What Stage Are We at in the Development of Vaccines Against Tick-Borne Diseases?
Abstract
1. Introduction
2. Prevalence of Ticks and Prevention of Tick-Borne Diseases
3. Tick-Borne Encephalitis
4. Lyme Disease
4.1. Introduction
4.2. Historical Vaccine Efforts and Lessons Learned
4.3. The Return of OspA—From Monovalent Prototypes to the Multivalent VLA15
4.4. Beyond OspA—Complementary Antigen Strategies
4.5. Immunological Considerations and Correlates of Protection
4.6. Remaining Gaps and Future Directions
4.6.1. Age-Specific Evidence
4.6.2. Co-Endemic Pathogens
4.6.3. Public Confidence and Communication
4.6.4. Geographical Antigen Breadth
4.6.5. Correlates of Protection
4.7. Conclusion
5. Babesia
5.1. Introduction
5.2. Development and History of Babesia Vaccines
5.3. Vaccines for Babesia Microti
5.3.1. Whole-Parasite Vaccines
5.3.2. Subunit Vaccines
5.4. Vaccines for Other Babesia Species
5.5. Vaccines for Babesia Bovis
5.6. Vaccines for B. divergens
5.7. Conclusion
6. Ehrlichia
6.1. Introduction
6.2. Vaccine Development: Molecular Basis and Immunogenicity
6.3. Molecular Immune Responses
6.4. Public Acceptance and Public Health Strategies
6.5. Challenges and Prospects
7. Rickettsia
7.1. Rickettsia General Information
7.2. Rickettsia Classification
7.3. Whole-Cell (Killed) Rickettsia Vaccines
7.4. Live Attenuated Rickettsia Vaccines
7.5. Subunit and Recombinant Protein Vaccines and Rickettsia Vaccines
7.6. DNA and mRNA Rickettsia Vaccines
7.7. Viral Vector and Nanoparticle Rickettsia Vaccines
8. Anaplasma phagocytophilum
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischhoff, I.R.; Keesing, F.; Ostfeld, R.S. Risk Factors for Bites and Diseases Associated with Black-Legged Ticks: A Meta-Analysis. Am. J. Epidemiol. 2019, 188, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Kassiri, H.; Nasirian, H. New insights about human tick infestation features: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2021, 28, 17000–17028. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A.; Cutler, S.; Potkonjak, A.; Vassier-Tussaut, M.; Van Bortel, W.; Zeller, H.; Fernández-Ruiz, N.; Mihalca, A.D. An updated meta-analysis of the distribution and prevalence of Borrelia burgdorferi s.l. in ticks in Europe. Int. J. Health Geogr. 2018, 17, 41. [Google Scholar] [PubMed]
- Rauter, C.; Hartung, T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Appl. Environ. Microbiol. 2005, 71, 7203–7216. [Google Scholar]
- Strnad, M.; Honig, V.; Růžek, D.; Grubhoffer, L.; Rego, R.O.M. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 2017, 83, e00994-17. [Google Scholar]
- Ginsberg, H.S. Potential effects of mixed infections in ticks on transmission dynamics of pathogens: Comparative analysis of published records. Exp. Appl. Acarol. 2008, 46, 29–41. [Google Scholar] [CrossRef]
- Fukunaga, M.; Takahashi, Y.; Tsuruta, Y.; Matsushita, O.; Ralph, D.; McClelland, M.; Nakao McClelland, M.; Nakao, M. Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int. J. Syst. Bacteriol. 1995, 45, 804–810. [Google Scholar]
- Hoornstra, D.; Azagi, T.; van Eck, J.A.; Wagemakers, A.; Koetsveld, J.; Spijker, R.; Hovius, J.W. Prevalence and clinical manifestation of Borrelia miyamotoi in Ixodes ticks and humans in the northern hemisphere: A systematic review and meta-analysis. Lancet Microbe 2022, 3, e772–e786. [Google Scholar] [CrossRef]
- Hinckley, A.F.; Meek, J.I.; Ray, J.A.E.; Niesobecki, S.A.; Connally, N.P.; Feldman, K.A.; Jones, E.H.; Backenson, P.B.; White, J.L.; Lukacik, G.; et al. Effectiveness of Residential Acaricides to Prevent Lyme and Other Tick-borne Diseases in Humans. J. Infect. Dis. 2016, 214, 182–188. [Google Scholar] [CrossRef]
- Mitchell, C.; Dyer, M.; Lin, F.-C.; Bowman, N.; Mather, T.; Meshnick, S.; Hamer, S. Protective Effectiveness of Long-Lasting Permethrin Impregnated Clothing Against Tick Bites in an Endemic Lyme Disease Setting: A Randomized Control Trial Among Outdoor Workers. J. Med. Entomol. 2020, 57, 1532–1538. [Google Scholar] [CrossRef]
- Harms, M.; Hofhuis, A.; Sprong, H.; Bennema, S.; Ferreira, J.; Fonville, M.; van Leeuwen, A.D.; Assendelft, W.; Van Weert, H.; Van Pelt, W.; et al. A single dose of doxycycline after an ixodes ricinus tick bite to prevent Lyme borreliosis: An open-label randomized controlled trial. J. Infect. 2021, 82, 98–104. [Google Scholar] [CrossRef]
- Hasin, T.N.; Davidovitch, R.; Cohen, T.; Dagan, A.; Romem, N.; Orr, E.; Klement, N.; Lubezky, R.; Kayouf, R.; Sela, T.; et al. Postexposure treatment with doxycycline for the prevention of tick-borne relapsing fever. N. Engl. J. Med. 2006, 355, 148–155. [Google Scholar] [CrossRef]
- Bogovič, P.; Lotrič-Furlan, S.; Avšič-Županc, T.; Lusa, L.; Strle, F. Factors associated with severity of tick-borne encephalitis: A prospective observational study. Travel. Med. Infect. Dis. 2018, 26, 25–31. [Google Scholar] [CrossRef]
- Kyncl, J.; Angulo, F.J.; Orlikova, H.; Zhang, P.; Vlckova, I.; Maly, M.; Krivohlavkova, D.; Harper, L.R.; Edwards, J.; Bender, C.; et al. Effectiveness of Vaccination Against Tick-Borne Encephalitis in the Czech Republic, 2018–2022. Vector Borne Zoonotic Dis. 2024, 24, 607–613. [Google Scholar] [CrossRef]
