Impact of the National Vaccination Strategy on the Prevalence of Streptococcus pneumoniae and Its Serotypes Among Clinically Healthy Children Under Six Years of Age During and After the COVID-19 Pandemic
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Participant Selection Criteria
- −
- Healthy children aged 2 to 6 years who attended childcare facilities, having completed a full vaccination course of PCV10 (3 + 1 doses).
- −
- Healthy children aged 5 months to 6 years who did not attend childcare facilities but had received at least one of the mandatory doses of PCV10.
2.3. Sample Collection
2.4. Exclusion Criteria
2.5. Detection of S. Pneumoniae
2.5.1. Classical Detection Method
2.5.2. Molecular Methods
2.5.3. Typing of S. Pneumoniae Isolates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Tested Group
3.2. S. pneumoniae Serotypes
3.3. Vaccine Serotypes
3.4. The Dynamics of the Spread of S. pneumoniae
3.4.1. The Dynamics of the Spread of S. pneumoniae Serotypes
3.4.2. Age Distribution of Detected S. pneumoniae Serotypes
3.5. Mono- and Co-Detection of S. pneumoniae Serotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus pneumoniae: Transmission, colonization and invasion. Nat. Rev. Microbiol. 2018, 16, 355–367. [Google Scholar] [CrossRef]
- Ceyhan, M.; Ozsurekci, Y.; Aykac, K.; Hacibedel, B.; Ozbilgili, E. Economic burden of pneumococcal infections in children under 5 years of age. Hum. Vaccines Immunother. 2018, 14, 106–110. [Google Scholar] [CrossRef]
- Bogaert, D.; De Groot, R.; Hermans, P.W. Streptococcus pneumoniae colonisation: The key to pneumococcal disease. Lancet Infect. Dis. 2004, 4, 144–154. [Google Scholar] [CrossRef]
- Dekaj, E.; Gjini, E. Pneumococcus and the stress-gradient hypothesis: A trade-off links R0 and susceptibility to co-colonization across countries. Theor. Popul. Biol. 2024, 156, 77–92. [Google Scholar] [CrossRef]
- Brooks, L.R.K.; Mias, G.I. Streptococcus pneumoniae’s Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front. Immunol. 2018, 9, 1366. [Google Scholar] [CrossRef]
- Morimura, A.; Hamaguchi, S.; Akeda, Y.; Tomono, K. Mechanisms Underlying Pneumococcal Transmission and Factors Influencing Host-Pneumococcus Interaction: A Review. Front. Cell. Infect. Microbiol. 2021, 11, 639450. [Google Scholar] [CrossRef]
- Loughran, A.J.; Orihuela, C.J.; Tuomanen, E.I.; Fischetti, V.A.; Novick, R.P.; Ferretti, J.J.; Portnoy, D.A.; Braunstein, M.; Rood, J.I. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, C.; Margüello, E.R. An immune system fighting against pneumococcus. Vacunas (Engl. Ed.) 2024, 25, 415–419. [Google Scholar] [CrossRef]
- Feemster, K.; Hausdorff, W.P.; Banniettis, N.; Platt, H.; Velentgas, P.; Esteves-Jaramillo, A.; Burton, R.L.; Nahm, M.H.; Buchwald, U.K. Implications of Cross-Reactivity and Cross-Protection for Pneumococcal Vaccine Development. Vaccines 2024, 12, 974. [Google Scholar] [CrossRef]
- Geno, K.A.; Gilbert, G.L.; Song, J.Y.; Skovsted, I.C.; Klugman, K.P.; Jones, C.; Konradsen, H.B.; Nahm, M.H. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin. Microbiol. Rev. 2015, 28, 871–899. [Google Scholar] [CrossRef]
