Vaccination Coverage in Adult Patients with Inflammatory Bowel Disease: Impact of a Tailored Vaccination Pathway Including COVID-19 and Herpes Zoster in a University Hospital Vaccination Center
Abstract
1. Introduction
- (a)
- At the time of diagnosis/referral.
- (b)
- After admission to a hospital-based vaccination center that implemented a structured clinical pathway jointly developed by gastroenterologists and public health specialists.
2. Materials and Methods
2.1. Study Design and Setting
2.2. Care Pathway
2.3. Inclusion Criteria
- ≥18 years old;
- Diagnosed with IBD;
- Capable of providing informed consent;
- Consenting to vaccination at the VC.
2.4. Vaccination Data Sources
- Hospital vaccination records (paper and electronic);
- Regional vaccination registry (ONIT, Metropolitan City of Messina);
- “Vax-Center” and “OnVac” platforms for SARS-CoV-2 and other vaccines.
2.5. Vaccine Eligibility
- Pneumococcal vaccines: both PCV13 and PPV23 were administered according to age and immunosuppression status.
- HPV vaccine: primarily recommended for younger adults; however, catch-up doses were offered according to PNPV guidance. Very few older patients (e.g., >50 years) were vaccinated for HPV, and only in cases where individual risk justified off-label use.
- Herpes zoster vaccine: recommended for adults ≥50 years or immunosuppressed individuals.
2.6. Statistical Analysis
3. Results
3.1. Vaccination Coverage at the Time of Admission to the VC
3.2. Vaccination Coverage After Admission to the VC
3.3. Comparison of Vaccination Coverage Before and After Admission to the VC
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manser, C.N.; Maillard, M.H.; Rogler, G.; Schreiner, P.; Rieder, F.; Bühler, S.; on behalf of Swiss IBDnet, an official working group of the Swiss Society of Gastroenterology. Vaccination in Patients with Inflammatory Bowel Diseases. Digestion 2020, 101 (Suppl. S1), 58–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Linschoten, R.C.A.; van der Woude, C.J.; Visser, E.; van Leeuwen, N.; Bodelier, A.G.L.; Fitzpatrick, C.; de Jonge, V.; Vermeulen, H.; Verweij, K.E.; van der Wiel, S.; et al. Variation Between Hospitals in Outcomes and Costs of IBD Care: Results From the IBD Value Study. Inflamm. Bowel Dis. 2024, 31, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Paulides, E.; Cornelissen, D.; de Vries, A.C.; van der Woude, C.J. Inflammatory bowel disease negatively impacts household and family life. Frontline Gastroenterol. 2021, 13, 402–408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tontini, G.E.; Vecchi, M.; Pastorelli, L.; Neurath, M.F.; Neumann, H. Differential diagnosis in inflammatory bowel disease colitis: State of the art and future perspectives. World J. Gastroenterol. 2015, 21, 21–46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beaugerie, L.; Rahier, J.F.; Kirchgesner, J. Predicting, Preventing, and Managing Treatment-Related Complications in Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2020, 18, 1324–1335.e2. [Google Scholar] [CrossRef] [PubMed]
- Parray, F.Q.; Wani, M.L.; Malik, A.A.; Wani, S.N.; Bijli, A.H.; Irshad, I.; Nayeem-Ul-Hassan. Ulcerative colitis: A challenge to surgeons. Int. J. Prev. Med. 2012, 3, 749–763. [Google Scholar] [PubMed] [PubMed Central]
- GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caviglia, G.P.; Garrone, A.; Bertolino, C.; Vanni, R.; Bretto, E.; Poshnjari, A.; Tribocco, E.; Frara, S.; Armandi, A.; Astegiano, M.; et al. Epidemiology of Inflammatory Bowel Diseases: A Population Study in a Healthcare District of North-West Italy. J. Clin. Med. 2023, 12, 641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belvedere, A.; Scoglio, R.; Viola, A.; Costantino, G.; Sitibondo, A.; Muscianisi, M.; Inferrera, S.; Alibrandi, A.; Fries, W. A real world investigation on prevalence, clinical features, and therapy of inflammatory bowel disease in the city of Messina, Italy. Acta Biomed. 2021, 92, e2021161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macaluso, F.S.; Mocci, G.; Orlando, A.; Scondotto, S.; Fantaci, G.; Antonelli, A.; Leone, S.; Previtali, E.; Cabras, F.; Cottone, M. Prevalence and incidence of inflammatory bowel disease in two Italian islands, Sicily and Sardinia: A report based on health information systems. Dig. Liver Dis. 2019, 51, 1270–1274. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Mayer, L. Current status of monoclonal antibody therapy for the treatment of inflammatory bowel disease. Expert. Rev. Clin. Immunol. 2010, 6, 607–620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wisniewski, A.; Kirchgesner, J.; Seksik, P.; Landman, C.; Bourrier, A.; Nion-Larmurier, I.; Marteau, P.; Cosnes, J.; Sokol, H.; Beaugerie, L.; et al. Increased incidence of systemic serious viral infections in patients with inflammatory bowel disease associates with active disease use of thiopurines. United Eur. Gastroenterol. J. 2019, 8, 303–313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Selim, R.; Wellens, J.; Marlow, L.; Satsangi, J.J. SARS-CoV-2 vaccination uptake by patients with inflammatory bowel disease on biological therapy. Lancet Gastroenterol. Hepatol. 2021, 6, 989. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reich, J.; Wasan, S.; Farraye, F.A. Vaccinating Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. (N. Y.) 2016, 12, 540–546. [Google Scholar] [PubMed] [PubMed Central]
- Khan, N.; Trivedi, C.; Shah, Y.; Patel, D.; Lewis, J.; Yang, Y.X. The Severity of Herpes Zoster in Inflammatory Bowel Disease Patients Treated With Anti-TNF Agents. Inflamm. Bowel Dis. 2018, 24, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, A.; Navabi, S.; Williams, E.D.; Liu, G.; Kong, L.; Coates, M.D.; Clarke, K. Increased Risk of Influenza and Influenza-Related Complications Among 140,480 Patients With Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Costantino, A.; Michelon, M.; Noviello, D.; Macaluso, F.S.; Leone, S.; Bonaccorso, N.; Costantino, C.; Vecchi, M.; Caprioli F; AMICI Scientific Board. Attitudes towards Vaccinations in a National Italian Cohort of Patients with Inflammatory Bowel Disease. Vaccines 2023, 11, 1591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Epicentro. Piano Nazionale di Prevenzione Vaccinale (PNPV) 2023–2025. Available online: https://www.epicentro.iss.it/vaccini/piano-nazionale-vaccini-2023-2025 (accessed on 19 March 2025).
- Ministry of Health. Prevention and Control of Influenza: Recommendations for the 2024–2025 Season. Available online: https://www.quotidianosanita.it/allegati/allegato1716224354.pdf (accessed on 19 December 2024).
- Ministry of Health. Indications and Recommendations for the Autumn/Winter Vaccination Campaign 2024/2025 anti COVID-19. Available online: https://www.ordinemedicinapoli.it/upload/file/id-61-1727442226-allegato.pdf (accessed on 19 March 2025).
