Influenza Vaccines: Current Status, Adjuvant Strategies, and Efficacy
Abstract
1. Introduction
2. Methods
3. Influenza Virus Pandemics, Seasonal Outbreaks, and Zoonosis
4. Animal Model for Influenza Virus Vaccines
5. Approved Influenza Vaccines
5.1. Live Attenuated Vaccines
5.2. Inactivated Vaccines
5.3. Recombinant Subunit Vaccines
5.4. Multivalent Influenza Vaccines
6. Efficacy of Licensed Vaccines
7. Production Time
8. Limitations of Influenza Vaccines
9. Vaccine Adjuvants
- Mechanisms of action of adjuvants:
- Adjuvants initiate and potentiate immune responses via multiple pathways:
- Adjuvants enhance the immunogenicity of vaccines through a range of complementary mechanisms that activate innate immunity, enhance antigen presentation, and shape adaptive immune responses. Through these multiple mechanisms, adjuvants improve the vaccine immune response through higher antibody titers, broader immune repertoire, and more durable protection compared to non-adjuvanted vaccines [140,141].
- Activation of Innate Immune Sensors: Toll-like receptors (TLRs) and inflammasomes are two examples of pattern recognition receptors (PRRs) that are activated by many adjuvants. This activation triggers intracellular signaling pathways, including NF-κB and MAPKs, which in turn promote the production of chemokines and proinflammatory cytokines. These molecules create a local inflammatory milieu that recruits immune cells to the injection site and drains into the lymph node [142].
- Modulation of Antigen Presentation and Uptake: Adjuvants enhance the uptake of co-delivered antigens by antigen-presenting cells (APCs), including dendritic cells (DCs) and macrophages, promoting APC maturation and upregulation of major histocompatibility complex (MHC) molecules, which leads to improved antigen processing and T cell activation [143].
- Depot Effect and Antigen Retention: A subset of adjuvants, particularly alum and oil-in-water emulsions, generate a localized depot upon injection. The depot effect slows antigen release and maintains antigen exposure in the presence of immune-stimulating signals for a long time, thereby prolonging immune system engagement [140].
- Cytokine Induction: By stimulating innate immune pathways, adjuvants induce the secretion of cytokines such as IL-6, IFN-γ, and CCL2. These cytokines support the development of effective B and T cell responses, promoting both humoral and cellular immunity [144].
- Modulation of T-helper cell responses: Different adjuvants can direct the immune response toward either Th1 or Th2 phenotypes. Th1-biased adjuvants enhance cytotoxic T lymphocyte activity and promote IgG2a/IgG3 production, whereas Th2-type adjuvants favor IgG1/IgE production and help T cell differentiation. Some modern adjuvants are designed to promote a balanced Th1/Th2 response, which is especially beneficial for antiviral immunity [145].
9.1. Alum
9.2. MF59
9.3. AS03
9.4. AF03
9.5. Virosomes
9.6. CAF01
9.7. TLR4 Agonists
9.8. TLR 7 Adjuvants
9.9. Flagellin
9.10. Saponins
9.11. Enterotoxin Adjuvants
9.12. Physical Adjuvants
10. Adverse Effects Related to Adjuvanted Vaccines
11. Universal Influenza Vaccine (UIV)
11.1. Targeting Viral Proteins
11.2. T-Cell-Based Vaccines
11.3. mRNA-Based Vaccine
11.4. Epitope-Based Vaccine Design
11.5. Chimeric Hemagglutinin (cHA)
12. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Nuwarda, R.F.; Alharbi, A.A.; Kayser, V. An Overview of Influenza Viruses and Vaccines. Vaccines 2021, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.A.; García-Sastre, A. Influenza A Viruses: New Research Developments. Nat. Rev. Microbiol. 2011, 9, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasan, C.C.; Thomas, M.; Kaushik, R.S.; Wang, D.; Li, F. Influenza A in Bovine Species: A Narrative Literature Review. Viruses 2019, 11, 561. [Google Scholar] [CrossRef]
- Long, J.S.; Mistry, B.; Haslam, S.M.; Barclay, W.S. Host and Viral Determinants of Influenza A Virus Species Specificity. Nat. Rev. Microbiol. 2019, 17, 67–81. [Google Scholar] [CrossRef]
- Pekarek, M.J.; Weaver, E.A. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023, 15, 2032. [Google Scholar] [CrossRef]
- Lee, H.S.; Noh, J.Y.; Cheong, H.J. Influenza C Virus in Humans and Animals. Clin. Exp. Vaccine Res. 2025, 14, 203. [Google Scholar] [CrossRef]
- Kwasnik, M.; Rola, J.; Rozek, W. Influenza D in Domestic and Wild Animals. Viruses 2023, 15, 2433. [Google Scholar] [CrossRef]
- Shao, W.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J.-L. Evolution of Influenza A Virus by Mutation and Re-Assortment. Int. J. Mol. Sci. 2017, 18, 1650. [Google Scholar] [CrossRef]
- Ganti, K.; Bagga, A.; Carnaccini, S.; Ferreri, L.M.; Geiger, G.; Joaquin Caceres, C.; Seibert, B.; Li, Y.; Wang, L.; Kwon, T.; et al. Influenza A Virus Reassortment in Mammals Gives Rise to Genetically Distinct Within-Host Subpopulations. Nat. Commun. 2022, 13, 6846. [Google Scholar] [CrossRef]
- Harrington, W.N.; Kackos, C.M.; Webby, R.J. The Evolution and Future of Influenza Pandemic Preparedness. Exp. Mol. Med. 2021, 53, 737–749. [Google Scholar] [CrossRef]
- Chan, L.; Alizadeh, K.; Alizadeh, K.; Fazel, F.; Kakish, J.E.; Karimi, N.; Knapp, J.P.; Mehrani, Y.; Minott, J.A.; Morovati, S.; et al. Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines 2021, 9, 979. [Google Scholar] [CrossRef]
- Webster, R.G.; Govorkova, E.A. Continuing Challenges in Influenza. Ann. N. Y. Acad. Sci. 2014, 1323, 115–139. [Google Scholar] [CrossRef]
- Widdowson, M.-A.; Bresee, J.S.; Jernigan, D.B. The Global Threat of Animal Influenza Viruses of Zoonotic Concern: Then and Now. J. Infect. Dis. 2017, 216, S493–S498. [Google Scholar] [CrossRef] [PubMed]
- Coffin, S.E.; Zaoutis, T.E.; Rosenquist, A.B.W.; Heydon, K.; Herrera, G.; Bridges, C.B.; Watson, B.; Localio, R.; Hodinka, R.L.; Keren, R. Incidence, Complications, and Risk Factors for Prolonged Stay in Children Hospitalized with Community-Acquired Influenza. Pediatrics 2007, 119, 740–748. [Google Scholar] [CrossRef]
- Molinari, N.-A.M.; Ortega-Sanchez, I.R.; Messonnier, M.L.; Thompson, W.W.; Wortley, P.M.; Weintraub, E.; Bridges, C.B. The Annual Impact of Seasonal Influenza in the US: Measuring Disease Burden and Costs. Vaccine 2007, 25, 5086–5096. [Google Scholar] [CrossRef]
- de Courville, C.; Cadarette, S.M.; Wissinger, E.; Alvarez, F.P. The Economic Burden of Influenza among Adults Aged 18 to 64: A Systematic Literature Review. Influenza Other Respir. Viruses 2022, 16, 376–385. [Google Scholar] [CrossRef]
- Shah, S.; Schultz, T.R.; Kremer, W.; Magyarics, Z.; Jhaveri, S. EE241 Economic Burden of Influenza Hospitalization in High-Risk Patient Groups in the US. Value Health 2023, 26, S103. [Google Scholar] [CrossRef]
- Baxter, D. Evaluating the Case for Trivalent or Quadrivalent Influenza Vaccines. Hum. Vaccin. Immunother. 2016, 12, 2712–2717. [Google Scholar] [CrossRef] [PubMed]
- WHO Writing Group; Ampofo, W.K.; Baylor, N.; Cobey, S.; Cox, N.J.; Daves, S.; Edwards, S.; Ferguson, N.; Grohmann, G.; Hay, A.; et al. Improving Influenza Vaccine Virus Selection: Report of a WHO Informal Consultation Held at WHO Headquarters, Geneva, Switzerland, 14-16 June 2010. Influenza Other Respir. Viruses 2012, 6, 142–152. [Google Scholar] [CrossRef]
- Smith, D.J.; Lapedes, A.S.; de Jong, J.C.; Bestebroer, T.M.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science 2004, 305, 371–376. [Google Scholar] [CrossRef]
- Rotrosen, E.T.; Neuzil, K.M. Influenza: A Global Perspective. Pediatr. Clin. N. Am. 2017, 64, 911–936. [Google Scholar] [CrossRef]
- Gouma, S.; Anderson, E.M.; Hensley, S.E. Challenges of Making Effective Influenza Vaccines. Annu. Rev. Virol. 2020, 7, 495–512. [Google Scholar] [CrossRef]
- Xing, J.; Zhao, X.; Li, X.; Fang, R.; Sun, M.; Zhang, Y.; Song, N. The Recent Advances in Vaccine Adjuvants. Front. Immunol. 2025, 16, 1557415. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, Y.; Li, Y.; Chen, X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines 2021, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Saunders-Hastings, P.R.; Krewski, D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens 2016, 5, 66. [Google Scholar] [CrossRef]
- da Costa, V.G.; Saivish, M.V.; Santos, D.E.R.; de Lima Silva, R.F.; Moreli, M.L. Comparative Epidemiology between the 2009 H1N1 Influenza and COVID-19 Pandemics. J. Infect. Public. Health 2020, 13, 1797–1804. [Google Scholar] [CrossRef]
- Gatherer, D. The 2009 H1N1 Influenza Outbreak in Its Historical Context. J. Clin. Virol. 2009, 45, 174–178. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Russell, R.F.; Kinnear, E. Adjuvanted Influenza Vaccines. Hum. Vaccin. Immunother. 2018, 14, 550–564. [Google Scholar] [CrossRef]
- Kosik, I.; Yewdell, J.W. Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity. Viruses 2019, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.; de Graaf, M.; Herfst, S. Avian Influenza A Viruses: From Zoonosis to Pandemic. Future Virol. 2014, 9, 513–524. [Google Scholar] [CrossRef]
- Nobusawa, E.; Sato, K. Comparison of the Mutation Rates of Human Influenza A and B Viruses. J. Virol. 2006, 80, 3675–3678. [Google Scholar] [CrossRef] [PubMed]
- Bedford, T.; Riley, S.; Barr, I.G.; Broor, S.; Chadha, M.; Cox, N.J.; Daniels, R.S.; Gunasekaran, C.P.; Hurt, A.C.; Kelso, A.; et al. Global Circulation Patterns of Seasonal Influenza Viruses Vary with Antigenic Drift. Nature 2015, 523, 217–220. [Google Scholar] [CrossRef]
- Moghadami, M. A Narrative Review of Influenza: A Seasonal and Pandemic Disease. Iran. J. Med. Sci. 2017, 42, 2–13. [Google Scholar]
- Ryu, S.; Cowling, B.J. Human Influenza Epidemiology. Cold Spring Harb. Perspect. Med. 2021, 11, a038356. [Google Scholar] [CrossRef]
- Tyrrell, C.S.B.; Allen, J.L.Y.; Gkrania-Klotsas, E. Influenza: Epidemiology and Hospital Management. Medicine 2021, 49, 797–804. [Google Scholar] [CrossRef]
