Recent Advances in Clinical Research of Prophylactic Vaccines Against Tuberculosis
Abstract
1. Introduction
2. Live Attenuated Vaccines
2.1. VPM1002
2.2. MTBVAC
3. Recombinant Subunit Vaccines
3.1. M72/AS01E
3.2. GamTBvac Vaccine
3.3. ID93 + GLA-SE Vaccine
3.4. H107e/CAF10b and AEC/BC02 Vaccines
4. Viral Vector Vaccines
4.1. ChAdOx1.85A + MVA85A Vaccine
4.2. Ad5Ag85A Vaccine
4.3. TB/FLU-05E Vaccine
5. mRNA Vaccines
6. Novel Strategies for Next-Generation TB Vaccine Development
6.1. Optimizing Antigen Selection
6.2. Developing Novel Adjuvants
6.3. Defining Clinical Trial Endpoints
6.4. Expanding Vaccine Efficacy Evaluation Metrics
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393, 1642–1656. [Google Scholar] [CrossRef]
- Dheda, K.; Barry, C.E.R.; Maartens, G. Tuberculosis. Lancet 2016, 387, 1211–1226. [Google Scholar] [CrossRef] [PubMed]
- Global Tuberculosis Report 2024. Available online: https://www.who.int/publications/i/item/9789240101531 (accessed on 10 December 2024).
- Adesanya, O.A.; Uche-Orji, C.I.; Adedeji, Y.A.; Joshua, J.I.; Adesola, A.A.; Chukwudike, C.J. Bacillus calmette-guerin (BCG): The adroit vaccine. AIMS Microbiol. 2021, 7, 96–113. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.Y.; Geluk, A.; Smith, S.G.; Stewart, A.L.; Friggen, A.H.; Franken, K.L.M.C.; Verduyn, M.J.C.; van Meijgaarden, K.E.; Voskuil, M.I.; Dockrell, H.M.; et al. Lack of immune responses to mycobacterium tuberculosis DosR regulon proteins following mycobacterium bovis BCG vaccination. Infect Immun. 2007, 75, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, K.; Grode, L.; Chang, R.; Fitzpatrick, M.; Laddy, D.; Hokey, D.; Derrick, S.; Morris, S.; McCown, D.; Kidd, R.; et al. Nonclinical development of BCG replacement vaccine candidates. Vaccines 2013, 1, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Loxton, A.G.; Knaul, J.K.; Grode, L.; Gutschmidt, A.; Meller, C.; Eisele, B.; Johnstone, H.; van der Spuy, G.; Maertzdorf, J.; Kaufmann, S.H.E.; et al. Safety and immunogenicity of the recombinant mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in south africa. Clin. Vaccine Immunol. 2017, 24, e00439-16. [Google Scholar] [CrossRef]
- Cotton, M.F.; Madhi, S.A.; Luabeya, A.K.; Tameris, M.; Hesseling, A.C.; Shenje, J.; Schoeman, E.; Hatherill, M.; Desai, S.; Kapse, D.; et al. Safety and immunogenicity of VPM1002 versus BCG in south african newborn babies: A randomised, phase 2 non-inferiority double-blind controlled trial. Lancet Infect Dis. 2022, 22, 1472–1483. [Google Scholar] [CrossRef]
- Marinova, D.; Gonzalo-Asensio, J.; Aguilo, N.; Martin, C. MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev. Vaccines 2017, 16, 565–576. [Google Scholar] [CrossRef]
- Martin, C.; Marinova, D.; Aguilo, N.; Gonzalo-Asensio, J. MTBVAC, a live TB vaccine poised to initiate efficacy trials 100 years after BCG. Vaccine 2021, 39, 7277–7285. [Google Scholar] [CrossRef]
- Arbues, A.; Aguilo, J.I.; Gonzalo-Asensio, J.; Marinova, D.; Uranga, S.; Puentes, E.; Fernandez, C.; Parra, A.; Cardona, P.J.; Vilaplana, C.; et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated m. Tuberculosis-based vaccine to enter clinical trials. Vaccine 2013, 31, 4867–4873. [Google Scholar] [CrossRef]