- Angulo, F.J.; Zhang, P.; Halsby, K.; Kelly, P.; Pilz, A.; Madhava, H.; Moïsi, J.C.; Jodar, L. A systematic literature review of the effectiveness of tick-borne encephalitis vaccines in Europe. Vaccine 2023, 41, 6914–6921. [Google Scholar] [CrossRef] [PubMed]
- Zimna, M.; Brzuska, G.; Salát, J.; Svoboda, P.; Baranska, K.; Szewczyk, B.; Růžek, D.; Krol, E. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antivir. Res. 2023, 209, 105511. [Google Scholar] [CrossRef] [PubMed]
- Finkensieper, J.; Issmail, L.; Fertey, J.; Rockstroh, A.; Schopf, S.; Standfest, B.; Thoma, M.; Grunwald, T.; Ulbert, S. Low-Energy Electron Irradiation of Tick-Borne Encephalitis Virus Provides a Protective Inactivated Vaccine. Front. Immunol. 2022, 13, 825702. [Google Scholar] [CrossRef] [PubMed]
- Zimna, M.; Brzuska, G.; Salát, J.; Růžek, D.; Krol, E. Influence of adjuvant type and route of administration on the immunogenicity of Leishmania-derived tick-borne encephalitis virus-like particles—A recombinant vaccine candidate. Antivir. Res. 2024, 228, 105941. [Google Scholar] [CrossRef]
- Tang, J.; Fu, M.; Xu, C.; Xue, B.; Zhou, A.; Chen, S.; Zhao, H.; Zhou, Y.; Chen, J.; Yang, Q.; et al. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol. Sin. 2023, 38, 767–777. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; Maximova, O.A.; Liu, G.; Kenney, H.; Teterina, N.L.; Pletnev, A.G. Stable and Highly Immunogenic MicroRNA-Targeted Single-Dose Live Attenuated Vaccine Candidate against Tick-Borne Encephalitis Constructed Using Genetic Backbone of Langat Virus. mBio 2019, 10, e02904–e02918. [Google Scholar] [CrossRef]
- Petnicki-Ocwieja, T.; Brissette, C.A. Lyme disease: Recent advances and perspectives. Front. Cell. Infect. Microbiol. 2015, 5, 27. [Google Scholar] [CrossRef]
- Devchand, R.; Koehler, L.; Hook, S.; Marx, G.E.; Hooks, H.; Schwartz, A.; Hinckley, A. Understanding consumer and clinician perceptions of a potential Lyme disease vaccine. Health Educ. Res. 2022, 36, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Correcting a public health fiasco: The need for a new vaccine against Lyme disease. Clin. Infect. Dis. 2011, 52, s271–s275. [Google Scholar] [CrossRef] [PubMed]
- Izac, J.R.; Marconi, R.T. Diversity of the Lyme Disease Spirochetes and its Influence on Immune Responses to Infection and Vaccination. Vet. Clin. North. Am. Small Anim. Pr. 2019, 49, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Strych, U.; Bottazzi, M.E.; Lin, Y.-P. Past, present, and future of Lyme disease vaccines: Antigen engineering approaches and mechanistic insights. Expert. Rev. Vaccines 2022, 21, 1405–1417. [Google Scholar] [CrossRef]
- Wormser, G.P. A brief history of OspA vaccines including their impact on diagnostic testing for Lyme disease. Diagn. Microbiol. Infect. Dis. 2022, 102, 115572. [Google Scholar] [CrossRef]
- Earnhart, C.G.; Buckles, E.L.; Marconi, R.T. Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine 2007, 25, 466–480. [Google Scholar] [CrossRef]
- Marcinkiewicz, A.L.; Lieknina, I.; Kotelovica, S.; Yang, X.; Kraiczy, P.; Pal, U.; Lin, Y.-P.; Tars, K. Eliminating Factor H-Binding Activity of Borrelia burgdorferi CspZ Combined with Virus-Like Particle Conjugation Enhances Its Efficacy as a Lyme Disease Vaccine. Front. Immunol. 2018, 9, 181. [Google Scholar] [CrossRef]
- Schuijt, T.J.; Coumou, J.; Narasimhan, S.; Dai, J.; DePonte, K.; Wouters, D.; Brouwer, M.; Oei, A.; Roelofs, J.J.; van Dam, A.P.; et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe 2011, 10, 136–146. [Google Scholar] [CrossRef]
- Richer, L.M.; Brisson, D.; Melo, R.; Ostfeld, R.S.; Zeidner, N.; Gomes-Solecki, M. Reservoir targeted vaccine against Borrelia burgdorferi: A new strategy to prevent Lyme disease transmission. J. Infect. Dis. 2014, 209, 1972–1980. [Google Scholar] [CrossRef]
- Mihajlović, J.; Hovius, J.; Sprong, H.; Bogovič, P.; Postma, M.; Strle, F. Cost-effectiveness of a potential anti-tick vaccine with combined protection against Lyme borreliosis and tick-borne encephalitis in Slovenia. Ticks Tick. Borne Dis. 2019, 10, 63–71. [Google Scholar] [CrossRef]
- Fikrig, E.; Barthold, S.W.; Kantor, F.S.; Flavell, R.A. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science 1990, 250, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Fikrig, E.; Barthold, S.W.; Sun, W.; Feng, W.; Telford, S.R., 3rd; Flavell, R.A. Borrelia burgdorferi P35 and P37 proteins, expressed in vivo, elicit protective immunity. Immunity 1997, 6, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Steere, A.C.; Sikand, V.K.; Meurice, F.; Parenti, D.L.; Fikrig, E.; Schoen, R.T.; Nowakowski, J.; Schmid, C.H.; Laukamp, S.; Buscarino, C.; et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 1998, 339, 209–215. [Google Scholar] [CrossRef]
- Sigal, L.H.; Zahradnik, J.M.; Lavin, P.; Patella, S.J.; Bryant, G.; Haselby, R.; Hilton, E.; Kunkel, M.; Adler-Klein, D.; Doherty, T.; et al. A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease. Recombinant Outer-Surface Protein A Lyme Disease Vaccine Study Consortium. N. Engl. J. Med. 1998, 339, 216–222. [Google Scholar] [CrossRef]