- Álvarez, F.; Froes, F.; Rojas, A.G.; Moreno-Perez, D.; Martinón-Torres, F. The Challenges of Influenza for Public Health. Future Microbiol. 2019, 14, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Marchi, S.; Fallani, E.; Salvatore, M.; Montomoli, E.; Trombetta, C.M. The Burden of Influenza and the Role of Influenza Vaccination in Adults Aged 50-64 Years: A Summary of Available Evidence. Hum. Vaccin. Immunother. 2023, 19, 2257048. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and Ecology of Influenza A Viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Melidou, A.; Enkirch, T.; Willgert, K.; Adlhoch, C.; Alm, E.; Lamb, F.; Marangon, S.; Monne, I.; Stegeman, J.A.; Delacourt, R.; et al. Drivers for a Pandemic Due to Avian Influenza and Options for One Health Mitigation Measures. EFSA J. 2024, 22, e8735. [Google Scholar] [CrossRef] [PubMed]
- Van Poucke, S.G.; Nicholls, J.M.; Nauwynck, H.J.; Van Reeth, K. Replication of Avian, Human and Swine Influenza Viruses in Porcine Respiratory Explants and Association with Sialic Acid Distribution. Virol. J. 2010, 7, 38. [Google Scholar] [CrossRef]
- Ito, T.; Couceiro, J.N.S.S.; Kelm, S.; Baum, L.G.; Krauss, S.; Castrucci, M.R.; Donatelli, I.; Kida, H.; Paulson, J.C.; Webster, R.G.; et al. Molecular Basis for the Generation in Pigs of Influenza A Viruses with Pandemic Potential. J. Virol. 1998, 72, 7367–7373. [Google Scholar] [CrossRef]
- Webster, R.G.; Yakhno, M.; Hinshaw, V.S.; Bean, W.J.; Copal Murti, K. Intestinal Influenza: Replication and Characterization of Influenza Viruses in Ducks. Virology 1978, 84, 268–278. [Google Scholar] [CrossRef]
- Garg, S.; Reed, C.; Davis, C.T.; Uyeki, T.M.; Behravesh, C.B.; Kniss, K.; Budd, A.; Biggerstaff, M.; Adjemian, J.; Barnes, J.R.; et al. Outbreak of Highly Pathogenic Avian Influenza A(H5N1) Viruses in U.S. Dairy Cattle and Detection of Two Human Cases—United States, 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 501–505. [Google Scholar] [CrossRef]
- Burrough, E.R.; Magstadt, D.R.; Petersen, B.; Timmermans, S.J.; Gauger, P.C.; Zhang, J.; Siepker, C.; Mainenti, M.; Li, G.; Thompson, A.C.; et al. Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus Infection in Domestic Dairy Cattle and Cats, United States, 2024. Emerg. Infect. Dis. 2024, 30, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Owusu, H.; Sanad, Y.M. Comprehensive Insights into Highly Pathogenic Avian Influenza H5N1 in Dairy Cattle: Transmission Dynamics, Milk-Borne Risks, Public Health Implications, Biosecurity Recommendations, and One Health Strategies for Outbreak Control. Pathogens 2025, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Kanaujia, R.; Bora, I.; Ratho, R.K.; Thakur, V.; Mohi, G.K.; Thakur, P. Avian Influenza Revisited: Concerns and Constraints. Virusdisease 2022, 33, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Boklund, A.; Dippel, S.; Dórea, F.; Figuerola, J.; Herskin, M.S.; Michel, V.; Miranda Chueca, M.Á.; Nannoni, E.; Nielsen, S.S.; et al. Preparedness, Prevention and Control Related to Zoonotic Avian Influenza. EFSA J. 2025, 23, e9191. [Google Scholar] [CrossRef]
- Bouvier, N.M.; Lowen, A.C. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses 2010, 2, 1530–1563. [Google Scholar] [CrossRef]
- Spruit, C.M.; Nemanichvili, N.; Okamatsu, M.; Takematsu, H.; Boons, G.-J.; de Vries, R.P. N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses 2021, 13, 815. [Google Scholar] [CrossRef]
- Kimble, J.B.; Wymore Brand, M.; Kaplan, B.S.; Gauger, P.; Coyle, E.M.; Chilcote, K.; Khurana, S.; Vincent, A.L. Vaccine-Associated Enhanced Respiratory Disease Following Influenza Virus Infection in Ferrets Recapitulates the Model in Pigs. J. Virol. 2022, 96, e0172521. [Google Scholar] [CrossRef]
- Sun, Y.; Bi, Y.; Pu, J.; Hu, Y.; Wang, J.; Gao, H.; Liu, L.; Xu, Q.; Tan, Y.; Liu, M.; et al. Guinea Pig Model for Evaluating the Potential Public Health Risk of Swine and Avian Influenza Viruses. PLoS ONE 2010, 5, e15537. [Google Scholar] [CrossRef]
- Sreenivasan, C.; Thomas, M.; Sheng, Z.; Hause, B.M.; Collin, E.A.; Knudsen, D.E.B.; Pillatzki, A.; Nelson, E.; Wang, D.; Kaushik, R.S.; et al. Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model. J. Virol. 2015, 89, 11990–12001. [Google Scholar] [CrossRef] [PubMed]
- Smee, D.F.; Barnard, D.L. Methods for Evaluation of Antiviral Efficacy Against Influenza Virus Infections in Animal Models. In Antiviral Methods and Protocols; Humana Press: Totowa, NJ, USA, 2013; pp. 407–425. [Google Scholar] [CrossRef]
- Thangavel, R.R.; Bouvier, N.M. Animal Models for Influenza Virus Pathogenesis, Transmission, and Immunology. J. Immunol. Methods 2014, 410, 60–79. [Google Scholar] [CrossRef] [PubMed]
- McNee, A.; Smith, T.R.F.; Holzer, B.; Clark, B.; Bessell, E.; Guibinga, G.; Brown, H.; Schultheis, K.; Fisher, P.; Ramos, S.; et al. Establishment of a Pig Influenza Challenge Model for Evaluation of Monoclonal Antibody Delivery Platforms. J. Immunol. 2020, 205, 648–660. [Google Scholar] [CrossRef]
- Iwatsuki-Horimoto, K.; Nakajima, N.; Shibata, M.; Takahashi, K.; Sato, Y.; Kiso, M.; Yamayoshi, S.; Ito, M.; Enya, S.; Otake, M.; et al. The Microminipig as an Animal Model for Influenza A Virus Infection. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Khatri, M.; Dwivedi, V.; Krakowka, S.; Manickam, C.; Ali, A.; Wang, L.; Qin, Z.; Renukaradhya, G.J.; Lee, C.-W. Swine Influenza H1N1 Virus Induces Acute Inflammatory Immune Responses in Pig Lungs: A Potential Animal Model for Human H1N1 Influenza Virus. J. Virol. 2010, 84, 11210–11218. [Google Scholar] [CrossRef]
- Rajao, D.S.; Vincent, A.L. Swine as a Model for Influenza A Virus Infection and Immunity. ILAR J. 2015, 56, 44–52. [Google Scholar] [CrossRef]
- Hendy, D.A.; Amouzougan, E.A.; Young, I.C.; Bachelder, E.M.; Ainslie, K.M. Nano/Microparticle Formulations for Universal Influenza Vaccines. AAPS J. 2022, 24, 24. [Google Scholar] [CrossRef]
- Dwivedi, V.; Manickam, C.; Binjawadagi, B.; Joyappa, D.; Renukaradhya, G.J. Biodegradable Nanoparticle-Entrapped Vaccine Induces Cross-Protective Immune Response against a Virulent Heterologous Respiratory Viral Infection in Pigs. PLoS ONE 2012, 7, e51794. [Google Scholar] [CrossRef]
- Dhakal, S.; Cheng, X.; Salcido, J.; Renu, S.; Bondra, K.; Lakshmanappa, Y.S.; Misch, C.; Ghimire, S.; Feliciano-Ruiz, N.; Hogshead, B.; et al. Liposomal Nanoparticle-Based Conserved Peptide Influenza Vaccine and Monosodium Urate Crystal Adjuvant Elicit Protective Immune Response in Pigs. Int. J. Nanomed. 2018, 13, 6699–6715. [Google Scholar] [CrossRef]
- Dhakal, S.; Hiremath, J.; Bondra, K.; Lakshmanappa, Y.S.; Shyu, D.-L.; Ouyang, K.; Kang, K.; Binjawadagi, B.; Goodman, J.; Tabynov, K.; et al. Biodegradable Nanoparticle Delivery of Inactivated Swine Influenza Virus Vaccine Provides Heterologous Cell-Mediated Immune Response in Pigs. J. Control Release 2017, 247, 194–205. [Google Scholar] [CrossRef]
- Patil, V.; Hernandez-Franco, J.F.; Yadagiri, G.; Bugybayeva, D.; Dolatyabi, S.; Feliciano-Ruiz, N.; Schrock, J.; Suresh, R.; Hanson, J.; Yassine, H.; et al. Characterization of the Efficacy of a Split Swine Influenza A Virus Nasal Vaccine Formulated with a Nanoparticle/STING Agonist Combination Adjuvant in Conventional Pigs. Vaccines 2023, 11, 1707. [Google Scholar] [CrossRef]
- Renu, S.; Feliciano-Ruiz, N.; Lu, F.; Ghimire, S.; Han, Y.; Schrock, J.; Dhakal, S.; Patil, V.; Krakowka, S.; HogenEsch, H.; et al. A Nanoparticle-Poly(I:C) Combination Adjuvant Enhances the Breadth of the Immune Response to Inactivated Influenza Virus Vaccine in Pigs. Vaccines 2020, 8, 229. [Google Scholar] [CrossRef]
- Dhakal, S.; Renu, S.; Ghimire, S.; Shaan Lakshmanappa, Y.; Hogshead, B.T.; Feliciano-Ruiz, N.; Lu, F.; HogenEsch, H.; Krakowka, S.; Lee, C.W.; et al. Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs. Front. Immunol. 2018, 9, 934. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Kumari, S.; Sillman, S.; Chaudhari, J.; Lai, D.C.; Vu, H.L.X. A Single-Dose Intramuscular Immunization of Pigs with Lipid Nanoparticle DNA Vaccines Based on the Hemagglutinin Antigen Confers Complete Protection against Challenge Infection with the Homologous Influenza Virus Strain. Vaccines 2023, 11, 1596. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Renukaradhya, G.J. Nanoparticle-Based Vaccine Development and Evaluation against Viral Infections in Pigs. Vet. Res. 2019, 50, 90. [Google Scholar] [CrossRef]
- Trombetta, C.M.; Kistner, O.; Montomoli, E.; Viviani, S.; Marchi, S. Influenza Viruses and Vaccines: The Role of Vaccine Effectiveness Studies for Evaluation of the Benefits of Influenza Vaccines. Vaccines 2022, 10, 714. [Google Scholar] [CrossRef]
- Weir, J.P.; Gruber, M.F. An Overview of the Regulation of Influenza Vaccines in the United States. Influenza Other Respir. Viruses 2016, 10, 354–360. [Google Scholar] [CrossRef]
- Dunkle, L.M.; Izikson, R. Recombinant Hemagglutinin Influenza Vaccine Provides Broader Spectrum Protection. Expert. Rev. Vaccines 2016, 15, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Hong, K.; Kim, H.; Nam, J. Influenza Vaccines: Past, Present, and Future. Rev. Med. Virol. 2022, 32, e2243. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Meliopoulos, V.A.; Wang, W.; Lin, X.; Stucker, K.M.; Halpin, R.A.; Stockwell, T.B.; Schultz-Cherry, S.; Wentworth, D.E. Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus. J. Virol. 2016, 90, 8454–8463. [Google Scholar] [CrossRef]
- Eccles, R. Why Is Temperature Sensitivity Important for the Success of Common Respiratory Viruses? Rev. Med. Virol. 2021, 31, 1–8. [Google Scholar] [CrossRef]
- CDC Live Attenuated Influenza Vaccine [LAIV] (The Nasal Spray Flu Vaccine). Available online: https://www.cdc.gov/flu/vaccine-types/nasalspray.html (accessed on 25 August 2022).