- Gonzalo-Asensio, J.; Malaga, W.; Pawlik, A.; Astarie-Dequeker, C.; Passemar, C.; Moreau, F.; Laval, F.; Daffe, M.; Martin, C.; Brosch, R.; et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc. Natl. Acad. Sci. USA. 2014, 111, 11491–11496. [Google Scholar] [CrossRef] [PubMed]
- Spertini, F.; Audran, R.; Chakour, R.; Karoui, O.; Steiner-Monard, V.; Thierry, A.; Mayor, C.E.; Rettby, N.; Jaton, K.; Vallotton, L.; et al. Safety of human immunisation with a live-attenuated mycobacterium tuberculosis vaccine: A randomised, double-blind, controlled phase i trial. Lancet Respir. Med. 2015, 3, 953–962. [Google Scholar] [CrossRef]
- Tameris, M.; Mearns, H.; Penn-Nicholson, A.; Gregg, Y.; Bilek, N.; Mabwe, S.; Geldenhuys, H.; Shenje, J.; Luabeya, A.K.K.; Murillo, I.; et al. Live-attenuated mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: A randomised controlled, double-blind dose-escalation trial. Lancet Respir. Med. 2019, 7, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Lacamara, S.; Martin, C. MTBVAC: A tuberculosis vaccine candidate advancing towards clinical efficacy trials in TB prevention. Arch Bronconeumol. 2023, 59, 821–828. [Google Scholar] [CrossRef]
- Thacher, E.G.; Cavassini, M.; Audran, R.; Thierry, A.; Bollaerts, A.; Cohen, J.; Demoitié, M.; Ejigu, D.; Mettens, P.; Moris, P.; et al. Safety and immunogenicity of the m72/as01 candidate tuberculosis vaccine in HIV-infected adults on combination antiretroviral therapy: A phase i/II, randomized trial. Aids 2014, 28, 1769–1781. [Google Scholar] [CrossRef]
- Kumarasamy, N.; Poongulali, S.; Bollaerts, A.; Moris, P.; Beulah, F.E.; Ayuk, L.N.; Demoitié, M.; Jongert, E.; Ofori-Anyinam, O. A randomized, controlled safety, and immunogenicity trial of the m72/as01 candidate tuberculosis vaccine in HIV-positive indian adults. Medicine 2016, 95, e2459. [Google Scholar] [CrossRef]
- Penn-Nicholson, A.; Geldenhuys, H.; Burny, W.; van der Most, R.; Day, C.L.; Jongert, E.; Moris, P.; Hatherill, M.; Ofori-Anyinam, O.; Hanekom, W.; et al. Safety and immunogenicity of candidate vaccine m72/as01e in adolescents in a TB endemic setting. Vaccine 2015, 33, 4025–4034. [Google Scholar] [CrossRef]
- Gillard, P.; Yang, P.; Danilovits, M.; Su, W.; Cheng, S.; Pehme, L.; Bollaerts, A.; Jongert, E.; Moris, P.; Ofori-Anyinam, O.; et al. Safety and immunogenicity of the m72/as01e candidate tuberculosis vaccine in adults with tuberculosis: A phase II randomised study. Tuberculosis 2016, 100, 118–127. [Google Scholar] [CrossRef]
- Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; et al. Phase 2b controlled trial of m72/as01(e) vaccine to prevent tuberculosis. N. Engl. J. Med. 2018, 379, 1621–1634. [Google Scholar] [CrossRef]
- Tait, D.R.; Hatherill, M.; Van Der Meeren, O.; Ginsberg, A.M.; Van Brakel, E.; Salaun, B.; Scriba, T.J.; Akite, E.J.; Ayles, H.M.; Bollaerts, A.; et al. Final analysis of a trial of m72/as01(e) vaccine to prevent tuberculosis. N. Engl. J. Med. 2019, 381, 2429–2439. [Google Scholar] [CrossRef] [PubMed]
- Late-Stage Trial for Tuberculosis Vaccine Candidate Underway in South Africa|News|Wellcome. Available online: https://wellcome.org/news/late-stage-trial-tuberculosis-vaccine-candidate-underway-south-africa (accessed on 13 December 2024).