- Wyllie, A.L.; Wijmenga-Monsuur, A.J.; van Houten, M.A.; Bosch, A.A.T.M.; Groot, J.A.; van Engelsdorp Gastelaars, J.; Bruin, J.P.; Bogaert, D.; Rots, N.Y.; Sanders, E.A.M.; et al. Molecular surveillance of nasopharyngeal carriage of Streptococcus pneumoniae in children vaccinated with conjugated polysaccharide pneumococcal vaccines. Sci. Rep. 2016, 6, 23809. [Google Scholar] [CrossRef]
- Ganaie, F.; Saad, J.S.; McGee, L.; van Tonder, A.J.; Bentley, S.D.; Lo, S.W.; Gladstone, R.A.; Turner, P.; Keenan, J.D.; Breiman, R.F.; et al. A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 2020, 11, e00937-20. [Google Scholar] [CrossRef]
- Johnson, C.N.; Wilde, S.; Tuomanen, E.; Rosch, J.W. Convergent impact of vaccination and antibiotic pressures on pneumococcal populations. Cell Chem. Biol. 2024, 31, 195–206. [Google Scholar] [CrossRef]
- Savrasova, L.; Villerusa, A.; Zeltina, I.; Krumina, A.; Cupeca, H.; Balasegaram, S.; Greve, M.; Savicka, O.; Selderina, S.; Galajeva, J.; et al. Streptococcus pneumoniae serotypes and factors associated with antimicrobial resistance in Invasive pneumococcal disease cases in Latvia, 2012–2022. Front. Public Health 2025, 13, 1501821. [Google Scholar] [CrossRef]
- Li, L.; Ma, J.; Yu, Z.; Li, M.; Zhang, W.; Sun, H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol. Res. 2023, 266, 127221. [Google Scholar] [CrossRef]
- Musher, D.M.; Anderson, R.; Feldman, C. The remarkable history of pneumococcal vaccination: An ongoing challenge. Pneumonia (Nathan Qld.) 2022, 14, 5. [Google Scholar] [CrossRef]
- Aliberti, S.; Mantero, M.; Mirsaeidi, M.; Blasi, F. The role of vaccination in preventing pneumococcal disease in adults. Clin. Microbiol. Infect. 2014, 20, 52–58. [Google Scholar] [CrossRef]
- Rodgers, G.L.; Whitney, C.G.; Klugman, K.P. Triumph of Pneumococcal Conjugate Vaccines: Overcoming a Common Foe. J. Infect. Dis. 2021, 224 (Suppl. 2), S352–S359. [Google Scholar] [CrossRef]
- Bennett, J.C.; Deloria Knoll, M.; Kagucia, E.W.; Garcia Quesada, M.; Zeger, S.L.; Hetrich, M.K.; Yang, Y.; Herbert, C.; Ogyu, A.; Cohen, A.L.; et al. Global impact of ten-valent and 13-valent pneumococcal conjugate vaccines on invasive pneumococcal disease in all ages (the PSERENADE project): A global surveillance analysis. Lancet Infect. Dis. 2025s, 25, 457–470. [Google Scholar] [CrossRef]
- Malcheva, M. Streptococcus pneumoniae serotype distribution after the introduction of pneumococcal conjugate vaccines. Probl. Infect. Parasit. Dis. 2019, 47, 5–8. [Google Scholar] [CrossRef]
- Krieg Noel, R.; Holt John, G. Bergey’s Manual of Systematic Bacteriology; Yi Hsien Publishing Co.: Taipei, Taiwan, 1984. [Google Scholar]
- de Lamballerie, X.; Zandotti, C.; Vignoli, C.; Bollet, C.; de Micco, P. A one-step microbial DNA extraction method using “Chelex 100” suitable for gene amplification. Res. Microbiol. 1992, 143, 785–790. [Google Scholar] [CrossRef]
- Lang, A.L.S.; McNeil, S.A.; Hatchette, T.F.; Elsherif, M.; Martin, I.; LeBlanc, J.J. Detection and prediction of Streptococcus pneumoniae serotypes directly from nasopharyngeal swabs using PCR. J. Med. Microbiol. 2015, 64, 836–844. [Google Scholar] [CrossRef]