- Jin, H.; Lu, B.; Zhou, H.; Ma, C.; Zhao, J.; Yang, C.; Kemble, G.; Greenberg, H. Multiple Amino Acid Residues Confer Temperature Sensitivity to Human Influenza Virus Vaccine Strains (FluMist) Derived from Cold-Adapted A/Ann Arbor/6/60. Virology 2003, 306, 18–24. [Google Scholar] [CrossRef]
- Ambrose, C.S.; Bright, H.; Mallory, R. Letter to the Editor: Potential Causes of the Decreased Effectiveness of the Influenza A(H1N1)Pdm09 Strain in Live Attenuated Influenza Vaccines. Eurosurveillance 2016, 21, 30394. [Google Scholar] [CrossRef]
- Grohskopf, L.A.; Ferdinands, J.M.; Blanton, L.H.; Broder, K.R.; Loehr, J. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2024–2025 Influenza Season. MMWR Recomm. Rep. 2024, 73, 1–25. [Google Scholar] [CrossRef]
- Ayaz, S.; Dibben, O.; Chapman, D. Presence of Defective Viral Genes in H1N1 Live Attenuated Influenza Vaccine Strains Is Not Associated with Reduced Human Cell Fitness or Vaccine Effectiveness. Vaccine 2021, 39, 6735–6745. [Google Scholar] [CrossRef]
- Jhaveri, R. Live Attenuated Influenza Vaccine: Is Past Performance a Guarantee of Future Results? Clin. Ther. 2018, 40, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Shichinohe, S.; Watanabe, T. Advances in Adjuvanted Influenza Vaccines. Vaccines 2023, 11, 1391. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Blanco-Lobo, P.; Reilly, E.C.; Maehigashi, T.; Nogales, A.; Smith, A.; Topham, D.J.; Dewhurst, S.; Kim, B.; Martínez-Sobrido, L. Comparative Study of the Temperature Sensitive, Cold Adapted and Attenuated Mutations Present in the Master Donor Viruses of the Two Commercial Human Live Attenuated Influenza Vaccines. Viruses 2019, 11, 928. [Google Scholar] [CrossRef]
- Onodera, T.; Hosono, A.; Odagiri, T.; Tashiro, M.; Kaminogawa, S.; Okuno, Y.; Kurosaki, T.; Ato, M.; Kobayashi, K.; Takahashi, Y. Whole-Virion Influenza Vaccine Recalls an Early Burst of High-Affinity Memory B Cell Response through TLR Signaling. J. Immunol. 2016, 196, 4172–4184. [Google Scholar] [CrossRef]
- Cox, R.J.; Brokstad, K.A.; Ogra, P. Influenza Virus: Immunity and Vaccination Strategies. Comparison of the Immune Response to Inactivated and Live, Attenuated Influenza Vaccines. Scand. J. Immunol. 2004, 59, 1–15. [Google Scholar] [CrossRef]
- Wong, S.-S.; Webby, R.J. Traditional and New Influenza Vaccines. Clin. Microbiol. Rev. 2013, 26, 476–492. [Google Scholar] [CrossRef]
- Kon, T.C.; Onu, A.; Berbecila, L.; Lupulescu, E.; Ghiorgisor, A.; Kersten, G.F.; Cui, Y.-Q.; Amorij, J.-P.; Van der Pol, L. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes. PLoS ONE 2016, 11, e0150700. [Google Scholar] [CrossRef]
- Furuya, Y. Return of Inactivated Whole-Virus Vaccine for Superior Efficacy. Immunol. Cell Biol. 2012, 90, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Sanders, B.; Koldijk, M.; Schuitemaker, H. Inactivated Viral Vaccines. In Vaccine Analysis: Strategies, Principles, and Control; Springer: Berlin/Heidelberg, Germany, 2015; pp. 45–80. [Google Scholar]
- Groothuis, J.R.; Levin, M.J.; Lehr, M.V.; Weston, J.A.; Hayward, A.R. Immune Response to Split-Product Influenza Vaccine in Preterm and Full-Term Young Children. Vaccine 1992, 10, 221–225. [Google Scholar] [CrossRef]
- Dormitzer, P.R.; Galli, G.; Castellino, F.; Golding, H.; Khurana, S.; Del Giudice, G.; Rappuoli, R. Influenza Vaccine Immunology. Immunol. Rev. 2011, 239, 167–177. [Google Scholar] [CrossRef]
- Geeraedts, F.; Goutagny, N.; Hornung, V.; Severa, M.; de Haan, A.; Pool, J.; Wilschut, J.; Fitzgerald, K.A.; Huckriede, A. Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine Is Primarily Controlled by Toll-like Receptor Signalling. PLoS Pathog. 2008, 4, e1000138. [Google Scholar] [CrossRef] [PubMed]
- DiazGranados, C.A.; Dunning, A.J.; Kimmel, M.; Kirby, D.; Treanor, J.; Collins, A.; Pollak, R.; Christoff, J.; Earl, J.; Landolfi, V.; et al. Efficacy of High-Dose versus Standard-Dose Influenza Vaccine in Older Adults. N. Engl. J. Med. 2014, 371, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Gravenstein, S.; Davidson, H.E.; Taljaard, M.; Ogarek, J.; Gozalo, P.; Han, L.; Mor, V. Comparative Effectiveness of High-Dose versus Standard-Dose Influenza Vaccination on Numbers of US Nursing Home Residents Admitted to Hospital: A Cluster-Randomised Trial. Lancet Respir. Med. 2017, 5, 738–746. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, J.; Ly, H. Advances in Development and Application of Influenza Vaccines. Front. Immunol. 2021, 12, 711997. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.M.J.; Patriarca, P.A.; Treanor, J. FluBlok, a Recombinant Hemagglutinin Influenza Vaccine. Influenza Other Respir. Viruses 2008, 2, 211–219. [Google Scholar] [CrossRef]
- Dunkle, L.M.; Izikson, R.; Patriarca, P.; Goldenthal, K.L.; Muse, D.; Callahan, J.; Cox, M.M.J. Efficacy of Recombinant Influenza Vaccine in Adults 50 Years of Age or Older. N. Engl. J. Med. 2017, 376, 2427–2436. [Google Scholar] [CrossRef]
- Carascal, M.B.; Pavon, R.D.N.; Rivera, W.L. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front. Immunol. 2022, 13, 878943. [Google Scholar] [CrossRef]
- Cox, M.M.J.; Izikson, R.; Post, P.; Dunkle, L. Safety, Efficacy, and Immunogenicity of Flublok in the Prevention of Seasonal Influenza in Adults. Ther. Adv. Vaccines 2015, 3, 97–108. [Google Scholar] [CrossRef]
- Rockman, S.; Laurie, K.L.; Parkes, S.; Wheatley, A.; Barr, I.G. New Technologies for Influenza Vaccines. Microorganisms 2020, 8, 1745. [Google Scholar] [CrossRef]
- Yamayoshi, S.; Kawaoka, Y. Current and Future Influenza Vaccines. Nat. Med. 2019, 25, 212–220. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Kim, K.-H.; Ko, E.-J.; Lee, Y.-N.; Kim, M.-C.; Kwon, Y.-M.; Tang, Y.; Cho, M.-K.; Lee, Y.-J.; Kang, S.-M. New Vaccines against Influenza Virus. Clin. Exp. Vaccine Res. 2014, 3, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Taaffe, J.; Ostrowsky, J.T.; Mott, J.; Goldin, S.; Friede, M.; Gsell, P.; Chadwick, C. Advancing Influenza Vaccines: A Review of next-Generation Candidates and Their Potential for Global Health Impact. Vaccine 2024, 42, 126408. [Google Scholar] [CrossRef] [PubMed]
- S, A.K.; Wasnik, A.; Gupta, L.; Ranjan, A.; Suresh, H. Effectiveness of Interventions to Improve Vaccine Efficacy: A Systematic Review and Meta-Analysis. Syst. Rev. 2025, 14, 105. [Google Scholar] [CrossRef]
- Paget, J.; Caini, S.; Del Riccio, M.; van Waarden, W.; Meijer, A. Has Influenza B/Yamagata Become Extinct and What Implications Might This Have for Quadrivalent Influenza Vaccines? Eurosurveillance 2022, 27, 2200753. [Google Scholar] [CrossRef]
- US Food and Drug Administration [Internet]. Use of Trivalent Influenza Vaccines for the 2024–2025 U.S. Influenza Season. Available online: https://www.Fda.Gov/Vaccines-Blood-Biologics/Lot-Release/Use-Trivalent-Influenza-Vaccines-2024-2025-Us-Influenza-Season (accessed on 29 July 2025).
- Caini, S.; Meijer, A.; Nunes, M.C.; Henaff, L.; Zounon, M.; Boudewijns, B.; Del Riccio, M.; Paget, J. Is Influenza B/Yamagata Extinct and What Public Health Implications Could This Have? An Updated Literature Review and Comprehensive Assessment of Global Surveillance Databases. medRxiv 2023. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Influenza Vaccine Composition for the 2025–2026 U.S. Influenza Season. U.S. Department of Health and Human Services. Available online: https://www.Fda.Gov/Vaccines-Blood-Biologics/Influenza-Vaccine-Composition-2025-2026-Us-Influenza-Season (accessed on 13 March 2025).
- Ambrose, C.S.; Levin, M.J. The Rationale for Quadrivalent Influenza Vaccines. Hum. Vaccin. Immunother. 2012, 8, 81–88. [Google Scholar] [CrossRef]
- Mennini, F.S.; Bini, C.; Marcellusi, A.; Rinaldi, A.; Franco, E. Cost-Effectiveness of Switching from Trivalent to Quadrivalent Inactivated Influenza Vaccines for the at-Risk Population in Italy. Hum. Vaccin. Immunother. 2018, 14, 1867–1873. [Google Scholar] [CrossRef]
- Bianculli, P.M.; Bellier, L.; Mangado, I.O.; Pérez, C.G.; Mieres, G.; Lazarov, L.; Petitjean, A.; Dibarboure, H.; Lopez, J.G. Switching from Trivalent to Quadrivalent Inactivated Influenza Vaccines in Uruguay: A Cost-Effectiveness Analysis. Hum. Vaccin. Immunother. 2022, 18, 2050653. [Google Scholar] [CrossRef] [PubMed]
- Urueña, A.; Micone, P.; Magneres, C.; Mould-Quevedo, J.; Giglio, N. Cost-Effectiveness Analysis of Switching from Trivalent to Quadrivalent Seasonal Influenza Vaccine in Argentina. Vaccines 2021, 9, 335. [Google Scholar] [CrossRef]
- Lertsirimunkon, J. Costs per DALYs Averted of Quadrivalent Influenza Vaccine versus Trivalent Influenza Vaccine in Elderly Population in Thailand. Siriraj Med. J. 2021, 73, 259–267. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. (6 August 2025). 2025–2026 Flu Season. U.S. Department of Health and Human Services. Available online: https://www.Cdc.Gov/Flu/Season/2025-2026.Html (accessed on 29 July 2025).