- Poland, G.A. Vaccines against Lyme disease: What happened and what lessons can we learn? Clin. Infect. Dis. 2011, 52, s253–s258. [Google Scholar] [CrossRef]
- Comstedt, P.; Hanner, M.; Schüler, W.; Meinke, A.; Lundberg, U. Design and development of a novel vaccine for protection against Lyme borreliosis. PLoS ONE 2014, 9, e113294. [Google Scholar] [CrossRef]
- Comstedt, P.; Schüler, W.; Meinke, A.; Lundberg, U.; Stevenson, B. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS ONE 2017, 12, e0184357. [Google Scholar] [CrossRef]
- Wilczek, C.K.; Wenderlein, J.; Hiereth, S.; Straubinger, R.K. A Retrospective Study with a Commercial Vaccine against Lyme Borreliosis in Dogs Using Two Different Vaccination Schedules: Characterization of the Humoral Immune Response. Vaccines 2022, 11, 43. [Google Scholar] [CrossRef]
- Hajdusek, O.; Perner, J. VLA15, a new global Lyme disease vaccine undergoes clinical trials. Lancet Infect. Dis. 2023, 23, 1105–1106. [Google Scholar] [CrossRef]
- Tamanna, S.; Kim, D.M. Revolutionizing Lyme disease vaccination: A systematic review and meta-analysis of promising candidates. Front. Cell. Infect. Microbiol. 2025, 15, 1554360. [Google Scholar] [CrossRef]
- Fikrig, E.; Feng, W.; Barthold, S.W.; Telford, S.R.; Flavell, R.A. Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission. J. Immunol. 2000, 164, 5344–5351. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, S.; Kariu, T.; Yang, X.; Bossis, I.; Anderson, J.F.; Pal, U. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine. Vaccine 2011, 29, 9012–9019. [Google Scholar] [CrossRef]
- Liang, F.T.; Jacobs, M.B.; Philipp, M.T. C-terminal invariable domain of VlsE may not serve as target for protective immune response against Borrelia burgdorferi. Infect. Immun. 2001, 69, 1337–1343. [Google Scholar] [CrossRef]
- Schoen, R.T.; Sikand, V.K.; Caldwell, M.C.; Van Hoecke, C.; Gillet, M.; Buscarino, C.; Parenti, D.L.; Buscarino, D.L. Parenti, Safety and immunogenicity profile of a recombinant outer-surface protein A Lyme disease vaccine: Clinical trial of a 3-dose schedule at 0, 1, and 2 months. Clin. Ther. 2000, 22, 315–325. [Google Scholar] [CrossRef]
- Wressnigg, N.; Pöllabauer, E.-M.; Aichinger, G.; Portsmouth, D.; Löw-Baselli, A.; Fritsch, S.; Livey, I.; Crowe, A.B.; Schwendinger, M.; Brühl, P.; et al. Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in healthy adults: A double-blind, randomised, dose-escalation phase 1/2 trial. Lancet Infect. Dis. 2013, 13, 680–689. [Google Scholar] [CrossRef]
- Wressnigg, N.; Barrett, P.N.; Pöllabauer, E.-M.; O’Rourke, M.; Portsmouth, D.; Schwendinger, M.G.; Crowe, B.A.; Livey, I.; Dvorak, T.; Schmitt, B.; et al. A Novel multivalent OspA vaccine against Lyme borreliosis is safe and immunogenic in an adult population previously infected with Borrelia burgdorferi sensu lato. Clin. Vaccine Immunol. 2014, 21, 1490–1499. [Google Scholar] [CrossRef]
- Camire, A.C.; O’bIer, N.S.; Patel, D.T.; Cramer, N.A.; Straubinger, R.K.; Breitschwerdt, E.B.; Funk, R.A.; Marconi, R.T.; Bäumler, A.J. FtlA and FtlB Are Candidates for Inclusion in a Next-Generation Multiantigen Subunit Vaccine for Lyme Disease. Infect. Immun. 2022, 90, e0036422. [Google Scholar] [CrossRef]
- Bézay, N.; Hochreiter, R.; Kadlecek, V.; Wressnigg, N.; Larcher-Senn, J.; Klingler, A.; Dubischar, K.; Eder-Lingelbach, S.; Leroux-Roels, I.; Leroux-Roels, G.; et al. Safety and immunogenicity of a novel multivalent OspA-based vaccine candidate against Lyme borreliosis: A randomised, phase 1 study in healthy adults. Lancet Infect. Dis. 2023, 23, 1186–1196. [Google Scholar] [CrossRef]
- Nayak, A.; Schüler, W.; Seidel, S.; Gomez, I.; Meinke, A.; Comstedt, P.; Lundberg, U. Broadly Protective Multivalent OspA Vaccine against Lyme Borreliosis, Developed Based on Surface Shaping of the C-Terminal Fragment. Infect. Immun. 2020, 88, e00917–e00919. [Google Scholar] [CrossRef]
- Bézay, N.; Wagner, L.; Kadlecek, V.; Obersriebnig, M.; Wressnigg, N.; Hochreiter, R.; Schneider, M.; Dubischar, K.; Derhaschnig, U.; Klingler, A.; et al. Optimisation of dose level and vaccination schedule for the VLA15 Lyme borreliosis vaccine candidate among healthy adults: Two randomised, observer-blind, placebo-controlled, multicentre, phase 2 studies. Lancet Infect. Dis. 2024, 24, 1045–1058. [Google Scholar] [CrossRef]
- Ghadge, S.K.; Schneider, M.; Dubischar, K.; Wagner, L.; Kadlecek, V.; Obersriebnig, M.; Hochreiter, R.; Klingler, A.; Larcher-Senn, J.; Derhaschnig, U.; et al. Immunogenicity and safety of an 18-month booster dose of the VLA15 Lyme borreliosis vaccine candidate after primary immunisation in healthy adults in the USA: Results of the booster phase of a randomised, controlled, phase 2 trial. Lancet Infect. Dis. 2024, 24, 1275–1286. [Google Scholar] [CrossRef]
- Pfizer and Valneva Initiate Phase 3 Study of Lyme Disease Vaccine Candidate VLA15. 2022. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-valneva-initiate-phase-3-study-lyme-disease (accessed on 30 July 2025).