- Tkachuk, A.P.; Gushchin, V.A.; Potapov, V.D.; Demidenko, A.V.; Lunin, V.G.; Gintsburg, A.L. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLoS ONE 2017, 12, e0176784. [Google Scholar] [CrossRef]
- Vasina, D.V.; Kleymenov, D.A.; Manuylov, V.A.; Mazunina, E.P.; Koptev, E.Y.; Tukhovskaya, E.A.; Murashev, A.N.; Gintsburg, A.L.; Gushchin, V.A.; Tkachuk, A.P. First-in-human trials of GamTBvac, a recombinant subunit tuberculosis vaccine candidate: Safety and immunogenicity assessment. Vaccines 2019, 7, 166. [Google Scholar] [CrossRef]
- Tkachuk, A.P.; Bykonia, E.N.; Popova, L.I.; Kleymenov, D.A.; Semashko, M.A.; Chulanov, V.P.; Fitilev, S.B.; Maksimov, S.L.; Smolyarchuk, E.A.; Manuylov, V.A.; et al. Safety and immunogenicity of the GamTBvac, the recombinant subunit tuberculosis vaccine candidate: A phase II, multi-center, double-blind, randomized, placebo-controlled study. Vaccines 2020, 8, 652. [Google Scholar] [CrossRef]
- Orr, M.T.; Beebe, E.A.; Hudson, T.E.; Moon, J.J.; Fox, C.B.; Reed, S.G.; Coler, R.N. A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS ONE 2014, 9, e83884. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kang, Y.A.; Park, K.J.; Choi, J.C.; Cho, K.G.; Ko, D.Y.; Ahn, J.H.; Lee, B.; Ahn, E.; Woo, Y.J.; et al. Safety and immunogenicity of the ID93 + GLA-SE tuberculosis vaccine in BCG-vaccinated healthy adults: A randomized, double-blind, placebo-controlled phase 2 trial. Infect Dis Ther. 2023, 12, 1605–1624. [Google Scholar] [CrossRef]
- Dijkman, K.; Lindenstrom, T.; Rosenkrands, I.; Soe, R.; Woodworth, J.S.; Lindestam Arlehamn, C.S.; Mortensen, R. A protective, single-visit TB vaccination regimen by co-administration of a subunit vaccine with BCG. NPJ Vaccines 2023, 8, 66. [Google Scholar] [CrossRef]
- Guo, X.; Lu, J.; Li, J.; Du, W.; Shen, X.; Su, C.; Wu, Y.; Zhao, A.; Xu, M. The subunit AEC/BC02 vaccine combined with antibiotics provides protection in mycobacterium tuberculosis-infected guinea pigs. Vaccines 2022, 10, 2164. [Google Scholar] [CrossRef]
- McShane, H.; Pathan, A.A.; Sander, C.R.; Keating, S.M.; Gilbert, S.C.; Huygen, K.; Fletcher, H.A.; Hill, A.V.S. Recombinant modified vaccinia virus ankara expressing antigen 85a boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 2004, 10, 1240–1244. [Google Scholar] [CrossRef]
- Hawkridge, T.; Scriba, T.J.; Gelderbloem, S.; Smit, E.; Tameris, M.; Moyo, S.; Lang, T.; Veldsman, A.; Hatherill, M.; Merwe, L.V.D.; et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85a, in healthy adults in south africa. J. Infect. Dis. 2008, 198, 544–552. [Google Scholar] [CrossRef]
- Wilkie, M.; Satti, I.; Minhinnick, A.; Harris, S.; Riste, M.; Ramon, R.L.; Sheehan, S.; Thomas, Z.M.; Wright, D.; Stockdale, L.; et al. A phase i trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85a prime—MVA85a boost in healthy UK adults. Vaccine 2020, 38, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Jeyanathan, M.; Damjanovic, D.; Yao, Y.; Bramson, J.; Smaill, F.; Xing, Z. Induction of an immune-protective t-cell repertoire with diverse genetic coverage by a novel viral-vectored tuberculosis vaccine in humans. J. Infect. Dis. 2016, 214, 1996–2005. [Google Scholar] [CrossRef]
- Jeyanathan, M.; Fritz, D.K.; Afkhami, S.; Aguirre, E.; Howie, K.J.; Zganiacz, A.; Dvorkin-Gheva, A.; Thompson, M.R.; Silver, R.F.; Cusack, R.P.; et al. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight 2022, 7, e155655. [Google Scholar] [CrossRef] [PubMed]
- Stosman, K.I.; Aleksandrov, A.G.; Sivak, K.V.; Buzitskaya, Z.V.; Stukova, M.A. Evaluation of the immunotoxicity and allergenicity of a new intranasal influenza vector vaccine against tuberculosis carrying TB10.4 and HspX antigens. Iran. J. Basic Med. Sci. 2023, 26, 558–563. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Xia, T. Optimizing antigen selection for the development of tuberculosis vaccines. Cell Insight 2024, 3, 100163. [Google Scholar] [CrossRef]