- Shabir, M.S.; Arif, S.; Yeoh, D.; Grover, Z. Suboptimal Vaccination Coverage and Serological Screening in Western Australian Children With Inflammatory Bowel Disease Receiving Immunosuppressive Therapy: An Opportunity for Improvement. Cureus 2024, 16, e73744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Isonne, C.; Iera, J.; Sciurti, A.; Renzi, E.; De Blasiis, M.R.; Marzuillo, C.; Villari, P.; Baccolini, V. How well does vaccine literacy predict intention to vaccinate and vaccination status? A systematic review and meta-analysis. Hum. Vaccin. Immunother. 2024, 20, 2300848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, H.; Zhao, W.; Ma, R.; Zheng, Y.; Guo, Y.; Wei, L.; Wang, M. Mixed methods examination of risk perception on vaccination intentions: The perspective of doctor-patient communication. Vaccine 2024, 42, 4072–4080. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Tse, F.; Carroll, M.W.; deBruyn, J.C.; McNeil, S.A.; Pham-Huy, A.; Seow, C.H.; Barrett, L.L.; Bessissow, T.; Carman, N.; et al. Canadian Association of Gastroenterology Clinical Practice Guideline for Immunizations in Patients With Inflammatory Bowel Disease (IBD)—Part 1: Live Vaccines. J. Can. Assoc. Gastroenterol. 2021, 4, e59–e71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tack, G.J.; de Boer, N.K.H. Let Us Not Forget HPV Vaccination in Women and Men in IBD. Inflamm. Bowel Dis. 2019, 25, e11. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, A.; Fléjou, J.F.; Siproudhis, L.; Abramowitz, L.; Svrcek, M.; Beaugerie, L. Anal Neoplasia in Inflammatory Bowel Disease: Classification Proposal, Epidemiology, Carcinogenesis, and Risk Management Perspectives. J. Crohns Colitis 2017, 11, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Megan McNicol, M.; Donegan, A.; Hawa, K.; Boutzoukas, A.E.; Drobnic, B.; Oates, M.; Orraca-Tetteh, M.; Michel, H.K.; Maltz, R.M.; Dotson, J.L.; et al. Improving Hepatitis B Vaccination Rates among At-risk Children and Adolescents with Inflammatory Bowel Disease. Pediatr Qual Saf 2022, 7, e570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khan, N.; Shah, Y.; Trivedi, C.; Lewis, J.D. Safety of herpes zoster vaccination among inflammatory bowel disease patients being treated with anti-TNF medications. Aliment. Pharmacol. Ther. 2017, 46, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Mambelli, F.; de Araujo, A.C.V.S.C.; Farias, J.P.; de Andrade, K.Q.; Ferreira, L.C.S.; Minoprio, P.; Leite, L.C.C.; Oliveira, S.C. An Update on Anti-COVID-19 Vaccines and the Challenges to Protect Against New SARS-CoV-2 Variants. Pathogens 2025, 14, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Wu, Y.; Huo, Z.; Zhang, L.; Jing, S.; Dai, Z.; Huang, Y.; Si, M.; Xin, Y.; Qu, Y.; et al. COVID-19 Vaccine Hesitancy Among People Living with HIV: A Systematic Review and Meta-Analysis. AIDS Behav. 2024, 28, 2183–2192. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.N.; Ferdiousi, N.; Mohabbot Hossen, M.; Islam, E.; Shah Azam, M. Global disparities in COVID-19 vaccine booster dose (VBD) acceptance and hesitancy: An updated narrative review. Vaccine X 2024, 18, 100480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guadamuz, J.S. Sociodemographic inequities in COVID-19 vaccination among adults in the United States, 2022. J. Am. Pharm. Assoc. 2024, 64, 102064. [Google Scholar] [CrossRef] [PubMed]