- Brangulis, K.; Malfetano, J.; Marcinkiewicz, A.L.; Wang, A.; Chen, Y.-L.; Lee, J.; Liu, Z.; Yang, X.; Strych, U.; Tupina, D.; et al. Mechanistic insights into the structure-based design of a CspZ-targeting Lyme disease vaccine. Nat. Commun. 2025, 16, 2898. [Google Scholar] [CrossRef]
- Izac, J.R.; Oliver, L.D.; Earnhart, C.G.; Marconi, R.T. Identification of a defined linear epitope in the OspA protein of the Lyme disease spirochetes that elicits bactericidal antibody responses: Implications for vaccine development. Vaccine 2017, 35, 3178–3185. [Google Scholar] [CrossRef]
- Loomba, K.; Shi, D.; Sherpa, T.; Chen, J.; Daniels, T.J.; Pavia, C.S.; Zhang, D. Use of the Western blot technique to identify the immunogenic proteins of Borrelia burgdorferi for developing a Lyme disease vaccine. Biomed. Pharmacother. 2023, 157, 114013. [Google Scholar] [CrossRef]
- Vance, D.J.; Basir, S.; Piazza, C.L.; Willsey, G.G.; Haque, H.M.E.; Tremblay, J.M.; Rudolph, M.J.; Muriuki, B.; Cavacini, L.; Weis, D.D.; et al. Single-domain antibodies reveal unique borrelicidal epitopes on the Lyme disease vaccine antigen, outer surface protein A (OspA). Infect. Immun. 2024, 92, e0008424. [Google Scholar] [CrossRef]
- Callow, L.; Dalgliesh, R.; De Vos, A. Development of effective living vaccines against bovine babesiosis--the longest field trial? Int. J. Parasitol. 1997, 27, 747–767. [Google Scholar] [CrossRef]
- Sondgeroth, K.S.; McElwain, T.F.; Ueti, M.W.; Scoles, G.A.; Reif, K.E.; Lau, A.O. Tick passage results in enhanced attenuation of Babesia bovis. Infect. Immun. 2014, 82, 4426–4434. [Google Scholar] [CrossRef]
- Wieser, S.N.; Schnittger, L.; Florin-Christensen, M.; Delbecq, S.; Schetters, T. Vaccination against babesiosis using recombinant GPI-anchored proteins. Int. J. Parasitol. 2019, 49, 175–181. [Google Scholar] [CrossRef]
- Jerzak, M.; Gandurski, A.; Tokaj, M.; Stachera, W.; Szuba, M.; Dybicz, M. Advances in Babesia Vaccine Development: An Overview. Pathogens 2023, 12, 300. [Google Scholar] [CrossRef]
- Al-Nazal, H.A.; Cooper, E.; Ho, M.F.; Eskandari, S.; Majam, V.; Giddam, A.K.; Hussein, W.M.; Islam, T.; Skwarczynski, M.; Toth, I.; et al. Pre-clinical evaluation of a whole-parasite vaccine to control human babesiosis. Cell Host Microbe 2021, 29, 894–903.e5. [Google Scholar] [CrossRef]
- Delbecq, S. Major Surface Antigens in Zoonotic Babesia. Pathogens 2022, 11, 99. [Google Scholar] [CrossRef]
- Rathinasamy, V.; Poole, W.A.; Bastos, R.G.; Suarez, C.E.; Cooke, B.M. Babesiosis Vaccines: Lessons Learned, Challenges Ahead, and Future Glimpses. Trends Parasitol. 2019, 35, 622–635. [Google Scholar] [CrossRef]
- Schetters, T.P.; Montenegro-James, S. Vaccines against babesiosis using soluble parasite antigens. Parasitol. Today 1995, 11, 456–462. [Google Scholar] [CrossRef]
- Carcy, B.; Precigout, E.; Valentin, A.; Gorenflot, A.; Schrevel, J. A 37-kilodalton glycoprotein of Babesia divergens is a major component of a protective fraction containing low-molecular-mass culture-derived exoantigens. Infect. Immun. 1995, 63, 811–817. [Google Scholar] [CrossRef]
- Precigout, E.; Delbecq, S.; Vallet, A.; Carcy, B.; Camillieri, S.; Hadj-Kaddour, K.; Kleuskens, J.; Schetters, T.; Gorenflot, A. Association between sequence polymorphism in an epitope of Babesia divergens Bd37 exoantigen and protection induced by passive transfer. Int. J. Parasitol. 2004, 34, 585–593. [Google Scholar] [CrossRef]
- Hadj-Kaddour, K.; Carcy, B.; Vallet, A.; Randazzo, S.; Delbecq, S.; Kleuskens, J.; Schetters, T.; Gorenflot, A.; Precigout, E. Recombinant protein Bd37 protected gerbils against heterologous challenges with isolates of Babesia divergens polymorphic for the bd37 gene. Parasitology 2007, 134, 187–196. [Google Scholar] [CrossRef]
- Thomas, S. Development of Structure-Based Vaccines for Ehrlichiosis. Methods Mol. Biol. 2016, 1403, 519–534. [Google Scholar]
- Budachetri, K.; Teymournejad, O.; Lin, M.; Yan, Q.; Mestres-Villanueva, M.; Brock, G.N.; Rikihisa, Y. An Entry-Triggering Protein of Ehrlichia Is a New Vaccine Candidate against Tick-Borne Human Monocytic Ehrlichiosis. mBio 2020, 11, e02927-20. [Google Scholar] [CrossRef]
- Madesh, S.; McGill, J.; Jaworski, D.C.; Ferm, J.; Liu, H.; Fitzwater, S.; Hove, P.; Ferm, D.; Nair, A.; Knox, C.A.; et al. Long-Term Protective Immunity against Ehrlichia chaffeensis Infection Induced by a Genetically Modified Live Vaccine. Vaccines 2024, 12, 903. [Google Scholar] [CrossRef]
- Thomas, S. Development of a SONIX Vaccine to Protect Against Ehrlichiosis. Methods Mol. Biol. 2022, 2410, 423–429. [Google Scholar]
- McBride, J.W.; Walker, D.H. Progress and obstacles in vaccine development for the ehrlichioses. Expert. Rev. Vaccines 2010, 9, 1071–1082. [Google Scholar] [CrossRef]
- Raoult, D.; Roux, V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev. 1997, 10, 694–719. [Google Scholar] [CrossRef]
- Eremeeva, M.E.; Dasch, G.A. Challenges posed by tick-borne rickettsiae: Eco-epidemiology and public health implications. Front. Public. Health 2015, 3, 55. [Google Scholar]
- Fletcher, T.; Beeching, N. 1084Rickettsial infection. In Diagnosis and Treatment in Internal Medicine; Davey, P., Sprigings, D., Davey, P., Sprigings, D., Eds.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Hardstone Yoshimizu, M.; Billeter, S.A. Suspected and Confirmed Vector-Borne Rickettsioses of North America Associated with Human Diseases. Trop. Med. Infect. Dis. 2018, 3, 2. [Google Scholar] [CrossRef]
- Botelho-Nevers, E.; Socolovschi, C.; Raoult, D.; Parola, P. Treatment of Rickettsia spp. infections: A review. Expert. Rev. Anti Infect. Ther. 2012, 10, 1425–1437. [Google Scholar] [CrossRef]
- Blanton, L.S. The Rickettsioses: A Practical Update. Infect. Dis. Clin. North. Am. 2019, 33, 213–229. [Google Scholar] [CrossRef]
- Lee, S.C.; Cheng, Y.J.; Lin, C.H.; Lei, W.T.; Chang, H.Y.; Lee, M.D.; Liu, J.M.; Hsu, R.J.; Chiu, N.C.; Chi, H.; et al. Comparative effectiveness of azithromycin for treating scrub typhus: A PRISMA-compliant systematic review and meta-analysis. Medicine 2017, 96, e7992. [Google Scholar]