- Zhao, W.; Pan, F.; Wang, B.; Wang, C.; Sun, Y.; Zhang, T.; Shi, Y.; Zhang, H. Epidemiology Characteristics of Streptococcus pneumoniae from Children with Pneumonia in Shanghai: A Retrospective Study. Front. Cell. Infect. Microbiol. 2019, 9, 258. [Google Scholar] [CrossRef]
- Candeias, C.; Almeida, S.T.; Paulo, A.C.; Simões, A.S.; Ferreira, B.; Cruz, A.R.; Queirós, M.; Touret, T.; Brito-Avô, A.; de Lencastre, H.; et al. Streptococcus pneumoniae carriage, serotypes, genotypes, and antimicrobial resistance trends among children in Portugal, after introduction of PCV13 in National Immunization Program: A cross-sectional study. Vaccine 2024, 42, 126219. [Google Scholar] [CrossRef]
- Warda, K.; Amari, S.; Boureddane, M.; Elkamouni, Y.; Arsalane, L.; Zouhair, S.; Bouskraoui, M. Changes in pneumococcal serotypes distribution and penicillin resistance in healthy children five years after generalization of PCV10. Heliyon 2024, 10, e25741. [Google Scholar] [CrossRef]
- Ekinci, E.; Van Heirstraeten, L.; Willen, L.; Desmet, S.; Wouters, I.; Vermeulen, H.; Lammens, C.; Goossens, H.; Van Damme, P.; Verhaegen, J.; et al. Serotype 19A and 6C Account for One-Third of Pneumococcal Carriage Among Belgian Day-Care Children Four Years After a Shift to a Lower-Valent, P.C.V. J. Pediatr. Infect. Dis. Soc. 2023, 12, 36–42. [Google Scholar] [CrossRef]
- Desmet, S.; Lagrou, K.; Wyndham-Thomas, C.; Braeye, T.; Verhaegen, J.; Maes, P.; Fieuws, S.; Peetermans, W.E.; Blumental, S. Dynamic changes in paediatric invasive pneumococcal disease after sequential switches of conjugate vaccine in Belgium: A national retrospective observational study. Lancet Infect. Dis. 2021, 21, 127–136. [Google Scholar] [CrossRef]
- Desmet, S.; Wouters, I.; Heirstraeten, L.V.; Beutels, P.; Van Damme, P.; Malhotra-Kumar, S.; Maes, P.; Verhaegen, J.; Peetermans, W.E.; Lagrou, K.; et al. In-depth analysis of pneumococcal serotypes in Belgian children (2015–2018): Diversity, invasive disease potential, and antimicrobial susceptibility in carriage and disease. Vaccine 2021, 39, 372–379. [Google Scholar] [CrossRef]
- Alexandrova, A.S.; Setchanova, L.P.; Pencheva, D.R.; Mitov, I.G. Phenotypic and genotypic characterization of serogroup 6 Streptococcus pneumoniae isolates collected during 10-valent pneumococcal conjugate vaccine era in Bulgaria. Acta Microbiol. Et Immunol. Hung. 2020, 67, 91–99. [Google Scholar] [CrossRef]
- lmeida, S.C.G.; Lemos, A.P.S.; Bierrenbach, A.L.; Moraes, J.C.; Brandileone, M.C.C. Serotype Distribution and Antimicrobial Susceptibility Pattern of Streptococcus pneumoniae in COVID-19 Pandemic Era in Brazil. Microorganisms 2024, 12, 401. [Google Scholar] [CrossRef]
- Naucler, P.; Galanis, I.; Morfeldt, E.; Darenberg, J.; Örtqvist, Å.; Henriques-Normark, B. Comparison of the Impact of Pneumococcal Conjugate Vaccine 10 or Pneumococcal Conjugate Vaccine 13 on Invasive Pneumococcal Disease in Equivalent Populations. Clin. Infect. Dis. 2017, 65, 1780–1789. [Google Scholar] [CrossRef]