- Moguche, A.O.; Musvosvi, M.; Penn-Nicholson, A.; Plumlee, C.R.; Mearns, H.; Geldenhuys, H.; Smit, E.; Abrahams, D.; Rozot, V.; Dintwe, O.; et al. Antigen availability shapes t cell differentiation and function during tuberculosis. Cell Host Microbe 2017, 21, 695–706. [Google Scholar] [CrossRef]
- Gong, W.; Wu, X. Differential diagnosis of latent tuberculosis infection and active tuberculosis: A key to a successful tuberculosis control strategy. Front Microbiol. 2021, 12, 745592. [Google Scholar] [CrossRef] [PubMed]
- Bellini, C.; Vergara, E.; Bencs, F.; Fodor, K.; Bosze, S.; Krivic, D.; Bacsa, B.; Surguta, S.E.; Tovari, J.; Reljic, R.; et al. Design and characterization of a multistage peptide-based vaccine platform to target mycobacterium tuberculosis infection. Bioconjug. Chem. 2023, 34, 1738–1753. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.F.; Juno, J.A. Sensing mycobacteria through unconventional pathways. J. Clin. Investig. 2025, 135, e190230. [Google Scholar] [CrossRef]
- Romano, M.; Squeglia, F.; Kramarska, E.; Barra, G.; Choi, H.; Kim, H.; Ruggiero, A.; Berisio, R. A structural view at vaccine development against m. Tuberculosis. Cells 2023, 12, 317. [Google Scholar] [CrossRef]
- Wang, N.; Qian, R.; Liu, T.; Wu, T.; Wang, T. Nanoparticulate carriers used as vaccine adjuvant delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 2019, 36, 449–484. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine 2019, 37, 3167–3178. [Google Scholar] [CrossRef]
- Schrager, L.K.; Vekemens, J.; Drager, N.; Lewinsohn, D.M.; Olesen, O.F. The status of tuberculosis vaccine development. Lancet Infect Dis. 2020, 20, e28–e37. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Shin, S.J. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front. Immunol. 2023, 14, 1193058. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, K.; Coler, R.N.; Joosten, S.A. Editorial: Beyond th1: Novel concepts in tuberculosis vaccine immunology. Front. Immunol. 2022, 13, 1059011. [Google Scholar] [CrossRef] [PubMed]
- Rodo, M.J.; Rozot, V.; Nemes, E.; Dintwe, O.; Hatherill, M.; Little, F.; Scriba, T.J. A comparison of antigen-specific t cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog. 2019, 15, e1007643. [Google Scholar] [CrossRef]
- Lu, L.L.; Chung, A.W.; Rosebrock, T.R.; Ghebremichael, M.; Yu, W.H.; Grace, P.S.; Schoen, M.K.; Tafesse, F.; Martin, C.; Leung, V.; et al. A functional role for antibodies in tuberculosis. Cell 2016, 167, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Hunter, L.; Hingley-Wilson, S.; Stewart, G.R.; Sharpe, S.A.; Salguero, F.J. Dynamics of macrophage, t and b cell infiltration within pulmonary granulomas induced by mycobacterium tuberculosis in two non-human primate models of aerosol infection. Front. Immunol. 2021, 12, 776913. [Google Scholar] [CrossRef]
- Herrera-Van Oostdam, A.S.; Castaneda-Delgado, J.E.; Oropeza-Valdez, J.J.; Borrego, J.C.; Monarrez-Espino, J.; Zheng, J.; Mandal, R.; Zhang, L.; Soto-Guzman, E.; Fernandez-Ruiz, J.C.; et al. Immunometabolic signatures predict risk of progression to sepsis in COVID-19. PLoS ONE 2021, 16, e0256784. [Google Scholar] [CrossRef]
Vaccine | NCT Number | Phase | Start Time | End Time (Estimated) | Population | Sample Size | Administration Route | Evaluation/Observation Indicators | Results |
---|---|---|---|---|---|---|---|---|---|
VPM1002 | NCT01479972 | II | 2011.11 | 2012.11 | Newborn infants | 48 | i.d. | 1. Safety 2. Immunogenicity | Inoculation with VPM1002 can induce multifunctional CD4 + and CD8 + T cells |
NCT02391415 | II | 2015.6 | 2017.11 | Newborn infants | 416 | i.d. | The difference between the VPM1002 and BCG vaccination groups in the incidence of grade 3 and 4 adverse drug reactions and IMP-related ipsilateral or generalized lymphadenopathy of 10 mm or greater (diameter) | VPM1002 is safe for both HIV-exposed and unexposed infants; both VPM1002 and BCG have immunogenicity, and from the 6th week onwards, the immune response intensity induced by BCG is greater than that of VPM1002 | |