- Chung, J.R.; Kim, S.S.; Kondor, R.J.; Smith, C.; Budd, A.P.; Tartof, S.Y.; Florea, A.; Talbot, H.K.; Grijalva, C.G.; Wernli, K.J.; et al. Interim Estimates of 2021-22 Seasonal Influenza Vaccine Effectiveness—United States, February 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 365–370. [Google Scholar] [CrossRef]
- Lipsitch, M.; O’Hagan, J.J. Patterns of Antigenic Diversity and the Mechanisms That Maintain Them. J. R. Soc. Interface 2007, 4, 787–802. [Google Scholar] [CrossRef]
- McLean, H.Q.; Belongia, E.A. Influenza Vaccine Effectiveness: New Insights and Challenges. Cold Spring Harb. Perspect. Med. 2021, 11, a038315. [Google Scholar] [CrossRef]
- Kissling, E.; Pozo, F.; Martínez-Baz, I.; Buda, S.; Vilcu, A.; Domegan, L.; Mazagatos, C.; Dijkstra, F.; Latorre-Margalef, N.; Kurečić Filipović, S.; et al. Influenza Vaccine Effectiveness against Influenza A Subtypes in Europe: Results from the 2021–2022 I-MOVE Primary Care Multicentre Study. Influenza Other Respir. Viruses 2023, 17, e13069. [Google Scholar] [CrossRef]
- Suntronwong, N.; Klinfueng, S.; Korkong, S.; Vichaiwattana, P.; Thongmee, T.; Vongpunsawad, S.; Poovorawan, Y. Characterizing Genetic and Antigenic Divergence from Vaccine Strain of Influenza A and B Viruses Circulating in Thailand, 2017–2020. Sci. Rep. 2021, 11, 735. [Google Scholar] [CrossRef]
- Liang, W.; Tan, T.J.C.; Wang, Y.; Lv, H.; Sun, Y.; Bruzzone, R.; Mok, C.K.P.; Wu, N.C. Egg-Adaptive Mutations of Human Influenza H3N2 Virus Are Contingent on Natural Evolution. PLoS Pathog. 2022, 18, e1010875. [Google Scholar] [CrossRef]
- Lee, J.M.; Huddleston, J.; Doud, M.B.; Hooper, K.A.; Wu, N.C.; Bedford, T.; Bloom, J.D. Deep Mutational Scanning of Hemagglutinin Helps Predict Evolutionary Fates of Human H3N2 Influenza Variants. Proc. Natl. Acad. Sci. USA 2018, 115, E8276–E8285. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Liang, W.; Ouyang, W.O.; Hernandez Garcia, A.; Kikuchi, C.; Wang, S.; McBride, R.; Tan, T.J.C.; Sun, Y.; Chen, C.; et al. Epistasis Mediates the Evolution of the Receptor Binding Mode in Recent Human H3N2 Hemagglutinin. Nat. Commun. 2024, 15, 5175. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.C.; Lv, H.; Thompson, A.J.; Wu, D.C.; Ng, W.W.S.; Kadam, R.U.; Lin, C.-W.; Nycholat, C.M.; McBride, R.; Liang, W.; et al. Preventing an Antigenically Disruptive Mutation in Egg-Based H3N2 Seasonal Influenza Vaccines by Mutational Incompatibility. Cell Host Microbe 2019, 25, 836–844.e5. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, X.; Zhang, X.; Yao, H.; Wu, N. Immune Interference in Effectiveness of Influenza and COVID-19 Vaccination. Front. Immunol. 2023, 14, 1167214. [Google Scholar] [CrossRef]
- Belanov, S.S.; Bychkov, D.; Benner, C.; Ripatti, S.; Ojala, T.; Kankainen, M.; Kai Lee, H.; Wei-Tze Tang, J.; Kainov, D.E. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)Pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates. Genome Biol. Evol. 2015, 7, 3472–3483. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.; Chung, J.R.; Monto, A.S.; Martin, E.T.; Belongia, E.A.; McLean, H.Q.; Gaglani, M.; Murthy, K.; Zimmerman, R.K.; Nowalk, M.P.; et al. Influenza Vaccine Effectiveness in Older Adults Compared with Younger Adults over Five Seasons. Vaccine 2018, 36, 1272–1278. [Google Scholar] [CrossRef]
- Cruz-Valdez, A.; Valdez-Zapata, G.; Patel, S.S.; Castelli, F.V.; Garcia, M.G.; Jansen, W.T.; Arora, A.K.; Heijnen, E. MF59-Adjuvanted Influenza Vaccine (FLUAD®) Elicits Higher Immune Responses than a Non-Adjuvanted Influenza Vaccine (Fluzone®): A Randomized, Multicenter, Phase III Pediatric Trial in Mexico. Hum. Vaccin. Immunother. 2018, 14, 386–395. [Google Scholar] [CrossRef]
- Igari, H.; Watanabe, A.; Chiba, H.; Shoji, K.; Segawa, S.; Nakamura, Y.; Watanabe, M.; Suzuki, K.; Sato, T. Effectiveness and Safety of Pandemic Influenza A (H1N1) 2009 Vaccine in Healthcare Workers at a University Hospital in Japan. Jpn. J. Infect. Dis. 2011, 64, 177–182. [Google Scholar] [CrossRef]
- Restivo, V.; Costantino, C.; Bono, S.; Maniglia, M.; Marchese, V.; Ventura, G.; Casuccio, A.; Tramuto, F.; Vitale, F. Influenza Vaccine Effectiveness among High-Risk Groups: A Systematic Literature Review and Meta-Analysis of Case-Control and Cohort Studies. Hum. Vaccin. Immunother. 2018, 14, 724–735. [Google Scholar] [CrossRef]
- Plant, E.P.; Fredell, L.J.; Hatcher, B.A.; Li, X.; Chiang, M.-J.; Kosikova, M.; Xie, H.; Zoueva, O.; Cost, A.A.; Ye, Z.; et al. Different Repeat Annual Influenza Vaccinations Improve the Antibody Response to Drifted Influenza Strains. Sci. Rep. 2017, 7, 5258. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA’s Critical Role in Ensuring Safe and Effective Flu Vaccines. FDA Consumer Updates. Available online: https://www.fda.gov/consumers/consumer-updates/fdas-critical-role-ensuring-safe-and-effective-flu-vaccines (accessed on 23 October 2024).
- Zinnecker, T.; Reichl, U.; Genzel, Y. Innovations in Cell Culture-Based Influenza Vaccine Manufacturing—From Static Cultures to High Cell Density Cultivations. Hum. Vaccin. Immunother. 2024, 20, 2373521. [Google Scholar] [CrossRef]
- Milián, E.; Kamen, A.A. Current and Emerging Cell Culture Manufacturing Technologies for Influenza Vaccines. Biomed. Res. Int. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, X.; Guo, Y.; Liu, M.; Li, P.; Tao, Y.; Liu, Z.; Yang, Z.; Zhan, S.; Sun, F. Real-World Effectiveness of Seasonal Influenza Vaccination and Age as Effect Modifier: A Systematic Review, Meta-Analysis and Meta-Regression of Test-Negative Design Studies. Vaccine 2024, 42, 1883–1891. [Google Scholar] [CrossRef]
- Soema, P.C.; Kompier, R.; Amorij, J.-P.; Kersten, G.F.A. Current and next Generation Influenza Vaccines: Formulation and Production Strategies. Eur. J. Pharm. Biopharm. 2015, 94, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. The Human Antibody Response to Influenza A Virus Infection and Vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef]
- Rajendran, M.; Krammer, F.; McMahon, M. The Human Antibody Response to the Influenza Virus Neuraminidase Following Infection or Vaccination. Vaccines 2021, 9, 846. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.H.; Hauguel, T.; Beitelshees, M.; Davitt, M.; Welch, V.; Lindert, K.; Allen, P.; True, J.M.; Dolsten, M. Deciphering Immune Responses: A Comparative Analysis of Influenza Vaccination Platforms. Drug Discov. Today 2024, 29, 104125. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). CDC Seasonal Flu Vaccine Effectiveness Studies. Available online: https://www.cdc.gov/flu-vaccines-work/php/effectiveness-studies/index.html (accessed on 8 November 2023).