- Gabarrot, G.G.; Vega, M.L.; Giffoni, G.P.; Hortal, M.; Camou, T. Antibiotic Resistance and Clonal Spread. Pneumonia 2014, 3, 204–221. [Google Scholar] [CrossRef]
- Neves, F.P.G.; Cardoso, N.T.; Souza, A.R.V.; Snyder, R.E.; Marlow, M.M.; Pinto, T.C.A.; Teixeira, L.M.; Riley, L.W. Population structure of Streptococcus pneumoniae colonizing children before and after universal use of pneumococcal conjugate vaccines in Brazil: Emergence and expansion of the MDR serotype 6C-CC386 lineage. J. Antimicrob. Chemother. 2018, 73, 1206–1212. [Google Scholar] [CrossRef]
- Duval, D.; Evans, B.; Sanders, A.; Hill, J.; Simbo, A.; Kavoi, T.; Lyell, I.; Simmons, Z.; Qureshi, M.; Pearce-Smith, N.; et al. Non-pharmaceutical interventions to reduce COVID-19 transmission in the UK: A rapid mapping review and interactive evidence gap map. J. Public Health (Oxf. Engl.) 2024, 46, e279–e293. [Google Scholar] [CrossRef]
- Bertran, M.; D’Aeth, J.C.; Abdullahi, F.; Eletu, S.; Andrews, N.J.; Ramsay, M.E.; Litt, D.J.; Ladhani, S.N. Invasive pneumococcal disease 3 years after introduction of a reduced 1 + 1 infant 13-valent pneumococcal conjugate vaccine immunisation schedule in England: A prospective national observational surveillance study. Lancet Infect. Dis. 2024, 24, 546–556. [Google Scholar] [CrossRef]
- Sanz, J.C.; de Luis, R.; Del Río, S.; Gamen, S.; Cercenado, E.; Orellana, M.A.; Yuste, J. Direct identification of pneumococcal serotypes in blood cultures by a PCR-reverse-hybridisation technique. Enfermedades Infecc. Microbiol. Clin. (Engl. Ed.) 2020, 38, 170–173. [Google Scholar] [CrossRef]
- Maeda, H.; Morimoto, K. Global distribution and characteristics of pneumococcal serotypes in adults. Hum. Vaccines Immunother. 2025, 21, 2469424. [Google Scholar] [CrossRef]
- Korona-Glowniak, I.; Malm, A. Characteristics of Streptococcus pneumoniae strains colonizing upper respiratory tract of healthy preschool children in Poland. Sci. World J. 2012, 732901. [Google Scholar] [CrossRef]
- Torén, K.; Albin, M.; Alderling, M.; Schiöler, L.; Åberg, M. Transmission factors and exposure to infections at work and invasive pneumococcal disease. Am. J. Ind. Med. 2023, 66, 65–74. [Google Scholar] [CrossRef]
- Parker, A.M.; Jackson, N.; Awasthi, S.; Kim, H.; Alwan, T.; Wyllie, A.L.; Kogut, K.; Holland, N.; Mora, A.M.; Eskenazi, B.; et al. Upper respiratory Streptococcus pneumoniae colonization among working-age adults with prevalent exposure to overcrowding. Microbiol. Spectr. 2024, 12, e0087924. [Google Scholar] [CrossRef]
- Tan Tina, Q. Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines. Clin. Microbiol. Rev. 2012, 25, 409–419. [Google Scholar] [CrossRef]
- Jullien, S.; Sharma, R.; Lhamu Mynak, M.; Henares, D.; Muñoz-Almagro, C.; Bassat, Q. Pneumococcal nasopharyngeal carriage among Bhutanese children hospitalized with clinical pneumonia: Serotypes and viral co-infection. BMC Infect. Dis. 2020, 20, 940. [Google Scholar] [CrossRef]