- Merhej, V.; El Karkouri, K.; Raoult, D. Whole genome-based phylogenetic analysis of Rickettsiae. Clin. Microbiol. Infect. 2009, 15, 336–337. [Google Scholar] [CrossRef]
- Roux, V.; Raoult, D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 4, 1449–1455. [Google Scholar] [CrossRef]
- Chung, M.; Munro, J.B.; Tettelin, H.; Dunning Hotopp, J.C. Using Core Genome Alignments To Assign Bacterial Species. mSystems 2018, 3, e00236-18. [Google Scholar] [CrossRef]
- Lindenmann, J. Typhus vaccine developments from the First to the Second World War (on Paul Weindling’s ’between bacteriology and virology...’). Hist. Philos. Life Sci. 2002, 24, 467–485. [Google Scholar] [CrossRef]
- Raoult, D.; Woodward, T.; Dumler, J. The history of epidemic typhus. Infect. Dis. Clin. North. Am. 2004, 18, 127–140. [Google Scholar] [CrossRef]
- Spencer, R.R.; Parker, R.R. Rocky Mountain spotted fever: Vaccination of monkeys and man. Public. Health Rep. 1925, 40, 2159–2167. [Google Scholar] [CrossRef]
- Osterloh, A. Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines 2021, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- Richards, A.L. Rickettsial vaccines: The old and the new. Expert. Rev. Vaccines 2004, 3, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, A.; Liu, H.; McGill, J.; Cerezo, A.; Jakkula, L.U.M.R.; Nair, A.D.S.; Winkley, E.; Olson, S.; Marlow, D.; Sahni, A.; et al. Rickettsia rickettsii Whole-Cell Antigens Offer Protection against Rocky Mountain Spotted Fever in the Canine Host. Infect. Immun. 2019, 87, e00828-18. [Google Scholar] [CrossRef] [PubMed]
- Dumler, J.S.; Fiset, P.; Wisseman, C.L.; Clements, M.L. Cell-mediated immune responses of adults to vaccination, challenge with Rickettsia rickettsii, or both. Am. J. Trop. Med. Hyg. 1992, 46, 105–115. [Google Scholar] [CrossRef]
- Kenyon, R.H.; Pedersen, C.E., Jr. Preparation of Rocky Mountain spotted fever vaccine suitable for human immunization. J. Clin. Microbiol. 1975, 1, 500–503. [Google Scholar] [CrossRef]
- Kenyon, R.H.; Sammons, L.S.; Pedersen, C.E., Jr. Comparison of three rocky mountain spotted fever vaccines. J. Clin. Microbiol. 1975, 2, 300–304. [Google Scholar] [CrossRef]
- Gonder, J.C.; Kenyon, R.H.; Pedersen, C.E., Jr. Evaluation of a killed Rocky Mountain spotted fever vaccine in cynomolgus monkeys. J. Clin. Microbiol. 1979, 10, 719–723. [Google Scholar] [CrossRef]
- Sridhar, S.; Brokstad, K.A.; Cox, R.J. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines. Vaccines 2015, 3, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.R.; Feldman, S.; Thompson, J.M.; Mahoney, J.D.; Wright, P.F. Comparison of long-term systemic and secretory antibody responses in children given live, attenuated, or inactivated influenza A vaccine. J. Med. Virol. 1985, 17, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Wisseman, C.L., Jr. Concepts of louse-borne typhus control in developing countries: The use of the living attenuated E strain typhus vaccine in epidemic and endemic situations. Adv. Exp. Med. Biol. 1972, 31, 97–130. [Google Scholar] [PubMed]
- Fox, J.P.; Jordan, M.E.; Gelfand, H.M. Immunization of man against epidemic typhus by infection with avirulent Rickettsia prowazeki strain E. IV. Persistence of immunity and a note as to differing complement-fixation antigen requirements in post-infection and post-vaccination sera. J. Immunol. 1957, 79, 348–354. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Hao, J.-F.; Walker, D.H.; Yu, X.-J. A mutation inactivating the methyltransferase gene in avirulent Madrid E strain of Rickettsia prowazekii reverted to wild type in the virulent revertant strain Evir. Vaccine 2006, 24, 2317–2323. [Google Scholar] [CrossRef]
- Balayera, N.M.; Nikdskaya, V.N. Enhanced virulence of the vaccine strain E of Rickettsia prowazeke on passaging in white mice and guinea pigs. Acta Virol. 1972, 16, 80–82. [Google Scholar]
- Driskell, L.O.; Yu, X.-J.; Zhang, L.; Liu, Y.; Popov, V.L.; Walker, D.H.; Tucker, A.M.; Wood, D.O. Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect. Immun. 2009, 77, 3244–3248. [Google Scholar] [CrossRef]
- Arroyave, E.; Hyseni, I.; Burkhardt, N.; Kuo, Y.-F.; Wang, T.; Munderloh, U.; Fang, R. Rickettsia parkeri with a Genetically Disrupted Phage Integrase Gene Exhibits Attenuated Virulence and Induces Protective Immunity against Fatal Rickettsioses in Mice. Pathogens 2021, 10, 819. [Google Scholar] [CrossRef]
- Olsen, R.H.; Finne-Fridell, F.; Bordevik, M.; Nygaard, A.; Rajan, B.; Karlsen, M. The Effect of an Attenuated Live Vaccine against Salmonid Rickettsial Septicemia in Atlantic Salmon (Salmo salar) Is Highly Dependent on Water Temperature during Immunization. Vaccines 2024, 12, 416. [Google Scholar] [CrossRef]
- Walker, D.H.; Blanton, L.S.; Laroche, M.; Fang, R.; Narra, H.P. A Vaccine for Canine Rocky Mountain Spotted Fever: An Unmet One Health Need. Vaccines 2022, 10, 1626. [Google Scholar] [CrossRef] [PubMed]
- Teysseire, N.; Raoult, D. Comparison of Western immunoblotting and microimmunofluorescence for diagnosis of Mediterranean spotted fever. J. Clin. Microbiol. 1992, 30, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Montero, C.M.; Feng, H.M.; Crocquet-Valdes, P.A.; Walker, D.H. Identification of protective components of two major outer membrane proteins of spotted fever group Rickettsiae. Am. J. Trop. Med. Hyg. 2001, 65, 371–378. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sumner, J.W.; Sims, K.G.; Jones, D.C.; Anderson, B.E. Protection of guinea-pigs from experimental Rocky Mountain spotted fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine 1995, 13, 29–35. [Google Scholar] [CrossRef]
- Jiao, Y.; Wen, B.; Chen, M.; Niu, D.; Zhang, J.; Qiu, L. Analysis of immunoprotectivity of the recombinant OmpA of Rickettsia heilongjiangensis. Ann. N. Y Acad. Sci. 2005, 1063, 261–265. [Google Scholar] [CrossRef]