- Cui, Y.; Ho, M.; Hu, Y.; Shi, Y. Vaccine Adjuvants: Current Status, Research and Development, Licensing, and Future Opportunities. J. Mater. Chem. B 2024, 12, 4118–4137. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine Adjuvants: Mechanisms and Platforms. Signal Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef]
- Rapaka, R.R.; Cross, A.S.; McArthur, M.A. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines 2021, 9, 820. [Google Scholar] [CrossRef]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef]
- Rajput, M.K.S.; Kesharwani, S.S.; Kumar, S.; Muley, P.; Narisetty, S.; Tummala, H. Dendritic Cell-Targeted Nanovaccine Delivery System Prepared with an Immune-Active Polymer. ACS Appl. Mater. Interfaces 2018, 10, 27589–27602. [Google Scholar] [CrossRef]
- Kumar, S.; Kesharwani, S.S.; Kuppast, B.; Bakkari, M.A.; Tummala, H. Pathogen-Mimicking Vaccine Delivery System Designed with a Bioactive Polymer (Inulin Acetate) for Robust Humoral and Cellular Immune Responses. J. Control. Release 2017, 261, 263–274. [Google Scholar] [CrossRef]
- Kumar, S.; Kesharwani, S.S.; Kuppast, B.; Rajput, M.; Ali Bakkari, M.; Tummala, H. Discovery of Inulin Acetate as a Novel Immune-Active Polymer and Vaccine Adjuvant: Synthesis, Material Characterization, and Biological Evaluation as a Toll-like Receptor-4 Agonist. J. Mater. Chem. B 2016, 4, 7950–7960. [Google Scholar] [CrossRef] [PubMed]
- Marrack, P.; McKee, A.S.; Munks, M.W. Towards an Understanding of the Adjuvant Action of Aluminium. Nat. Rev. Immunol. 2009, 9, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Aprile, M.A.; Wardlaw, A.C. Aluminium Compounds as Adjuvants for Vaccines and Toxoids in Man: A Review. Can. J. Public. Health 1966, 57, 343–360. [Google Scholar] [PubMed]
- Pulendran, B.; Arunachalam, P.S.; O’Hagan, D.T. Emerging Concepts in the Science of Vaccine Adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- Moni, S.; Abdelwahab, S.; Jabeen, A.; Elmobark, M.; Aqaili, D.; Gohal, G.; Oraibi, B.; Farasani, A.; Jerah, A.; Alnajai, M.; et al. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines 2023, 11, 1704. [Google Scholar] [CrossRef]
- Baylor, N.W.; Egan, W.; Richman, P. Aluminum Salts in Vaccines—US Perspective. Vaccine 2002, 20 (Suppl. 3), S18–S23. [Google Scholar] [CrossRef]
- Gupta, R. Aluminum Compounds as Vaccine Adjuvants. Adv. Drug Deliv. Rev. 1998, 32, 155–172. [Google Scholar] [CrossRef]
- HogenEsch, H. Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants. Front. Immunol. 2013, 3, 406. [Google Scholar] [CrossRef] [PubMed]
- Powell, B.S.; Andrianov, A.K.; Fusco, P.C. Polyionic Vaccine Adjuvants: Another Look at Aluminum Salts and Polyelectrolytes. Clin. Exp. Vaccine Res. 2015, 4, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R.; Hassett, K.J.; Brito, L.A. Overview of Vaccine Adjuvants: Introduction, History, and Current Status. In Vaccine Adjuvants. Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; pp. 1–13. [Google Scholar]
- Awate, S.; Babiuk, L.A.; Mutwiri, G. Mechanisms of Action of Adjuvants. Front. Immunol. 2013, 4, 114. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J.; Kwak, C.; Poo, H. Poly-γ-Glutamic Acid/Alum Adjuvanted PH1N1 Vaccine-Immunized Aged Mice Exhibit a Significant Increase in Vaccine Efficacy with a Decrease in Age-Associated CD8+ T Cell Proportion in Splenocytes. Immun. Ageing 2022, 19, 22. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Z.; Huang, L.; Zhou, X.; Luo, J.; Yang, Y.; Li, C.; Duan, P.; Xu, W.; Chen, D.; et al. Safety and Immunogenicity of an Alum-Adjuvanted Whole-Virion H7N9 Influenza Vaccine: A Randomized, Blinded, Clinical Trial. Clin. Microbiol. Infect. 2021, 27, 775–781. [Google Scholar] [CrossRef]
- Krauss, S.R.; Barbateskovic, M.; Klingenberg, S.L.; Djurisic, S.; Petersen, S.B.; Kenfelt, M.; Kong, D.Z.; Jakobsen, J.C.; Gluud, C. Aluminium Adjuvants versus Placebo or No Intervention in Vaccine Randomised Clinical Trials: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. BMJ Open 2022, 12, e058795. [Google Scholar] [CrossRef] [PubMed]
- Hervé, C.; Laupèze, B.; Del Giudice, G.; Didierlaurent, A.M.; Tavares Da Silva, F. The How’s and What’s of Vaccine Reactogenicity. NPJ Vaccines 2019, 4, 39. [Google Scholar] [CrossRef]
- Ko, E.-J.; Kang, S.-M. Immunology and Efficacy of MF59-Adjuvanted Vaccines. Hum. Vaccin. Immunother. 2018, 14, 3041–3045. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Ott, G.S.; De Gregorio, E.; Seubert, A. The Mechanism of Action of MF59—An Innately Attractive Adjuvant Formulation. Vaccine 2012, 30, 4341–4348. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Chearwae, W.; Castellino, F.; Manischewitz, J.; King, L.R.; Honorkiewicz, A.; Rock, M.T.; Edwards, K.M.; Del Giudice, G.; Rappuoli, R.; et al. Vaccines with MF59 Adjuvant Expand the Antibody Repertoire to Target Protective Sites of Pandemic Avian H5N1 Influenza Virus. Sci. Transl. Med. 2010, 2, 15ra5. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Verma, N.; Yewdell, J.W.; Hilbert, A.K.; Castellino, F.; Lattanzi, M.; Del Giudice, G.; Rappuoli, R.; Golding, H. MF59 Adjuvant Enhances Diversity and Affinity of Antibody-Mediated Immune Response to Pandemic Influenza Vaccines. Sci. Transl. Med. 2011, 3, 85ra48. [Google Scholar] [CrossRef]
- Domnich, A.; Arata, L.; Amicizia, D.; Puig-Barberà, J.; Gasparini, R.; Panatto, D. Effectiveness of MF59-Adjuvanted Seasonal Influenza Vaccine in the Elderly: A Systematic Review and Meta-Analysis. Vaccine 2017, 35, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Essink, B.; Fierro, C.; Rosen, J.; Figueroa, A.L.; Zhang, B.; Verhoeven, C.; Edelman, J.; Smolenov, I. Immunogenicity and Safety of MF59-Adjuvanted Quadrivalent Influenza Vaccine versus Standard and Alternate B Strain MF59-Adjuvanted Trivalent Influenza Vaccines in Older Adults. Vaccine 2020, 38, 242–250. [Google Scholar] [CrossRef]
- Coleman, B.L.; Sanderson, R.; Haag, M.D.M.; McGovern, I. Effectiveness of the MF59-adjuvanted Trivalent or Quadrivalent Seasonal Influenza Vaccine among Adults 65 Years of Age or Older, a Systematic Review and Meta-analysis. Influenza Other Respir. Viruses 2021, 15, 813–823. [Google Scholar] [CrossRef]
- Imran, M.; Mills, C.W.; McDermott, K.W.; Dean, A.; Bogdanov, A.; McGovern, I.; Haag, M.D.M. Relative Effectiveness of the MF59-Adjuvanted Influenza Vaccine Versus High-Dose Influenza Vaccine in Older Adults With Influenza Risk Factors During the 2019–2020 US Influenza Season. Open Forum Infect. Dis. 2024, 11, ofae459. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Han, T.; Liu, C.; Li, X.; Yan, L.; Yang, B.; Yang, X. Effectiveness, Immunogenicity, and Safety of Influenza Vaccines with MF59 Adjuvant in Healthy People of Different Age Groups. Medicine 2020, 99, e19095. [Google Scholar] [CrossRef]
- Domnich, A.; Trombetta, C.-S.; Fallani, E.; Salvatore, M. Immunogenicity and Safety of the MF59-Adjuvanted Seasonal Influenza Vaccine in Non-Elderly Adults: A Systematic Review and Meta-Analysis. PLoS ONE 2024, 19, e0310677. [Google Scholar] [CrossRef]
- Cohet, C.; van der Most, R.; Bauchau, V.; Bekkat-Berkani, R.; Doherty, T.M.; Schuind, A.; Tavares Da Silva, F.; Rappuoli, R.; Garçon, N.; Innis, B.L. Safety of AS03-Adjuvanted Influenza Vaccines: A Review of the Evidence. Vaccine 2019, 37, 3006–3021. [Google Scholar] [CrossRef]
- Morel, S.; Didierlaurent, A.; Bourguignon, P.; Delhaye, S.; Baras, B.; Jacob, V.; Planty, C.; Elouahabi, A.; Harvengt, P.; Carlsen, H. Adjuvant System AS03 Containing α-Tocopherol Modulates Innate Immune Response and Leads to Improved Adaptive Immunity. Vaccine 2011, 29, 2461–2473. [Google Scholar] [CrossRef]
- Yang, W.H.; Dionne, M.; Kyle, M.; Aggarwal, N.; Li, P.; Madariaga, M.; Godeaux, O.; Vaughn, D.W. Long-Term Immunogenicity of an AS03-Adjuvanted Influenza A(H1N1)Pdm09 Vaccine in Young and Elderly Adults: An Observer-Blind, Randomized Trial. Vaccine 2013, 31, 4389–4397. [Google Scholar] [CrossRef]
- Hoschler, K.; Andrews, N.J.; Faust, S.N.; Finn, A.; Pollard, A.J.; Snape, M.D.; Walker, W.T.; Zambon, M.; Miller, E. Administration of AS03B-Adjuvanted A(H1N1)Pdm09 Vaccine in Children Aged <3 Years Enhances Antibody Response to H3 and B Viruses Following a Single Dose of Trivalent Vaccine One Year Later. Clin. Infect. Dis. 2014, 58, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, I.; Garg, R.; van Drunen Littel-van den Hurk, S. Selection of Adjuvants for Vaccines Targeting Specific Pathogens. Expert. Rev. Vaccines 2019, 18, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, L.; Feng, Y.; Bellusci, L.; Lai, L.; Wali, B.; Ellis, M.; Yuan, M.; Arunachalam, P.S.; Hu, M.; Kowli, S.; et al. AS03 Adjuvant Enhances the Magnitude, Persistence, and Clonal Breadth of Memory B Cell Responses to a Plant-Based COVID-19 Vaccine in Humans. Sci. Immunol. 2024, 9, eadi8039. [Google Scholar] [CrossRef] [PubMed]
- Baz, M.; Samant, M.; Zekki, H.; Tribout-Jover, P.; Plante, M.; Lanteigne, A.-M.; Hamelin, M.-E.; Mallett, C.; Papadopoulou, B.; Boivin, G. Effects of Different Adjuvants in the Context of Intramuscular and Intranasal Routes on Humoral and Cellular Immune Responses Induced by Detergent-Split A/H3N2 Influenza Vaccines in Mice. Clin. Vaccine Immunol. 2012, 19, 209–218. [Google Scholar] [CrossRef]