- Dhoubhadel, B.G.; Suzuki, M.; Ishifuji, T.; Yaegashi, M.; Asoh, N.; Ishida, M.; Hamaguchi, S.; Aoshima, M.; Yasunami, M.; Ariyoshi, K.; et al. High prevalence of multiple serotypes of pneumococci in patients with pneumonia and their associated risk factors. Thorax 2022, 77, 1121–1130. [Google Scholar] [CrossRef]
StPn Serotypes | Number of Detections Out of a Total of 569 Patients Tested | Presence in Vaccine (Vaccine Generation) |
---|---|---|
3 | 13 (2.3) | PCV13, PCV15, PCV20 |
4 | 1 (0.2) | PCV7; PCV10, PCV13, PCV15, PCV20 |
5 | 1 (0.2) | PCV10, PCV13, PCV15, PCV20 |
14 | 1 (0.2) | PCV7; PCV10, PCV13, PCV15, PCV20 |
20 | 2 (0.4) | not present |
21 | 2 (0.4) | not present |
31 | 1 (0.2) | not present |
38 | 1 (0.2) | not present |
10A | 7 (1.2) | PCV20 |
10B | 12 (2.1) | not present |
10F/C | 12 (2.1) | not present |
11A/D | 15 (2.6) | PCV20 (11A) |
12A/46 | 2 (0.4) | not present |
15A/15F | 6 (1.1) | not present |
15B/15C | 23 (4) | PCV20 (15B) |
19A | 17 (2.9) | PCV13, PCV15, PCV20 |
19B/19C | 40 (7) | not present |
19F | 1 (0.2) | PCV7; PCV10, PCV13, PCV15, PCV20 |
22F/22A | 2 (0.35) | PCV15, PCV20 (22F) |
23A | 12 (2.1) | not present |
23B | 16 (2.8) | not present |
23F | 1 (0.2) | PCV7; PCV10, PCV13, PCV15, PCV20 |
24A | 7 (1.2) | not present |
24B/24F | 9 (1.5) | not present |
33F/33A | 3 (0.5) | PCV15, PCV20 (33F) |
35C | 1 (0.2) | not present |
35F | 2 (0.35) | not present |
39F | 1 (0.2) | not present |
41A/41F | 1 (0.2) | not present |
6A | 5 (0.9) | PCV13, PCV15, PCV20 |
6C | 25 (4.4) | not present |
6D | 2 (0.35) | not present |
7B | 2 (0.35) | not present |
7C/40 | 10 (1.8) | not present |
9A/9V | 1 (0.2) | PCV7; PCV10, PCV13, PCV15, PCV20 (9V) |
9N/9L | 5 (0.9) | not present |
Capsulated StPn/Serotypes | <12 mo, n(%) (Total n = 28) | 12–35 mo, n(%) (Total n = 39) | 36–59 mo n(%) (Total n = 60) | 5–6 Years (Total n = 59) |
---|---|---|---|---|
3 | 3 (10.7) | 1 (2.56) | 3 (5) | 6 (10.2) |
4 | 0 (0) | 1 (2.56) | 0 (0) | 0 (0) |
5 | 0 (0) | 1 (2.56) | 0 (0) | 0 (0) |
14 | 0 (0) | 0 (0) | 0 (0) | 1 (1.7) |
20 | 0 (0) | 0 (0) | 1 (1.7) | 1 (1.7) |
21 | 0 (0) | 0 (0) | 2 (3.3) | 0 (0) |
31 | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
38 | 0 (0) | 1 (2.56) | 0 (0) | 0 (0) |
10A | 4 (14.3) | 0 (0) | 0 (0) | 3 (5) |
10B | 0 (0) | 1 (2.56) | 5 (8.3) | 6 (10.2) |
10F/C | 1 (3.6) | 0 (0) | 2 (3.3) | 9 (15.3) |
11A/D | 3 (10.7) | 5 (12.8) | 5 (8.3) | 2 (3.4) |
12A/46 | 1 (3.6) | 1 (2.56) | 0 (0) | 0 (0) |
15A/15F | 0 (0) | 1 (2.56) | 2 (3.3) | 3 (5) |
15B/15C | 3 (10.7) | 6 (15.4) | 9 (15) | 5 (8.5) |
19A | 1 (3.6) | 6 (15.4) | 4 (6.7) | 6 (10.2) |
19B/19C | 3 (10.7) | 2 (5.1) | 16 (26.7) | 19 (32.2) |
19F | 0 (0) | 0 (0) | 0 (0) | 1 (1.7) |
22F/22A | 1 (3.6) | 1 (2.56) | 0 (0) | 0 (0) |
23A | 0 (0) | 1 (2.56) | 6 (10) | 5 (8.5) |
23B | 0 (0) | 5 (12.8) | 7 (11.6) | 4 (6.8) |
23F | 1 (3.6) | 0 (0) | 0 (0) | 0 (0) |
24A | 1 (3.6) | 1 (2.56) | 3 (5) | 2 (3.4) |
24B/24F | 1 (3.6) | 1 (2.56) | 3 (5) | 4 (6.8) |
33F/33A | 1 (3.6) | 1 (2.56) | 1 (1.7) | 0 (0) |
35C | 1 (3.6) | 0 (0) | 0 (0) | 0 (0) |
35F | 0 (0) | 0 (0) | 1 (1.7) | 1 (1.7) |
39F | 0 (0) | 0 (0) | 0 (0) | 1 (1.7) |
41A/41F | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