NCT03152903 | III | 2017.12 | 2024.7 | Healthy adults | 2000 | i.d. | Percentage of bacteriologically confirmed TB recurrence cases | NA | |
NCT04351685 | III | 2020.11 | 2025.12 | Newborn infants | 6940 | i.d. | Incident cases of QFT conversion | NA | |
MTBVAC | NCT02013245 | I | 2013.1 | 2014.11 | Healthy adults | 34 | i.d. | Number of participants with AEs up to 210 days after vaccination | MTBVAC exhibits good safety in healthy adults, similar to BCG |
NCT02729571 | Ib | 2015.9 | 2018.3 | Newborn infants | 54 | i.d. | Safety and reactogenicity in infants and adults | MTBVAC has good safety and immunogenicity, and can induce long-lasting CD4 cell responses in infants | |
NCT02933281 | IIa | 2018.5 | 2021.9 | Healthy adults | 144 | i.d. | Safety and reactogenicity of MTBVAC at escalating dose levels compared to BCG vaccine by assessing number of participants with AEs and SAEs | NA | |
NCT03536117 | IIa | 2019.2 | 2022.5 | Newborn infants | 99 | i.d. | 1. Number of participants with treatment-related AEs as defined in protocol 2. Immunogenicity analysis in infants | NA | |
NCT04975178 | III | 2022.9 | 2029.9 | Newborn infants | 7120 | i.d. | Prevention of TB disease in healthy HIV-uninfected and HIV-exposed uninfected neonates | NA | |
NCT06272812 | IIb | 2024.9 | 2028.3 | Adolescents and Adults | 4300 | i.d. | To evaluate the protective efficacy of MTBVAC against bacteriologically confirmed pulmonary TB disease, diagnosed by more than one diagnostic test with sputum obtained before initiation of TB treatment as compared to placebo | NA | |
M72/AS01E | NCT01755598 | IIb | 2014.8 | 2018.11 | LTBI individuals | 3575 | i.m. | Incident rates of definite PTB disease, not associated with HIV-infection, meeting the case definition | LTBI population vaccinated with M72/AS01E can prevent latent infections from developing into TB, the vaccine efficacy in the 36th month was 49.7% |
NCT04556981 | II | 2020.11 | 2022.8 | HIV-positive patients | 402 | i.m. | Number of subjects with solicited local symptoms and solicited general symptoms, unsolicited AEs and SAEs, different levels biochemical and hematological levels | NA | |
NCT06062238 | III | 2024.3 | 2028.4 | Children, Adults | 20,000 | i.m. | Number of participants with solicited AEs, unsolicited AEs, and SAEs | NA | |
GamTBvac | NCT03255278 | I | 2017.1 | 2017.12 | Healthy adults | 60 | s.c. | The number of AEs | Different doses of vaccines were evaluated for immunogenicity, with half dose (0.5 mL) having the best effect |
NCT03878004 | II | 2018.12 | 2020.5 | Healthy adults | 180 | s.c. | 1. Level of IFN-γ secretion in whole blood or PBMC fraction 2. Number of participants with AEs | The vaccine is well tolerated and induces specific and persistent Th1 and Humoral immunity responses | |
NCT04975737 | III | 2022.1 | 2025.11 | Healthy adults | 7180 | s.c. | Preventive efficacy (Ep) | NA | |
ID93 + GLA-SE | NCT01599897 | I | 2012.8 | 2014.5 | Healthy adults | 60 | i.m. | Number of patients experiencing AEs | Showing a satisfactory safety profile and eliciting a functional humoral and T-helper 1 type cellular response |
NCT06670755 | I | 2024.12 | 2027.7 | Healthy adults | 48 | i.m. | Safety of BCG challenge by the aerosol inhaled route in healthy volunteers and recently ID93/GLA-SE-vaccinated adult volunteers | NA | |
NCT06714513 | I | 2024.12 | 2026.12 | Adults, older Adults | 144 | i.m. | 1. Safety 2. Immunogenicity | NA | |
NCT02465216 | IIa | 2015.6 | 2017.1 | Healthy adults | 60 | i.m. | Number of AEs | The antigen-specific IgG and CD4 T cell responses induced by a dose of 2 µg ID93 + 5 µg GLA-SE were significantly higher than those induced by placebo, and lasted for 6 months | |