- Pillet, S.; Arunachalam, P.S.; Andreani, G.; Golden, N.; Fontenot, J.; Aye, P.P.; Röltgen, K.; Lehmicke, G.; Gobeil, P.; Dubé, C.; et al. Safety, Immunogenicity, and Protection Provided by Unadjuvanted and Adjuvanted Formulations of a Recombinant Plant-Derived Virus-like Particle Vaccine Candidate for COVID-19 in Nonhuman Primates. Cell Mol. Immunol. 2022, 19, 222–233. [Google Scholar] [CrossRef]
- Khurana, S.; Coyle, E.M.; Manischewitz, J.; King, L.R.; Gao, J.; Germain, R.N.; Schwartzberg, P.L.; Tsang, J.S.; Golding, H.; Biancotto, A.; et al. AS03-Adjuvanted H5N1 Vaccine Promotes Antibody Diversity and Affinity Maturation, NAI Titers, Cross-Clade H5N1 Neutralization, but Not H1N1 Cross-Subtype Neutralization. NPJ Vaccines 2018, 3, 40. [Google Scholar] [CrossRef]
- Díez-Domingo, J.; Garcés-Sanchez, M.; Baldó, J.-M.; Planelles, M.V.; Ubeda, I.; JuBert, A.; Marés, J.; Moris, P.; Garcia-Corbeira, P.; Dramé, M.; et al. Immunogenicity and Safety of H5N1 A/Vietnam/1194/2004 (Clade 1) AS03-Adjuvanted Prepandemic Candidate Influenza Vaccines in Children Aged 3 to 9 Years. Pediatr. Infect. Dis. J. 2010, 29, e35–e46. [Google Scholar] [CrossRef]
- Yam, K.K.; Gupta, J.; Winter, K.; Allen, E.; Brewer, A.; Beaulieu, É.; Mallett, C.P.; Burt, D.S.; Ward, B.J. AS03-Adjuvanted, Very-Low-Dose Influenza Vaccines Induce Distinctive Immune Responses Compared to Unadjuvanted High-Dose Vaccines in BALB/c Mice. Front. Immunol. 2015, 6, 207. [Google Scholar] [CrossRef] [PubMed]
- Moris, P.; van der Most, R.; Leroux-Roels, I.; Clement, F.; Dramé, M.; Hanon, E.; Leroux-Roels, G.G.; Van Mechelen, M. H5N1 Influenza Vaccine Formulated with AS03A Induces Strong Cross-Reactive and Polyfunctional CD4 T-Cell Responses. J. Clin. Immunol. 2011, 31, 443–454. [Google Scholar] [CrossRef]
- Vaughn, D.W.; Seifert, H.; Hepburn, A.; Dewe, W.; Li, P.; Drame, M.; Cohet, C.; Innis, B.L.; Fries, L.F. Safety of AS03-Adjuvanted Inactivated Split Virion A(H1N1)Pdm09 and H5N1 Influenza Virus Vaccines Administered to Adults: Pooled Analysis of 28 Clinical Trials. Hum. Vaccin. Immunother. 2014, 10, 2942–2957. [Google Scholar] [CrossRef]
- Chen, W.H.; Jackson, L.A.; Edwards, K.M.; Keitel, W.A.; Hill, H.; Noah, D.L.; Creech, C.B.; Patel, S.M.; Mangal, B.; Kotloff, K.L. Safety, Reactogenicity, and Immunogenicity of Inactivated Monovalent Influenza A(H5N1) Virus Vaccine Administered With or Without AS03 Adjuvant. Open Forum Infect. Dis. 2014, 1, ofu091. [Google Scholar] [CrossRef]
- Boquete Castro, A.; Cortés Mejía, J.M. Vacuna Frente a Influenza H1N1 Con Adyuvante AS03 y Su Efecto Desencadenante de Narcolepsia. Vacunas 2021, 22, 119–124. [Google Scholar] [CrossRef]
- Fox, C.B.; Haensler, J. An Update on Safety and Immunogenicity of Vaccines Containing Emulsion-Based Adjuvants. Expert. Rev. Vaccines 2013, 12, 747–758. [Google Scholar] [CrossRef]
- Thebault, S.; Vincent, A.; Gringras, P. Narcolepsy and H1N1 Vaccination. Curr. Opin. Pulm. Med. 2013, 19, 587–593. [Google Scholar] [CrossRef]
- Huang, Z.; Gong, H.; Sun, Q.; Yang, J.; Yan, X.; Xu, F. Research Progress on Emulsion Vaccine Adjuvants. Heliyon 2024, 10, e24662. [Google Scholar] [CrossRef]
- Mendes, A.; Azevedo-Silva, J.; Fernandes, J.C. From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants. Pharmaceuticals 2022, 15, 265. [Google Scholar] [CrossRef] [PubMed]
- Levie, K.; Leroux-Roels, I.; Hoppenbrouwers, K.; Kervyn, A.; Vandermeulen, C.; Forgus, S.; Leroux-Roels, G.; Pichon, S.; Kusters, I. An Adjuvanted, Low-Dose, Pandemic Influenza A (H5N1) Vaccine Candidate Is Safe, Immunogenic, and Induces Cross-Reactive Immune Responses in Healthy Adults. J. Infect. Dis. 2008, 198, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Caillet, C.; Piras, F.; Bernard, M.-C.; de Montfort, A.; Boudet, F.; Vogel, F.R.; Hoffenbach, A.; Moste, C.; Kusters, I. AF03-Adjuvanted and Non-Adjuvanted Pandemic Influenza A (H1N1) 2009 Vaccines Induce Strong Antibody Responses in Seasonal Influenza Vaccine-Primed and Unprimed Mice. Vaccine 2010, 28, 3076–3079. [Google Scholar] [CrossRef]
- Herzog, C.; Hartmann, K.; Künzi, V.; Kürsteiner, O.; Mischler, R.; Lazar, H.; Glück, R. Eleven Years of Inflexal® V—A Virosomal Adjuvanted Influenza Vaccine. Vaccine 2009, 27, 4381–4387. [Google Scholar] [CrossRef] [PubMed]
- Mischler, R.; Metcalfe, I.C. Inflexal®V a Trivalent Virosome Subunit Influenza Vaccine: Production. Vaccine 2002, 20, B17–B23. [Google Scholar] [CrossRef] [PubMed]
- Agger, E.M.; Rosenkrands, I.; Hansen, J.; Brahimi, K.; Vandahl, B.S.; Aagaard, C.; Werninghaus, K.; Kirschning, C.; Lang, R.; Christensen, D.; et al. Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements. PLoS ONE 2008, 3, e3116. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.K.; Andersen, P.; Christensen, D. Immunocorrelates of CAF Family Adjuvants. Semin. Immunol. 2018, 39, 4–13. [Google Scholar] [CrossRef]
- Rosenkrands, I.; Vingsbo-Lundberg, C.; Bundgaard, T.J.; Lindenstrøm, T.; Enouf, V.; van der Werf, S.; Andersen, P.; Agger, E.M. Enhanced Humoral and Cell-Mediated Immune Responses after Immunization with Trivalent Influenza Vaccine Adjuvanted with Cationic Liposomes. Vaccine 2011, 29, 6283–6291. [Google Scholar] [CrossRef]
- Martel, C.J.-M.; Agger, E.M.; Poulsen, J.J.; Hammer Jensen, T.; Andresen, L.; Christensen, D.; Nielsen, L.P.; Blixenkrone-Møller, M.; Andersen, P.; Aasted, B. CAF01 Potentiates Immune Responses and Efficacy of an Inactivated Influenza Vaccine in Ferrets. PLoS ONE 2011, 6, e22891. [Google Scholar] [CrossRef]
- López-Serrano, S.; Cordoba, L.; Pérez-Maillo, M.; Pleguezuelos, P.; Remarque, E.J.; Ebensen, T.; Guzmán, C.A.; Christensen, D.; Segalés, J.; Darji, A. Immune Responses to Pandemic H1N1 Influenza Virus Infection in Pigs Vaccinated with a Conserved Hemagglutinin HA1 Peptide Adjuvanted with CAF®01 or CDA/AGalCerMPEG. Vaccines 2021, 9, 751. [Google Scholar] [CrossRef]
- Yang, J.-X.; Tseng, J.-C.; Yu, G.-Y.; Luo, Y.; Huang, C.-Y.F.; Hong, Y.-R.; Chuang, T.-H. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022, 14, 423. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Bazin-Lee, H.; Evans, J.T.; Casella, C.R.; Mitchell, T.C. MPL Adjuvant Contains Competitive Antagonists of Human TLR4. Front. Immunol. 2020, 11, 577823. [Google Scholar] [CrossRef]
- Carter, D.; De La Rosa, G.; Garçon, N.; Moon, H.M.; Nam, H.J.; Skibinski, D.A.G. The Success of Toll-like Receptor 4 Based Vaccine Adjuvants. Vaccine 2025, 61, 127413. [Google Scholar] [CrossRef]
- Le, C.T.T.; Ahn, S.Y.; Ho, T.L.; Lee, J.; Lee, D.-H.; Hwang, H.S.; Kang, S.-M.; Ko, E.-J. Adjuvant Effects of Combination Monophosphoryl Lipid A and Poly I:C on Antigen-Specific Immune Responses and Protective Efficacy of Influenza Vaccines. Sci. Rep. 2023, 13, 12231. [Google Scholar] [CrossRef]
- Misquith, A.; Fung, H.W.M.; Dowling, Q.M.; Guderian, J.A.; Vedvick, T.S.; Fox, C.B. In Vitro Evaluation of TLR4 Agonist Activity: Formulation Effects. Colloids Surf. B Biointerfaces 2014, 113, 312–319. [Google Scholar] [CrossRef]
- Behzad, H.; Huckriede, A.L.W.; Haynes, L.; Gentleman, B.; Coyle, K.; Wilschut, J.C.; Kollmann, T.R.; Reed, S.G.; McElhaney, J.E. GLA-SE, a Synthetic Toll-like Receptor 4 Agonist, Enhances T-Cell Responses to Influenza Vaccine in Older Adults. J. Infect. Dis. 2012, 205, 466–473. [Google Scholar] [CrossRef]
- Vandepapelière, P.; Horsmans, Y.; Moris, P.; Van Mechelen, M.; Janssens, M.; Koutsoukos, M.; Van Belle, P.; Clement, F.; Hanon, E.; Wettendorff, M.; et al. Vaccine Adjuvant Systems Containing Monophosphoryl Lipid A and QS21 Induce Strong and Persistent Humoral and T Cell Responses against Hepatitis B Surface Antigen in Healthy Adult Volunteers. Vaccine 2008, 26, 1375–1386. [Google Scholar] [CrossRef]
- Pillet, S.; Aubin, É.; Trépanier, S.; Poulin, J.-F.; Yassine-Diab, B.; ter Meulen, J.; Ward, B.J.; Landry, N. Humoral and Cell-Mediated Immune Responses to H5N1 Plant-Made Virus-like Particle Vaccine Are Differentially Impacted by Alum and GLA-SE Adjuvants in a Phase 2 Clinical Trial. NPJ Vaccines 2018, 3, 3. [Google Scholar] [CrossRef]
- Carter, D.; van Hoeven, N.; Baldwin, S.; Levin, Y.; Kochba, E.; Magill, A.; Charland, N.; Landry, N.; Nu, K.; Frevol, A.; et al. The Adjuvant GLA-AF Enhances Human Intradermal Vaccine Responses. Sci. Adv. 2018, 4, eaas9930. [Google Scholar] [CrossRef]
- Clegg, C.H.; Roque, R.; Perrone, L.A.; Rininger, J.A.; Bowen, R.; Reed, S.G. GLA-AF, an Emulsion-Free Vaccine Adjuvant for Pandemic Influenza. PLoS ONE 2014, 9, e88979. [Google Scholar] [CrossRef]
- Ko, E.-J.; Lee, Y.; Lee, Y.-T.; Kim, Y.-J.; Kim, K.-H.; Kang, S.-M. MPL and CpG Combination Adjuvants Promote Homologous and Heterosubtypic Cross Protection of Inactivated Split Influenza Virus Vaccine. Antivir. Res. 2018, 156, 107–115. [Google Scholar] [CrossRef]
- Goff, P.H.; Hayashi, T.; Martínez-Gil, L.; Corr, M.; Crain, B.; Yao, S.; Cottam, H.B.; Chan, M.; Ramos, I.; Eggink, D.; et al. Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands as Influenza Virus Vaccine Adjuvants Induce Rapid, Sustained, and Broadly Protective Responses. J. Virol. 2015, 89, 3221–3235. [Google Scholar] [CrossRef]
- Gupta, A.K.; Cherman, A.M.; Tyring, S.K. Viral and Nonviral Uses of Imiquimod: A Review. J. Cutan. Med. Surg. 2004, 8, 338–352. [Google Scholar] [CrossRef]