- Hashash, J.G.; Farraye, F.A. On-site Availability Improves Vaccination Rates in Patients with Inflammatory Bowel Disease. Crohns Colitis 360 2021, 3, otab068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Amato, S.; Pellicanò, G.F.; Nunnari, G.; Fedele, F.; Squeri, R.; Mazzitelli, F.; D’Andrea, F.; Maisano, D.; Squeri, R.; Genovese, C. Management care improvement of people living with HIV: Definition of a targeted clinical pathway in a University Hospital of South Italy. Acta Biomed. 2021, 92, e2021244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pennisi, F.; Genovese, C.; Gianfredi, V. Lessons from the COVID-19 Pandemic: Promoting Vaccination and Public Health Resilience, a Narrative Review. Vaccines 2024, 12, 891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poland, C.M.; Ratishvili, T. Vaccine hesitancy and health care providers: Using the preferred cognitive styles and decision- making model and empathy tool to make progress. Vaccine X 2022, 11, 100174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- García-Serrano, C.; Artigues-Barberà, E.; Mirada, G.; Estany, P.; Sol, J.; Ortega Bravo, M. Impact of an Intervention to Promote the Vaccination of Patients with Inflammatory Bowel Disease. Vaccines 2023, 11, 1649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- White, S.J.; Condon, B.; Ditton-Phare, P.; Dodd, N.; Gilroy, J.; Hersh, D.; Kerr, D.; Lambert, K.; McPherson, Z.E.; Mullan, J.; et al. Enhancing effective healthcare communication in Australia and Aotearoa New Zealand: Considerations for research, teaching, policy, and practice. PEC Innov. 2023, 3, 100221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venuto, R.; Giunta, I.; Cortese, R.; Denaro, F.; Pantò, G.; Privitera, A.; D’Amato, S.; Genovese, C.; La Fauci, V.; Fedele, F.; et al. The Importance of COVID-19/Influenza Vaccines Co-Administration: An Essential Public Health Tool. Infect. Dis. Rep. 2022, 14, 987–995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venuto, R.; Giunta, I.; Vaccaro, M.; La Fauci, V.; Ceccio, C.; Fedele, F.; Privitera, A.; Denaro, F.; Pantò, G.; Cortese, R.; et al. Reactogenicity and Humoral Immune Response after Heterologous Vaxzevria/Comirnaty Vaccination in a Group of Individuals Vaccinated in the AOU Policlinic “G. Martino” (Messina, Italy): A Retrospective Cohort Study. Vaccines 2022, 10, 1803. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonanni, P.; Steffen, R.; Schelling, J.; Balaisyte-Jazone, L.; Posiuniene, I.; Zatoński, M.; Van Damme, P. Vaccine co-administration in adults: An effective way to improve vaccination coverage. Hum. Vaccin. Immunother. 2023, 19, 2195786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Squeri, R.; Genovese, C. Immunogenicity and antibody persistence of diphteria tetanus-acellular pertussis vaccination in adolescents and adults: A systematic review of the literature showed different responses to the available vaccines. J. Prev. Med. Hyg. 2021, 61, E530–E541, Erratum in J. Prev. Med. Hyg. 2021, 62, E249–E260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zavaleta-Monestel, E.; Hasselmyr Hasselmyr, S.; García-Montero, J.; Arguedas-Chacón, S.; Rojas-Chinchilla, C.; Díaz-Madriz, J.P. The Impact of Vaccination as a Strategy to Combat Bacterial Antimicrobial Resistance. Cureus 2024, 16, e65840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Vaccine | Document | Target Population | Schedule | Notes |