H107e/CAF10b | NCT06050356 | I | 2024.3 | 2026.11 | Healthy adults | 140 | i.m. | 1. Frequencies of H107e-specific IFN-γ producing T cells before first i.m. vaccination and two weeks after the second i.m. vaccination 2. Frequencies of BCG-specific T-cells producing IFN-γ and/or IL-17 induced by H107e/CAF®10b + BCG vs. BCG alone | NA |
AEC/BC02 | NCT03026972 | Ia | 2018.4 | 2019.10 | Healthy adults | 25 | i.m. | The number of participants with Adverse Events after coxal muscle injection | NA |
NCT04239313 | Ib | 2020.5 | 2022.6 | Healthy adults | 30 | i.m. | The number of AEs after i.m. | NA | |
ChAdOx1.85A + MVA85A | NCT01829490 | I | 2013.7 | 2016.4 | Healthy adults | 42 | i.m. | Safety of ChAdOx1 85A vaccination with and without MVA85A boost vaccination in healthy, BCG-vaccinated adults | ChAdOx1.85A induces Ag85A specific CD4 + T and CD8 + T cell responses |
NCT03681860 | IIa | 2019.7 | 2021.5 | Healthy adults | 72 | i.m. | Safety and immunogenicity | NA | |
AdHu5Ag85A | NCT02337270 | I | 2017.9 | 2021.9 | Healthy adults | 36 | Aerosol | Number of participants reporting AEs | Compared with i.m., aerosol delivered AdHu5Ag85A vaccine has advantages in inducing respiratory epithelium immunity |
TB/FLU-05E | NCT05945498 | I | 2023.5 | 2023.9 | Healthy adults | 51 | Intranasal Injection | Number of participants with local and AEs and SAEs | NA |
BNT164 | NCT05537038 | I | 2023.4 | 2025.12 | Healthy adults | 120 | i.m. | 1. Frequency of solicited local reactions (pain, erythema/redness, induration/swelling) at the injection site up to 7 days after each dose 2. Frequency of solicited systemic reactions (vomiting, diarrhea, headache, fatigue, muscle pain and joint pain, chills, and fever) up to 7 days after each dose 3. Proportion of participants with at least one AE occurring from each dose to 28 days after each dose 4. Proportion of participants with at least one AE occurring from Dose 1 to 28 days post-Dose 3 5. Proportion of participants with at least one SAE or medically attended adverse event (MAAE) occurring from Dose 1 up to 168 days post-Dose 3 6. Number of AEs from Dose 1 to 28 days post-Dose 3 | NA |
NCT05547464 | IIa | 2023.7 | 2027.5 | Healthy adults | 732 | i.m. | 1. Frequency of solicited local reactions (pain, erythema/redness, induration/swelling) at the injection site up to 7 days after each dose 2. Frequency of solicited systemic reactions (vomiting, diarrhea, headache, fatigue, muscle pain and joint pain, chills, and fever) up to 7 days after each dose 3. Proportion of participants with at least one AE occurring from each dose to 28 days after each dose 4. Proportion of participants with at least one SAE or AE of special interest occurring from Dose 1 up to 168 days post Dose 3 5. Proportion of participants with at least one SAE or medically attended adverse event (MAAE) occurring from Dose 1 up to 168 days post-Dose 3 6. Number of unsolicited AEs from Dose 1 to 28 days post-Dose 3 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Yuan, M.; Yang, L.; Huang, L.; Li, J.; Tan, Z. Recent Advances in Clinical Research of Prophylactic Vaccines Against Tuberculosis. Vaccines 2025, 13, 959. https://doi.org/10.3390/vaccines13090959
Xu B, Yuan M, Yang L, Huang L, Li J, Tan Z. Recent Advances in Clinical Research of Prophylactic Vaccines Against Tuberculosis. Vaccines. 2025; 13(9):959. https://doi.org/10.3390/vaccines13090959
Chicago/Turabian StyleXu, Buyun, Mengjuan Yuan, Lisa Yang, Lan Huang, Jingxin Li, and Zhongming Tan. 2025. "Recent Advances in Clinical Research of Prophylactic Vaccines Against Tuberculosis" Vaccines 13, no. 9: 959. https://doi.org/10.3390/vaccines13090959
APA StyleXu, B., Yuan, M., Yang, L., Huang, L., Li, J., & Tan, Z. (2025). Recent Advances in Clinical Research of Prophylactic Vaccines Against Tuberculosis. Vaccines, 13(9), 959. https://doi.org/10.3390/vaccines13090959