- Hung, I.F.-N.; Zhang, A.J.; To, K.K.-W.; Chan, J.F.-W.; Li, P.; Wong, T.-L.; Zhang, R.; Chan, T.-C.; Chan, B.C.-Y.; Wai, H.H.; et al. Topical Imiquimod before Intradermal Trivalent Influenza Vaccine for Protection against Heterologous Non-Vaccine and Antigenically Drifted Viruses: A Single-Centre, Double-Blind, Randomised, Controlled Phase 2b/3 Trial. Lancet Infect. Dis. 2016, 16, 209–218. [Google Scholar] [CrossRef]
- Depelsenaire, A.C.I.; Witham, K.; Veitch, M.; Wells, J.W.; Anderson, C.D.; Lickliter, J.D.; Rockman, S.; Bodle, J.; Treasure, P.; Hickling, J.; et al. Cellular Responses at the Application Site of a High-Density Microarray Patch Delivering an Influenza Vaccine in a Randomized, Controlled Phase I Clinical Trial. PLoS ONE 2021, 16, e0255282. [Google Scholar] [CrossRef]
- Van Hoeven, N.; Fox, C.B.; Granger, B.; Evers, T.; Joshi, S.W.; Nana, G.I.; Evans, S.C.; Lin, S.; Liang, H.; Liang, L.; et al. A Formulated TLR7/8 Agonist Is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Sci. Rep. 2017, 7, 46426. [Google Scholar] [CrossRef]
- Andersen-Nissen, E.; Smith, K.D.; Bonneau, R.; Strong, R.K.; Aderem, A. A Conserved Surface on Toll-like Receptor 5 Recognizes Bacterial Flagellin. J. Exp. Med. 2007, 204, 393–403. [Google Scholar] [CrossRef]
- Hajam, I.A.; Dar, P.A.; Shahnawaz, I.; Jaume, J.C.; Lee, J.H. Bacterial Flagellin—A Potent Immunomodulatory Agent. Exp. Mol. Med. 2017, 49, e373. [Google Scholar] [CrossRef]
- Tussey, L.; Strout, C.; Davis, M.; Johnson, C.; Lucksinger, G.; Umlauf, S.; Song, L.; Liu, G.; Abraham, K.; White, C.J. Phase 1 Safety and Immunogenicity Study of a Quadrivalent Seasonal Flu Vaccine Comprising Recombinant Hemagglutinin-Flagellin Fusion Proteins. Open Forum Infect. Dis. 2016, 3, ofw015. [Google Scholar] [CrossRef]
- Beatson, S.A.; Minamino, T.; Pallen, M.J. Variation in Bacterial Flagellins: From Sequence to Structure. Trends Microbiol. 2006, 14, 151–155. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, F. The NAIP-NLRC4 Inflammasome in Innate Immune Detection of Bacterial Flagellin and Type III Secretion Apparatus. Immunol. Rev. 2015, 265, 85–102. [Google Scholar] [CrossRef]
- Wang, B.-Z.; Quan, F.-S.; Kang, S.-M.; Bozja, J.; Skountzou, I.; Compans, R.W. Incorporation of Membrane-Anchored Flagellin into Influenza Virus-Like Particles Enhances the Breadth of Immune Responses. J. Virol. 2008, 82, 11813–11823. [Google Scholar] [CrossRef]
- Tebogo, P.M.; Richardson, V.; Banoub, J. Separation and characterization of saponins from an extract of Quillaja saponaria molina: New immuno-adjuvants. Biochem. Soc. Trans. 2000, 28, A204. [Google Scholar] [CrossRef]
- Feng, H.; Yamashita, M.; Wu, L.; Jose da Silva Lopes, T.; Watanabe, T.; Kawaoka, Y. Food Additives as Novel Influenza Vaccine Adjuvants. Vaccines 2019, 7, 127. [Google Scholar] [CrossRef]
- Guerra, F.; Sepúlveda, S. Saponin Production from Quillaja Genus Species. An Insight into Its Applications and Biology. Sci. Agric. 2021, 78, e20190305. [Google Scholar] [CrossRef]
- Barr, I. ISCOMs and Other Saponin Based Adjuvants. Adv. Drug Deliv. Rev. 1998, 32, 247–271. [Google Scholar] [CrossRef]
- Sambhara, S.; Woods, S.; Arpino, R.; Kurichh, A.; Tamane, A.; Underdown, B.; Klein, M.; Bengtsson, K.L.; Morein, B.; Burt, D. Heterotypic Protection against Influenza by Immunostimulating Complexes Is Associated with the Induction of Cross-Reactive Cytotoxic T Lymphocytes. J. Infect. Dis. 1998, 177, 1266–1274. [Google Scholar] [CrossRef]
- Liu, H. Improvement of Influenza Vaccines by Using a Saponin-Derived Adjuvant. Available online: https://pure.rug.nl/ws/portalfiles/portal/90459646/H.Liu.pdf (accessed on 19 June 2013).
- Lövgren Bengtsson, K.; Morein, B.; Osterhaus, A.D. ISCOM Technology-Based Matrix MTM Adjuvant: Success in Future Vaccines Relies on Formulation. Expert. Rev. Vaccines 2011, 10, 401–403. [Google Scholar] [CrossRef]
- Cox, F.; Roos, A.; Hafkemeijer, N.; Baart, M.; Tolboom, J.; Dekking, L.; Stittelaar, K.; Goudsmit, J.; Radošević, K.; Saeland, E. Matrix-M Adjuvated Seasonal Virosomal Influenza Vaccine Induces Partial Protection in Mice and Ferrets against Avian H5 and H7 Challenge. PLoS ONE 2015, 10, e0135723. [Google Scholar] [CrossRef]
- Cox, R.J.; Major, D.; Pedersen, G.; Pathirana, R.D.; Hoschler, K.; Guilfoyle, K.; Roseby, S.; Bredholt, G.; Assmus, J.; Breakwell, L.; et al. Matrix M H5N1 Vaccine Induces Cross-H5 Clade Humoral Immune Responses in a Randomized Clinical Trial and Provides Protection from Highly Pathogenic Influenza Challenge in Ferrets. PLoS ONE 2015, 10, e0131652. [Google Scholar] [CrossRef]
- Fries, L.F.; Smith, G.E.; Glenn, G.M. A Recombinant Viruslike Particle Influenza A (H7N9) Vaccine. N. Engl. J. Med. 2013, 369, 2564–2566. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, L.; Zhou, M.; Chen, Z.; Li, F.; Wu, H.; Xiang, N.; Chen, E.; Tang, F.; Wang, D.; et al. Epidemiology of Human Infections with Avian Influenza A(H7N9) Virus in China. N. Engl. J. Med. 2014, 370, 520–532. [Google Scholar] [CrossRef]
- Zheng, D.; Gao, F.; Zhao, C.; Ding, Y.; Cao, Y.; Yang, T.; Xu, X.; Chen, Z. Comparative Effectiveness of H7N9 Vaccines in Healthy Individuals. Hum. Vaccin. Immunother. 2019, 15, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Shinde, V.; Cho, I.; Plested, J.S.; Agrawal, S.; Fiske, J.; Cai, R.; Zhou, H.; Pham, X.; Zhu, M.; Cloney-Clark, S.; et al. Comparison of the Safety and Immunogenicity of a Novel Matrix-M-Adjuvanted Nanoparticle Influenza Vaccine with a Quadrivalent Seasonal Influenza Vaccine in Older Adults: A Randomized Controlled Trial. Lancet Infect. Dis. 2020, 22, 73–84. [Google Scholar] [CrossRef]
- Pizza, M.; Giuliani, M.M.; Fontana, M.R.; Monaci, E.; Douce, G.; Dougan, G.; Mills, K.H.G.; Rappuoli, R.; Del Giudice, G. Mucosal Vaccines: Non Toxic Derivatives of LT and CT as Mucosal Adjuvants. Vaccine 2001, 19, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Quan, F.-S.; Compans, R.W.; Nguyen, H.H.; Kang, S.-M. Induction of Heterosubtypic Immunity to Influenza Virus by Intranasal Immunization. J. Virol. 2008, 82, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Tamura, S.; Ito, Y.; Asanuma, H.; Hirabayashi, Y.; Suzuki, Y.; Nagamine, T.; Aizawa, C.; Kurata, T. Cross-Protection against Influenza Virus Infection Afforded by Trivalent Inactivated Vaccines Inoculated Intranasally with Cholera Toxin B Subunit. J. Immunol. 1992, 149, 981–988. [Google Scholar] [CrossRef]
- Tamura, S.; Yamanaka, A.; Shimohara, M.; Tomita, T.; Komase, K.; Tsuda, Y.; Suzuki, Y.; Nagamine, T.; Kawahara, K.; Danbara, H.; et al. Synergistic Action of Cholera Toxin B Subunit (and Escherichia Coli Heat-Labile Toxin B Subunit) and a Trace Amount of Cholera Whole Toxin as an Adjuvant for Nasal Influenza Vaccine. Vaccine 1994, 12, 419–426. [Google Scholar] [CrossRef]
- Tumpey, T.M.; Renshaw, M.; Clements, J.D.; Katz, J.M. Mucosal Delivery of Inactivated Influenza Vaccine Induces B-Cell-Dependent Heterosubtypic Cross-Protection against Lethal Influenza A H5N1 Virus Infection. J. Virol. 2001, 75, 5141–5150. [Google Scholar] [CrossRef]
- Kashiwagi, S.; Brauns, T.; Gelfand, J.; Poznansky, M.C. Laser Vaccine Adjuvants. Hum. Vaccin. Immunother. 2014, 10, 1892–1907. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Wu, M.X. Effective and Lesion-Free Cutaneous Influenza Vaccination. Proc. Natl. Acad. Sci. USA 2015, 112, 5005–5010. [Google Scholar] [CrossRef]
- Li, Z.; Kang, X.; Kim, K.-H.; Zhao, Y.; Li, Y.; Kang, S.-M.; Chen, X. Effective Adjuvantation of Nanograms of Influenza Vaccine and Induction of Cross-Protective Immunity by Physical Radiofrequency Adjuvant. Sci. Rep. 2022, 12, 21249. [Google Scholar] [CrossRef]
- Bernard, M.-C.; Bazin, E.; Petiot, N.; Lemdani, K.; Commandeur, S.; Verdelet, C.; Margot, S.; Perkov, V.; Ripoll, M.; Garinot, M.; et al. The Impact of Nucleoside Base Modification in MRNA Vaccine Is Influenced by the Chemistry of Its Lipid Nanoparticle Delivery System. Mol. Ther. Nucleic Acids 2023, 32, 794–806. [Google Scholar] [CrossRef] [PubMed]
- Alving, C.R. Design and Selection of Vaccine Adjuvants: Animal Models and Human Trials. Vaccine 2002, 20, S56–S64. [Google Scholar] [CrossRef]
- Petrovsky, N. Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Saf. 2015, 38, 1059–1074. [Google Scholar] [CrossRef]
- Jacob, L.; Ollila, H.M.; Mahlios, J.; Mignot, E. Immunologic and Genetic Aspects of Type 1 Narcolepsy. In Genomics, Circuits, and Pathways in Clinical Neuropsychiatry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 635–652. [Google Scholar]
- Luo, G.; Ambati, A.; Lin, L.; Bonvalet, M.; Partinen, M.; Ji, X.; Maecker, H.T.; Mignot, E.J.-M. Autoimmunity to Hypocretin and Molecular Mimicry to Flu in Type 1 Narcolepsy. Proc. Natl. Acad. Sci. USA 2018, 115, E12323–E12332. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Edwards, K.M.; Dekker, C.L.; Belshe, R.; Talbot, H.K.B.; Graham, I.L.; Noah, D.L.; He, F.; Hill, H. Effects of Adjuvants on the Safety and Immunogenicity of an Avian Influenza H5N1 Vaccine in Adults. J. Infect. Dis. 2008, 197, 667–675. [Google Scholar] [CrossRef]
- Vaccine Administration. Available online: https://www.cdc.gov/vaccines/hcp/imz-best-practices/vaccine-administration.html (accessed on 18 June 2024).
