PnrA | 36,890 | 3.4 | 36,895 ± 1.2 (major) | +5 |
36,937 ± 1 | +47 | |||
Lipidated proteins | ||||
Lip-DacB | 26,902 | 3.4 | 27,827.2 ± 0.5 | +925.2 † |
27,859.8 ± 0.7 | +957.8 † | |||
4.0 | 26,902.6 ± 0.2 | +0.6 ‡ | ||
26,930.4 ± 0.2 | +28.4 ‡, § | |||
4.6 | Phosphatidylethanolamines ¶ | |||
Lip-PnrA | 37,177 | 3.4 | 38,106.5 ± 0.9 | +929.5 † |
4.0 | 37,209.1 ± 2.7 | +32.1 ‡, § | ||
4.7 | Phosphatidylethanolamines ¶ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voß, F.; van Beek, L.F.; Schwudke, D.; Ederveen, T.H.A.; van Opzeeland, F.J.; Thalheim, D.; Werner, S.; de Jonge, M.I.; Hammerschmidt, S. Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection. Vaccines 2020, 8, 310. https://doi.org/10.3390/vaccines8020310
Voß F, van Beek LF, Schwudke D, Ederveen THA, van Opzeeland FJ, Thalheim D, Werner S, de Jonge MI, Hammerschmidt S. Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection. Vaccines. 2020; 8(2):310. https://doi.org/10.3390/vaccines8020310
Chicago/Turabian StyleVoß, Franziska, Lucille F. van Beek, Dominik Schwudke, Thomas H. A. Ederveen, Fred J. van Opzeeland, Daniela Thalheim, Sidney Werner, Marien I. de Jonge, and Sven Hammerschmidt. 2020. "Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection" Vaccines 8, no. 2: 310. https://doi.org/10.3390/vaccines8020310