- Riley, S.P.; Cardwell, M.M.; Chan, Y.G.; Pruneau, L.; Del Piero, F.; Martinez, J.J. Failure of a heterologous recombinant Sca5/OmpB protein-based vaccine to elicit effective protective immunity against Rickettsia rickettsii infections in C3H/HeN mice. Pathog. Dis. 2015, 73, ftv101. [Google Scholar] [CrossRef]
- Ching, W.M.; Wang, H.; Jan, B.; Dasch, G.A. Identification and characterization of epitopes on the 120-kilodalton surface protein antigen of Rickettsia prowazekii with synthetic peptides. Infect. Immun. 1996, 64, 1413–1419. [Google Scholar] [CrossRef]
- Gong, W.; Xiong, X.; Qi, Y.; Jiao, J.; Duan, C.; Wen, B. Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice. Vaccine 2014, 32, 2027–2033. [Google Scholar] [CrossRef]
- Gong, W.; Qi, Y.; Xiong, X.; Jiao, J.; Duan, C.; Wen, B. Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice. Hum Vaccin. Immunother. 2015, 11, 642–649. [Google Scholar] [CrossRef]
- Gong, W.; Qi, Y.; Xiong, X.; Jiao, J.; Duan, C.; Wen, B. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics. PLoS ONE 2014, 9, e100253. [Google Scholar] [CrossRef][Green Version]
- Coker, C.; Majid, M.; Radulovic, S. Development of Rickettsia prowazekii DNA vaccine: Cloning strategies. Ann. N. Y Acad. Sci. 2003, 990, 757–764. [Google Scholar] [CrossRef]
- Nyika, A.; Mahan, S.M.; Burridge, M.J.; Mcguire, T.C.; Rurangirwa, F.; Barbet, A.F. A DNA vaccine protects mice against the rickettsial agent Cowdria ruminantium. Parasite Immunol. 1998, 20, 111–119. [Google Scholar] [CrossRef]
- Crocquet-Valdes, P.; DíaZ-Montero, C.; Feng, H.; Li, H.; Barrett, A.; Walker, D. Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine 2001, 20, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Dzul-Rosado, K.; Donis-Maturano, L.; Arias-León, J.; Machado-Contreras, J.; Valencia-Pacheco, G.; Panti-Balam, C.; Balam-Romero, J.; Ku-González, A.; Peniche-Lara, G.; Mosqueda, J.; et al. Rickettsia Vaccine Candidate pVAX1-OmpB24 Stimulates TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes in Autologous Co-Culture of Human Cells. Vaccines 2023, 11, 173. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, R.; Hogan, M.J.; Loré, K.; Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 2022, 55, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Kheirollahpour, M.; Mehrabi, M.; Dounighi, N.M.; Mohammadi, M.; Masoudi, A. Nanoparticles and Vaccine Development. Pharm. Nanotechnol. 2020, 8, 6–21. [Google Scholar] [CrossRef]
- Ha, N.-Y.; Shin, H.M.; Sharma, P.; Cho, H.A.; Min, C.-K.; Kim, H.-I.; Yen, N.T.H.; Kang, J.-S.; Kim, I.-S.; Choi, M.-S.; et al. Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen. J. Nanobiotechnol. 2016, 14, 76. [Google Scholar] [CrossRef]
- Battilani, M.; De Arcangeli, S.; Balboni, A.; Dondi, F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 2017, 49, 195–211. [Google Scholar] [CrossRef]
- Guzman, N.; Yarrarapu, S.N.S.; Beidas, S.O. Anaplasma Phagocytophilum. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- About Anaplasmosis. 2024. Available online: https://www.cdc.gov/anaplasmosis/about/index.html (accessed on 30 July 2025).
- Woldehiwet, Z. Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet. J. 2008, 175, 37–44. [Google Scholar] [CrossRef]
- Anaplasmosis. Available online: https://my.clevelandclinic.org/health/diseases/25250-anaplasmosis (accessed on 30 July 2025).
- Salinas-Estrella, E.; Amaro-Estrada, I.; Cobaxin-Cárdenas, M.E.; Preciado de la Torre, J.F.; Rodríguez, S.D. Bovine Anaplasmosis: Will there ever be an almighty effective vaccine? Front. Veter. Sci. 2022, 9, 946545. [Google Scholar] [CrossRef]
- Stuen, S.; Okstad, W.; Artursson, K.; Al-Khedery, B.; Barbet, A.; Granquist, E.G. Lambs immunized with an inactivated variant of Anaplasma phagocytophilum. Acta Veter. Scand. 2015, 57, 40. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Alberdi, P.; Mateos-Hernández, L.; de Mera, I.G.F.; García-Pérez, A.L.; Vancová, M.; Villar, M.; Ayllón, N.; Cabezas-Cruz, A.; Valdés, J.J.; et al. Anaplasma phagocytophilum MSP4 and HSP70 proteins are involved in interactions with host cells during pathogen infection. Front. Cell. Infect. Microbiol. 2017, 7, 307. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Moraga-Fernández, A.; Alberdi, P.; Díaz-Sánchez, S.; García-Álvarez, O.; Fernández-Melgar, R.; Contreras, M. A Quantum Vaccinomics Approach for the Design and Production of MSP4 Chimeric Antigen for the Control of Anaplasma phagocytophilum Infections. Vaccines 2022, 10, 1995. [Google Scholar] [CrossRef] [PubMed]
- Eskeland, S.; Stuen, S.; Crosby, F.L.; Lybeck, K.; Barbet, A.F.; Lindgren, P.-E.; Tollefsen, S.; Wilhelmsson, P.; Tollersrud, T.S.; Makvandi-Nejad, S.; et al. Assessing the clinical and bacteriological outcomes of vaccination with recombinant Asp14 and OmpA against A. phagocytophilum in sheep. Vet. Immunol. Immunopathol. 2019, 218, 109936. [Google Scholar] [CrossRef] [PubMed]
- Naimi, W.A.; Gumpf, J.J.; Green, R.S.; Izac, J.R.; Zellner, M.P.; Conrad, D.H.; Marconi, R.T.; Martin, R.K.; Carlyon, J.A. Immunization against Anaplasma phagocytophilum Adhesin Binding Domains Confers Protection against Infection in the Mouse Model. Infect. Immun. 2020, 88, e00106–e00120. [Google Scholar] [CrossRef]
- Crosby, F.L.; Lundgren, A.M.; Hoffman, C.; Pascual, D.W.; Barbet, A.F. VirB10 vaccination for protection against Anaplasma phagocytophilum. BMC Microbiol. 2018, 18, 217. [Google Scholar] [CrossRef]
- Mahesh, P.P.; Namjoshi, P.; Sultana, H.; Neelakanta, G. Immunization against arthropod protein impairs transmission of rickettsial pathogen from ticks to the vertebrate host. NPJ Vaccines 2023, 8, 79. [Google Scholar] [CrossRef]
- Smit, R.; Postma, M.J. Vaccines for tick-borne diseases and cost-effectiveness of vaccination: A public health challenge to reduce the diseases’ burden. Expert. Rev. Vaccines 2016, 15, 5–7. [Google Scholar] [CrossRef]
- Stricker, R.B.; Johnson, L. Lyme disease vaccination: Safety first. Lancet Infect. Dis. 2014, 14, 12. [Google Scholar] [CrossRef]