6A | 1 (3.6) | 0 (0) | 1 (1.7) | 3 (5) |
6C | 7 (25) | 4 (10.3) | 9 (15) | 5 (8.5) |
6D | 0 (0) | 0 (0) | 2 (3.3) | 0 (0) |
7B | 0 (0) | 0 (0) | 0 (0) | 2 (3.4) |
7C/40 | 1 (3.6) | 0 (0) | 4 (6.7) | 5 (8.5) |
9A/9V | 0 (0) | 0 (0) | 0 (0) | 1 (1.7) |
9N/9L | 0 (0) | 2 (5.1) | 0 (0) | 3 (5) |
Co-Detected Serotypes | Serotypes | <12 mo, n(%) (Total n = 28) | 12–35 mo, n(%) (Total n = 39) | 36–59 mo n(%) (Total n = 60) | 5–6 Years n(%) (Total n = 59) |
---|---|---|---|---|---|
Co-detected with two serotypes | 10A;12A/46 | 1 (3.6) | 0 (0) | 0 (0) | 0 (0) |
Co-detected with two serotypes | 10B;19B/19C | 0 (0) | 0 (0) | 2 (3.3) | 0 (0) |
Co-detected with two serotypes | 10F/C;15B/15C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 10F/C;19B/19C | 0 (0) | 0 (0) | 0 (0) | 3 (5) |
Co-detected with two serotypes | 15A/15F;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 15B/15C;19B/19C | 0 (0) | 0 (0) | 2 (3.3) | 0 (0) |
Co-detected with two serotypes | 19A;21 | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with two serotypes | 19A;6C | 1 (3.6) | 0 (0) | 0 (0) | 0 (0) |
Co-detected with two serotypes | 19B/19C;15A/15F | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 19B/19C;24B/24F | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with two serotypes | 19B/19C;7C/40 | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 23A;12A/46 | 0 (0) | 1 (2.6) | 0 (0) | 0 (0) |
Co-detected with two serotypes | 23A;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 23A;23B | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with two serotypes | 23B;15B/15C | 0 (0) | 1 (2.6) | 2 (3.3) | 0 (0) |
Co-detected with two serotypes | 3;10B | 0 (0) | 0 (0) | 0 (0) | 2 (3.4) |
Co-detected with two serotypes | 3;11A/D | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 3;15B/15C | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with two serotypes | 3;19B/19C | 1 (3.6) | 0 (0) | 0 (0) | 0 (0) |
Co-detected with two serotypes | 6A;19B/19C | 1 (3.6) | 0 (0) | 0 (0) | 0 (0) |
Co-detected with two serotypes | 6C;10B | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 6C;10F/C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 6C;15A/15F | 0 (0) | 1 (2.6) | 0 (0) | 0 (0) |
Co-detected with two serotypes | 6C;15B/15C | 0 (0) | 0 (0) | 1 (1.7) | 1 (1.69) |
Co-detected with two serotypes | 6C;19A | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 6C;19B/19C | 0 (0) | 0 (0) | 2 (3.3) | 0 (0) |
Co-detected with two serotypes | 6D;7C/40 | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with two serotypes | 7C/40;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with two serotypes | 7C/40;35C | 1 (3.6) | 0 (0) | 0 (0) | 0 (0) |
Co-detected with two serotypes | 7B;7B/40 | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 11A/D;24A;24B/24F | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with three serotypes | 19B/19C;24A;24B/24F | 0 (0) | 0 (0) | 1 (1.7) | 1 (1.69) |