- Hodel, K.V.S.; Fiuza, B.S.D.; Conceição, R.S.; Aleluia, A.C.M.; Pitanga, T.N.; Fonseca, L.M.d.S.; Valente, C.O.; Minafra-Rezende, C.S.; Machado, B.A.S. Pharmacovigilance in Vaccines: Importance, Main Aspects, Perspectives, and Challenges—A Narrative Review. Pharmaceuticals 2024, 17, 807. [Google Scholar] [CrossRef]
- About the Vaccine Adverse Event Reporting System (VAERS). Available online: https://www.cdc.gov/vaccine-safety-systems/vaers/index.html (accessed on 7 August 2024).
- Estrada, L.D.; Schultz-Cherry, S. Development of a Universal Influenza Vaccine. J. Immunol. 2019, 202, 392–398. [Google Scholar] [CrossRef]
- Mallajosyula, V.V.A.; Citron, M.; Ferrara, F.; Lu, X.; Callahan, C.; Heidecker, G.J.; Sarma, S.P.; Flynn, J.A.; Temperton, N.J.; Liang, X.; et al. Influenza Hemagglutinin Stem-Fragment Immunogen Elicits Broadly Neutralizing Antibodies and Confers Heterologous Protection. Proc. Natl. Acad. Sci. USA 2014, 111, E2514–E2523. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-Y.; Misplon, J.A.; Li, X.; Price, G.E.; Ye, Z.; Epstein, S.L. Universal Influenza Vaccine Based on Conserved Antigens Provides Long-Term Durability of Immune Responses and Durable Broad Protection against Diverse Challenge Virus Strains in Mice. Vaccine 2021, 39, 4628–4640. [Google Scholar] [CrossRef]
- Wang, W.; Li, R.; Deng, Y.; Lu, N.; Chen, H.; Meng, X.; Wang, W.; Wang, X.; Yan, K.; Qi, X.; et al. Protective Efficacy of the Conserved NP, PB1, and M1 Proteins as Immunogens in DNA- and Vaccinia Virus-Based Universal Influenza A Virus Vaccines in Mice. Clin. Vaccine Immunol. 2015, 22, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Bolton, K.J.; McCaw, J.M.; Brown, L.; Jackson, D.; Kedzierska, K.; McVernon, J. Prior Population Immunity Reduces the Expected Impact of CTL-Inducing Vaccines for Pandemic Influenza Control. PLoS ONE 2015, 10, e0120138. [Google Scholar] [CrossRef] [PubMed]
- Soema, P.C.; van Riet, E.; Kersten, G.; Amorij, J.-P. Development of Cross-Protective Influenza A Vaccines Based on Cellular Responses. Front. Immunol. 2015, 6, 237. [Google Scholar] [CrossRef]
- Clemens, E.; Van de Sandt, C.; Wong, S.; Wakim, L.; Valkenburg, S. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines 2018, 6, 18. [Google Scholar] [CrossRef]
- Xiong, F.; Zhang, C.; Shang, B.; Zheng, M.; Wang, Q.; Ding, Y.; Luo, J.; Li, X. An MRNA-Based Broad-Spectrum Vaccine Candidate Confers Cross-Protection against Heterosubtypic Influenza A Viruses. Emerg. Microbes Infect. 2023, 12, 2256422. [Google Scholar] [CrossRef]
- Arevalo, C.P.; Bolton, M.J.; Le Sage, V.; Ye, N.; Furey, C.; Muramatsu, H.; Alameh, M.-G.; Pardi, N.; Drapeau, E.M.; Parkhouse, K.; et al. A Multivalent Nucleoside-Modified MRNA Vaccine against All Known Influenza Virus Subtypes. Science 2022, 378, 899–904. [Google Scholar] [CrossRef]
- Deatrick, E. Clinical Trial of MRNA Universal Influenza Vaccine Candidate Begins (U.S. Department of Health & Human Services: National Institutes of Health, 2023). Available online: https://www.nih.gov/news-events/news-releases/clinical-trial-mrna-universal-influenza-vaccine-candidate-begins (accessed on 15 May 2023).
- Staneková, Z.; Varečková, E. Conserved Epitopes of Influenza A Virus Inducing Protective Immunity and Their Prospects for Universal Vaccine Development. Virol. J. 2010, 7, 351. [Google Scholar] [CrossRef]
- Lim, C.M.L.; Komarasamy, T.V.; Adnan, N.A.A.B.; Radhakrishnan, A.K.; Balasubramaniam, V.R.M.T. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir. Viruses 2024, 18, e13276. [Google Scholar] [CrossRef]
- McGee, M.C.; Huang, W. Evolutionary Conservation and Positive Selection of Influenza A Nucleoprotein CTL Epitopes for Universal Vaccination. J. Med. Virol. 2022, 94, 2578–2587. [Google Scholar] [CrossRef]
- Parvizpour, S.; Pourseif, M.M.; Razmara, J.; Rafi, M.A.; Omidi, Y. Epitope-Based Vaccine Design: A Comprehensive Overview of Bioinformatics Approaches. Drug Discov. Today 2020, 25, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Romeli, S.; Syed Hassan, S.; Yap, W.B. Multi-Epitope Peptide-Based and Vaccinia-Based Universal Influenza Vaccine Candidates Subjected to Clinical Trials. Malays. J. Med. Sci. 2020, 27, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Nachbagauer, R.; Feser, J.; Naficy, A.; Bernstein, D.I.; Guptill, J.; Walter, E.B.; Berlanda-Scorza, F.; Stadlbauer, D.; Wilson, P.C.; Aydillo, T.; et al. A Chimeric Hemagglutinin-Based Universal Influenza Virus Vaccine Approach Induces Broad and Long-Lasting Immunity in a Randomized, Placebo-Controlled Phase I Trial. Nat. Med. 2021, 27, 106–114. [Google Scholar] [CrossRef]
- Valkenburg, S.A.; Cowling, B.J. Turning Influenza Vaccinology on Its Head to Reveal the Stalk. Lancet Infect. Dis. 2020, 20, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.I.; Guptill, J.; Naficy, A.; Nachbagauer, R.; Berlanda-Scorza, F.; Feser, J.; Wilson, P.C.; Solórzano, A.; Van der Wielen, M.; Walter, E.B.; et al. Immunogenicity of Chimeric Haemagglutinin-Based, Universal Influenza Virus Vaccine Candidates: Interim Results of a Randomised, Placebo-Controlled, Phase 1 Clinical Trial. Lancet Infect. Dis. 2020, 20, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-Y.; Wang, S.-C.; Ko, Y.-A.; Lin, K.-I.; Ma, C.; Cheng, T.-J.R.; Wong, C.-H. Chimeric Hemagglutinin Vaccine Elicits Broadly Protective CD4 and CD8 T Cell Responses against Multiple Influenza Strains and Subtypes. Proc. Natl. Acad. Sci. USA 2020, 117, 17757–17763. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Kirkpatrick, E.; Ermler, M.; Nachbagauer, R.; Broecker, F.; Krammer, F.; Palese, P. Development of Influenza B Universal Vaccine Candidates Using the “Mosaic” Hemagglutinin Approach. J. Virol. 2019, 93, e00333-19. [Google Scholar] [CrossRef]
Vaccine Type | Trade Name | Adjuvant | Production Platform | How Supplied | Route | Dose | Age Range | Manufacturer |
---|---|---|---|---|---|---|---|---|
Subunit | FLUAD | MF59 | Embryonated egg | 0.5 mL (single-dose syringe) | i.m | 45 µg (15 µg HA/strain) | ≥65 yrs | CSL Seqirus |
FLUAD (Quadrivalent) | MF59 | Embryonated egg | 0.5 mL (single-dose syringe) | i.m | 60 µg (15 µg HA/strain) | ≥65 yrs | CSL Seqirus | |
Flucelvax (Quadrivalent) (Cell culture) | None | Embryonated egg | 0.5 mL (single-dose syringe) | i.m. | 45 µg (15 µg HA/strain) | 6 months & older | CSL Seqirus | |
Live attenuated | FluMist | None | Embryonated egg | 0.2 mL (single-use) | i.n | 106.5–7.5 fluorescent focus units of each vaccine virus | 2 to 49 yrs | AstraZeneca |
Recombinant hemagglutinin influenza vaccine | Flublok | None | Baculovirus/Insect cell | 0.5 mL (single-dose syringe) | i.m | 135 µg (45 µg HA/strain) | ≥18 yrs | Sanofi |
FluBlok Quadrivalent | None | Baculovirus/Insect cell | 0.5 mL (single-dose syringe) | i.m | 180 µg (45 µg HA/strain) | ≥18 yrs | Sanofi | |
Split | Afluria | None | Embryonated egg | 5.0 mL multi-dose vial (0.25 mL dose) | i.m | 45 µg (15 µg HA/strain) | 6–35 months | CSL Seqirus |
Afluria | None | Embryonated egg | 5.0 mL multi-dose vial (0.5 mL dose) | i.m | 45 µg (15 µg HA/strain) | 3 yrs & older | CSL Seqirus | |
Fluarix | None | Embryonated egg | 0.5 mL (single-dose) | i.m | 45 µg (15 µg HA/strain) | 6 months & older | GSK | |
FluLaval | None | Embryonated egg | 0.5 mL (single-dose syringe) | i.m | 45 µg (15 µg HA/strain) | ≥6 months | GSK | |
FluLaval Quadrivalent | None | Embryonated egg | 0.5 mL (single-dose) | i.m | 45 µg (15 µg HA/strain) | ≥6 months | GSK | |
Fluzone Quadrivalent | None | Embryonated egg | 0.5 mL (single-dose) | i.m | 60 µg (15 µg HA/strain) | ≥6 months | Sanofi | |
Fluzone High-Dose Quadrivalent | None | Embryonated egg | 0.5 mL (single-dose) | i.m | 180 µg (60 µg HA/strain) | 65 yrs & older | Sanofi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokalla, V.R.; Gundarapu, S.; Kaushik, R.S.; Rajput, M.; Tummala, H. Influenza Vaccines: Current Status, Adjuvant Strategies, and Efficacy. Vaccines 2025, 13, 962. https://doi.org/10.3390/vaccines13090962
Mokalla VR, Gundarapu S, Kaushik RS, Rajput M, Tummala H. Influenza Vaccines: Current Status, Adjuvant Strategies, and Efficacy. Vaccines. 2025; 13(9):962. https://doi.org/10.3390/vaccines13090962
Chicago/Turabian StyleMokalla, Vijay Reddy, Shirisha Gundarapu, Radhey S. Kaushik, Mrigendra Rajput, and Hemachand Tummala. 2025. "Influenza Vaccines: Current Status, Adjuvant Strategies, and Efficacy" Vaccines 13, no. 9: 962. https://doi.org/10.3390/vaccines13090962
APA StyleMokalla, V. R., Gundarapu, S., Kaushik, R. S., Rajput, M., & Tummala, H. (2025). Influenza Vaccines: Current Status, Adjuvant Strategies, and Efficacy. Vaccines, 13(9), 962. https://doi.org/10.3390/vaccines13090962