- Lewandowski, D.; Sulik, A.; Raciborski, F.; Krasnodebska, M.; Gebarowska, J.; Stalewska, A.; Toczylowski, K. Barriers and Predictors of Lyme Disease Vaccine Acceptance: A Cross-Sectional Study in Poland. Vaccines 2025, 13, 55. [Google Scholar] [CrossRef]
- Bayani, F.; Hashkavaei, N.S.; Arjmand, S.; Rezaei, S.; Uskoković, V.; Alijanianzadeh, M.; Uversky, V.N.; Siadat, S.O.R.; Mozaffari-Jovin, S.; Sefidbakht, Y. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. Prog. Biophys. Mol. Biol. 2023, 178, 32–49. [Google Scholar] [CrossRef]
| Vaccine/Strategy | Antigen(s) and Platform | Formulation/Dose and Schedule Tested | Clinical Phase/Status | Key Notes | Safety/Reactogenicity | Reference |
|---|---|---|---|---|---|---|
| VLA15 | [Table 2] includes | |||||
| Monovalent OspA | LYMErix | Dose: 30 µg Schedule: 0, 1, and 12 months | Phase III completed; FDA approved 1998 → Withdrawn in 2002 due to public perception, not safety concerns | N = 10,936 (15–70 y), double-blind, placebo-controlled, randomized trial Outcome: 49% efficacy after 2 doses; 76% | Mild local/systemic reactions; no serious adverse events attributed to the vaccine | [34] |
| Dose: 30 µg Schedule: 0, 1, and 12 months | N = 956 (17–72 y), open-label, randomized trial Outcome: 2.8-fold increase in GMT; 90% ≥ 1400 EL.U/mL, 99% ≥ 400 EL.U/mL; predicted seasonal protection | Mild local/systemic reactions; no serious adverse events attributed to the vaccine | [45] | |||
| ImuLymeTM | Dose: 30 µg Schedule: 0, 1, and 12 months | Phase III completed; never marketed due to market failure of LYMErix | N = 10,305 (21–79 y), double-blind, placebo-controlled randomized trial Outcome: 68% efficacy (2 doses); 92% efficacy (3 doses); well tolerated | Mostly mild local AEs | [35] | |
| Dose: 30 µg Schedule: 0, 1, and 12 months | N = 1634 (18–94 y), double-blind, placebo-controlled randomized trial Outcome: 40% efficacy (Year 1); 37% (Year 2); efficacy limited to <60 y (50%) | Mostly mild local/systemic AEs | [26] | |||
| Multivalent OspA | 6 serotypes | 3 × 10 µg IM injections at days 0, 28, 56; Alum adjuvanted | Preclinical (Mice) | High IgG to all 6 ST; lower redness/fever vs. monovalent vaccines | Mild reactogenicity; no serious issues | [37] |
| Multivalent OspA vaccine: Three recombinant lipidated fusion proteins | Dose: 30, 60, and 90 µg Schedule: 0, 1, 2, and 12 months | Phase I/II trial; development halted | N = 300 (18–70 y), double-blind, randomized, dose-escalation trial Outcome: 30 μg adjuvanted = best tolerated; no SAE; post-booster IgG GMT 26,143–42,381 EL.U/mL | Well tolerated; local injection site pain common; no vaccine-related serious adverse events | [46] | |
| Dose: 30 and 60 µg Schedule: 0, 1, 2, and 6 0, 1, 2, and 9–12 | N = 350 (18–70 y), double-blind, randomized, dose-escalation trial Outcome: GMT post-booster ranged from 26,143 (95% CI: 18,906–36,151) to 42,381 (95% CI: 31,288–57,407) | Well tolerated; local injection site pain common; no vaccine-related serious adverse events | [47] | |||
| OspC | Chimeritope Tetravalent OspC | In vitro bactericidal recombinant proteins, 25 µg IP × 3 doses at days 0, 21, 42 | Preclinical | Mice (C3H/HeN); broad anti-OspC bactericidal IgG; bactericidal activity; broad protective effect; antigenic diversity limits stand-alone use | n/r (animal study) | [27] |
| CspZ | CspZ, VLP-CspZ, VLP-CspZY207A/Y211A | Modified VLP-CspZ + Titer Max Gold 25 µg IP × 3 doses at days 0, 14, 28 | Preclinical | Mice (C3H/HeN); modified VLP-CspZ; superior immunogenicity compared to unmodified VLP-CspZ; significantly higher borreliacidal antibody titres (50% killing at 1:395 serum dilution vs. 1:143); active immunization and passive antibody transfer effectively combat Borrelia infection; enhanced efficacy; elimination of factor H-binding activity | n/r (animal study) | [28] |
| FtlA/FtlB lipoproteins | FtlA and FtlB (membrane-associated PF12 lipoproteins) | Recombinant proteins; rat hyper-immune sera | Preclinical | Dogs, horses; Anti-FtlA/B serum ≥ 65% borreliacidal; antibodies detected in infected dogs/horses; anti-Ftl antibodies detected in 61–84% of infected dogs and horses; levels increased up to 497 days, indicating persistent in vivo expression | n/r (animal study) | [48] |
| Reservoir-targeted OspA RTV | rOspA-based oral vaccine | Environmental deployment; field study | Operational field trial | Wild white-footed mice-Peromyscus leucopus; reduction (76%) in B. burgdorferi infection in nymphal ticks after 5 years; increased anti-OspA seroprevalence in vaccinated mice (mean OD450: 0.391 vs. 0.229; p = 0.002); protective titre (OD450 ≥ 1.0) reached 21–33% in vaccine plots vs. ~5% in controls | n/r (animal study) | [30] |
| P35/P37 | P35 and P37 (in vivo-expressed proteins of B. burgdorferi) | Passive transfer of sera containing antibodies to P35 and P37 | Preclinical | Mice; P35 and P37; inducing strong IgG responses(in vivo); promising for both vaccine and diagnostic development; antisera provided protective immunity in mice both prophylactically and therapeutically (post-infection); seroconversion in 100% of infected mice | n/r (animal study) | [33] |
| BBA52 | BBA52 (outer membrane protein of Borrelia burgdorferi) | Surface-exposed outer membrane protein BBA52; native protein with disulfide-linked oligomeric structure | Preclinical | Mice (C3H/HeN); vector–host transition; active immunization: mice immunized with BBA52 protein; passive immunisation: transfer of antibodies into ticks; antibodies showed no activity (in vitro); passive immunization as well | n/r (animal study) | [43] |
| Stage | Key Findings | Reference |
|---|---|---|
| Preclinical (murine ± guinea-pig) | ▸ Three-dose priming protected mice against B. burgdorferi (ST1), B. afzelii (ST2), B. bavariensis (ST4), and B. garinii (ST5, ST6). ▸ Growth inhibition assay demonstrated functional activity against all six OspA serotypes (ST1-6). ▸ A booster given five months after priming produced higher peak IgG/SBA titres and longer serum half-lives. | [38] |