---|---|---|---|---|
Influenza | Annual Circulars of the Italian Ministry of Health “Prevention and control of influenza” | “subjects aged 6 months to 65 years with pathologies that increase the risk of complications from influenza: h) chronic inflammatory diseases and intestinal malabsorption syndromes”; “people aged ≥ 65 years” | 1 dose annually | Also recommended for family members, cohabitants and caregivers of people with serious frailties |
Pneumococcal | PNPV | “Conditions requiring long-term immunosuppressive treatment” | “number of doses as per technical sheet depending on age and pathology or condition” | |
Herpes Zoster | PNPV | “Subjects with congenital/acquired immunodeficiency or intended for immunosuppressive therapy” | Two doses (0, 2–6 months). In subjects who are or may become immunodeficient or immunosuppressed due to disease or therapy and who would benefit from an accelerated schedule, the second dose of RZV may be administered 1 to 2 months after the initial dose” | “provided that the adjuvanted recombinant vaccine (RZV) is used” |
Varicella | PNPV | “Subjects intended for immunosuppressive therapy” | “two doses at least 4 weeks apart” | |
COVID-19 | Circulars of the Italian Ministry of Health about recommendations for anti-COVID-19 vaccination campaign | “People aged 6 months to 59 years inclusive, with high fragility, as they suffer from pathologies or conditions that increase the risk of severe COVID-19:—Chronic inflammatory diseases and intestinal malabsorption syndromes” “people aged ≥ 65 years” | 2 doses (primary cycle) followed by booster doses | Also recommended for family members, cohabitants and caregivers of people with serious frailties |
Vaccine | Document | Target Population | Schedule |
---|---|---|---|
HBV | PNPV | “Vaccination of all previously unvaccinated adults” | Three doses (0, 1, 6 months) |
HPV | PNPV | Starting from 11 years | >15 years: “3-dose vaccination cycle at 0, 2, 6 months starting at age 15” |
DTPa | PNPV | “people aged ≥18 years” | Every 10 years |
MMRV | PNPV | “For all subjects who have not been vaccinated with two doses” | Generally, 2 doses administered at least 28 days apart from each other |
Characteristic | n (%) |
---|---|
Sex | |
Male | 80 (51.9%) |
Female | 74 (48.1%) |
Age group | |
18–29 | 10 (6.5%) |
30–44 | 24 (15.6%) |
45–64 | 70 (45.4%) |
≥65 | 50 (32.5%) |
Treatment | |
Immunosuppressive therapy | 85 (55.4%) |
Erlotinib | 8 (5.3%) |
Other/no treatment | 61 (39.6%) |
Vaccine | Pre-Admittance (%) | Post-Admittance (%) | Δ Coverage |
---|---|---|---|
(A) | |||
Influenza * | 6.5% (10) | 89.2% (137) | +82.7% |
PCV 13 | 25.5% (39) | 74.5% (114) | +49% |
PPV 23 | 26.6% (41) | 67% (103) | +40.4% |
Herpes Zoster | 62.3% (96) | 75.4% (116) | +13.1% |
COVID-19 Primary cycle | 79.6% (123) | 96.8% (149) | +17.2% |
COVID-19 Booster doses ** | 52.6% (81) | 15.6% (24) | −37% |
(B) | |||
HBV | 1.9% (3) | 44.2% (68) | +42.3% |
HPV | 1.5% (2) | 10.4% (16) | +8.9% |
DTPa | 3.2% (5) | 14.3% (22) | +11.1% |
MMRV | 1.5% (2) | 2.6% (4) | +1.1% |
Vaccine | Pre-Admittance | Post-Admittance | p-Value | ||
---|---|---|---|---|---|
M (n = 80) | F (n = 74) | M (n = 80) | F (n = 74) | ||