Co-detected with three serotypes | 23A;10F;C19B/19C | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with three serotypes | 9N/9L;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 7C/40;24A;24B/24F | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with three serotypes | 24A;24B/24F;9N/9L | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 10F/C;7C/40;19B/19C | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with three serotypes | 10F/C;7C/40;7B | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 15B/15C;10A;10B | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 23B;10B;15B/15C | 0 (0) | 0 (0) | 1 (1.7) | 2 (3.4) |
Co-detected with three serotypes | 23B;19B/19C;35F | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 3;23A;11A/11D | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with three serotypes | 6A;10F/C;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 6A;15A/15F;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with three serotypes | 9N/9L;10F/C;11A/D | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with four serotypes | 19B/19C;24A;24B/24F;15B/15C | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with four serotypes | 23A;23B;10B;15B/15C | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with four serotypes | 19F;23A;9A/9V;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with four serotypes | 23B;10A;10F/C;19B/19C | 0 (0) | 0 (0) | 0 (0) | 1 (1.69) |
Co-detected with four serotypes | 6A;7C/40;19B/19C;41A/41F | 0 (0) | 0 (0) | 1 (1.7) | 0 (0) |
Co-detected with five serotypes | 6C;23A;23B;10B;15B/15C | 0 (0) | 1 (2.6) | 0 (0) | 0 (0) |
Co-detected with six serotypes | 4;5;6C;9N/9L;24A;24B/24F | 0 (0) | 1 (2.6) | 0 (0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifonova, I.; Levterova, V.; Simeonovski, I.; Ivanova, M.; Brankova, N.; Kantardzhiev, T. Impact of the National Vaccination Strategy on the Prevalence of Streptococcus pneumoniae and Its Serotypes Among Clinically Healthy Children Under Six Years of Age During and After the COVID-19 Pandemic. Vaccines 2025, 13, 634. https://doi.org/10.3390/vaccines13060634
Trifonova I, Levterova V, Simeonovski I, Ivanova M, Brankova N, Kantardzhiev T. Impact of the National Vaccination Strategy on the Prevalence of Streptococcus pneumoniae and Its Serotypes Among Clinically Healthy Children Under Six Years of Age During and After the COVID-19 Pandemic. Vaccines. 2025; 13(6):634. https://doi.org/10.3390/vaccines13060634
Chicago/Turabian StyleTrifonova, Ivelina, Victoria Levterova, Ivan Simeonovski, Magi Ivanova, Nadia Brankova, and Todor Kantardzhiev. 2025. "Impact of the National Vaccination Strategy on the Prevalence of Streptococcus pneumoniae and Its Serotypes Among Clinically Healthy Children Under Six Years of Age During and After the COVID-19 Pandemic" Vaccines 13, no. 6: 634. https://doi.org/10.3390/vaccines13060634
APA StyleTrifonova, I., Levterova, V., Simeonovski, I., Ivanova, M., Brankova, N., & Kantardzhiev, T. (2025). Impact of the National Vaccination Strategy on the Prevalence of Streptococcus pneumoniae and Its Serotypes Among Clinically Healthy Children Under Six Years of Age During and After the COVID-19 Pandemic. Vaccines, 13(6), 634. https://doi.org/10.3390/vaccines13060634