| Phase I (179 adults, 18–39 y) | ▸ Three monthly doses (0–1–2 mo; 12 µg–90 µg) were safe and well tolerated. ▸ Broad, serotype-wide IgG generated, but titres declined to near baseline by month 11. ▸ A month-13 booster elicited a strong anamnestic surge that again waned within ~6 mo. | [51] |
| Phase II—dose and schedule optimization | ▸ Two randomized multicentre trials (USA + EU) compared 135 µg vs. 180 µg and 0–1–2 mo vs. 0–2–6 mo schedules (total n ≈ 821). ▸ Total of 180 µg on a 0–2–6 mo schedule produced the highest GMT and the slowest decay; 0–1–2 mo was less durable. ▸ Reactogenicity was chiefly mild local pain/tenderness; systemic events were comparable with placebo. | [51] |
| Phase II—booster extension | ▸ Total of 59 participants (received VLA15 (n = 39) or placebo (n = 19)) primed with 180 µg (0–2–6 mo) were re-randomized 12 mo later (month 18) to receive booster or placebo. ▸ Booster raised GMT ≈ 3–4-fold relative to the previous peak and remained significantly above placebo at month 30. ▸ Safety profile unchanged; no vaccine-related serious adverse events. | [52] |
| Phase III (ongoing) | ▸ Pivotal VALOR efficacy trial (NCT05477524) enrolling individuals ≥ 5 years in Europe and the USA. ▸ Double-blind, placebo-controlled design; regimen = 180 µg at months 0, 2, 5–9 with a booster ~12 mo later. ▸ End-points: efficacy, safety, immunogenicity, and lot consistency; study currently in progress. | [53] |
| Vaccine Platform | How Does It Work? | Advantages | Disadvantages | Reference |
|---|---|---|---|---|
| Subunit (Protein/Antigen) | Pathogens’ immunogenic proteins are produced using conventional biomedical methods. They are also produced using recombinant DNA technology. | ▸ Can be used in patients with compromised immunity. ▸ With a reduced likelihood of adverse reactions, it is considered relatively safe. ▸ A high neutralizing-antibody titer compared to inactivated virus vaccines. | ▸ They are less immunogenic than live attenuated vaccines and require an adjuvant to stimulate an immune response. ▸Long-lived immunity requires multiple doses. | [136] |
| Inactivated (Killed) | Genetic material from pathogens is destroyed (through heat, radiation, or chemically, e.g., formalin and phenol). Pathogens cannot reproduce. | ▸ Requires less severe storage conditions. ▸Compared to attenuated vaccines, this is safe for use in patients with compromised immune systems. | ▸ Large amounts of antigen and booster doses are required to achieve the desired immunity. ▸They are less immunogenic than live attenuated vaccines, and they are not very effective at stimulating a cellular response. They also require an adjuvant to boost the immune system. | [136] |
| Vector-based | Viruses that have been altered and are not related to each other, and which encode one or more antigens. | ▸ It presents the desired antigens in their natural form to the immune system. ▸ It has a better safety profile than many live attenuated virus vaccines and is more immunogenic than inactivated virus vaccines. | ▸ There is a risk of host–genome integration. ▸ The effectiveness of the vaccine can be reduced by previous immunity to the vector due to exposure to the virus and the production of neutralizing antibodies. | [136] |
| mRNA | Contain genetic materials (mRNA) from the target pathogen. | ▸ Host cells produce antigens. ▸ There is less likelihood of biological changes occurring during production in the vaccinated host. ▸The mRNA vaccines can trigger strong responses from both T-helper 1 (Th1) cells and B cells. | ▸ Myocarditis is one of the possible complications that can arise from mRNA vaccinations. ▸ It is hard to distribute RNA molecules worldwide because they are unstable at high temperatures. | [136] |
| Live Attenuated | The whole viable pathogen. It has reduced virulence. | ▸ This is the closest mimic of a natural infection. It is a good teacher for the immune system. ▸Immunization can be achieved with one or a few doses, without the need for an adjuvant. ▸It usually provides lifelong immunity and a strong induction of both cellular and humoral immunity. | ▸ The potential for virulence reversion resulting from back mutations. ▸Administration of this product is not recommended for patients with compromised immune systems. ▸ Critical storage conditions are required to maintain potency. | [136] |
| Virus-Like Particles (VLPs) | Recombinant proteins that are structurally very similar to natural virions. | ▸ A wide range of production systems can be used to produce VLPs, making them flexible in terms of production conditions. ▸VLPs are not infectious because they contain no viral genomes. | ▸VLP vaccines contain many proteins and the degree to which they induce an immune response is unclear. | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachera, W.; Szuba, M.; Kim, A.T.; Yu, S.; Choi, J.; Nzekea, D.; Wu, Y.C.; Brzozowska, A.; Sota, M.; Misiak, M.; et al. What Stage Are We at in the Development of Vaccines Against Tick-Borne Diseases? Vaccines 2025, 13, 990. https://doi.org/10.3390/vaccines13090990
Stachera W, Szuba M, Kim AT, Yu S, Choi J, Nzekea D, Wu YC, Brzozowska A, Sota M, Misiak M, et al. What Stage Are We at in the Development of Vaccines Against Tick-Borne Diseases? Vaccines. 2025; 13(9):990. https://doi.org/10.3390/vaccines13090990
Chicago/Turabian StyleStachera, Weronika, Magdalena Szuba, Arya Taesung Kim, Subin Yu, Jaeuk Choi, Deborah Nzekea, Yen Ching Wu, Adrianna Brzozowska, Marcin Sota, Marianna Misiak, and et al. 2025. "What Stage Are We at in the Development of Vaccines Against Tick-Borne Diseases?" Vaccines 13, no. 9: 990. https://doi.org/10.3390/vaccines13090990
APA StyleStachera, W., Szuba, M., Kim, A. T., Yu, S., Choi, J., Nzekea, D., Wu, Y. C., Brzozowska, A., Sota, M., Misiak, M., & Dybicz, M. (2025). What Stage Are We at in the Development of Vaccines Against Tick-Borne Diseases? Vaccines, 13(9), 990. https://doi.org/10.3390/vaccines13090990