Influenza | 7.5% (6) | 5.4% (4) | 88.8% (71) | 89.2% (66) | 0.88 |
PCV 13 | 26.3% (21) | 24.3% (18) | 72.5% (58) | 75.7% (56) | 0.64 |
PPV 23 | 27.5% (22) | 25.7% (19) | 68.8% (55) | 64,9% (48) | 0.57 |
HZV | 63.8% (51) | 60.8% (45) | 72,5% (58) | 78,4% (58) | 0.47 |
COVID-19 Primary cycle | 80.0% (64) | 79.1% (59) | 96.3% (77) | 97.3% (72) | 0.73 |
COVID-19 Booster doses | 53.8% (43) | 51.4% (38) | 15.0% (12) | 16.2% (12) | 0.84 |
HBV | 2.5% (2) | 1.4% (1) | 45% (36) | 43,2% (32) | 0.78 |
HPV | 2.5% (2) | 0% (0) | 8.8% (7) | 12.2% (9) | 0.66 |
DTPa | 3.8% (3) | 2.7% (2) | 15% (12) | 13.5% (10) | 0.82 |
MMRV | 1.3% (1) | 1.4% (1) | 2.5% (2) | 2.7% (2) | 0.95 |
Vaccine | Immunosuppressive Therapy (n = 85) | Erlotinib (n = 8) | Other/No Treatment (n = 61) | p-Value | |||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | ||
Influenza | 5.9% (5) | 88.2% (75) | 6.3% (1) | 87.5% (7) | 6.6% (4) | 90.2% (55) | 0.93 |
PCV13 | 24.7% (21) | 72.9% (62) | 25.0% (2) | 75.0% (6) | 26.2% (16) | 75.4% (46) | 0.94 |
PPV23 | 27.1% (23) | 64.7% (55) | 25.0% (2) | 87.5% (7) | 26.2% (16) | 67.2% (41) | 0.42 |
Herpes Zoster | 62.4% (53) | 74.1% (63) | 75.0% (6) | 75.0% (6) | 60.7% (37) | 77.0% (47) | 0.92 |
COVID-19 Primary cycle | 80.0% (68) | 96.5% (82) | 87.5% (7) | 100% (8) | 78.7% (48) | 96.7% (59) | 0.86 |
COVID-19 Booster doses | 54.1% (46) | 15.3% (13) | 50.0% (4) | 12.5% (1) | 50.8% (31) | 16.4% (10) | 0.95 |
HBV | 2.4% (2) | 44.7% (38) | 0.0% (0) | 37.5% (3) | 1.6% (1) | 42.6% (26) | 0.76 |
HPV | 2.4% (2) | 8.2% (7) | 0.0% (0) | 12.5% (1) | 0.0% (0) | 13.1% (8) | 0.62 |
DTPa | 3.5% (3) | 14.1% (12) | 0.0% (0) | 12.5% (1) | 3.3% (2) | 14.8% (9) | 0.98 |
MMRV | 1.2% (1) | 2.4% (2) | 0.0% (0) | 0.0% (0) | 1.6% (1) | 3.3% (2) | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venuto, R.; Rizzo, C.E.; Lo Giudice, D.; Fries, W.; Ceccio, C.; Fedele, F.; Squeri, R.; Genovese, C. Vaccination Coverage in Adult Patients with Inflammatory Bowel Disease: Impact of a Tailored Vaccination Pathway Including COVID-19 and Herpes Zoster in a University Hospital Vaccination Center. Vaccines 2025, 13, 961. https://doi.org/10.3390/vaccines13090961
Venuto R, Rizzo CE, Lo Giudice D, Fries W, Ceccio C, Fedele F, Squeri R, Genovese C. Vaccination Coverage in Adult Patients with Inflammatory Bowel Disease: Impact of a Tailored Vaccination Pathway Including COVID-19 and Herpes Zoster in a University Hospital Vaccination Center. Vaccines. 2025; 13(9):961. https://doi.org/10.3390/vaccines13090961
Chicago/Turabian StyleVenuto, Roberto, Caterina Elisabetta Rizzo, Daniela Lo Giudice, Walter Fries, Concetta Ceccio, Francesco Fedele, Raffaele Squeri, and Cristina Genovese. 2025. "Vaccination Coverage in Adult Patients with Inflammatory Bowel Disease: Impact of a Tailored Vaccination Pathway Including COVID-19 and Herpes Zoster in a University Hospital Vaccination Center" Vaccines 13, no. 9: 961. https://doi.org/10.3390/vaccines13090961
APA StyleVenuto, R., Rizzo, C. E., Lo Giudice, D., Fries, W., Ceccio, C., Fedele, F., Squeri, R., & Genovese, C. (2025). Vaccination Coverage in Adult Patients with Inflammatory Bowel Disease: Impact of a Tailored Vaccination Pathway Including COVID-19 and Herpes Zoster in a University Hospital Vaccination Center. Vaccines, 13(9), 961. https://doi.org/10.3390/vaccines13090961