Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications
Abstract
:1. Introduction
2. Mechanism of Immunostimulatory Activity of Lipid-Based Nanocarriers
3. Types of Lipid-Based Nanocarriers for Vaccine Delivery
3.1. Liposomes
3.2. Virosomes
3.3. Bilosomes
3.4. Vesosomes
3.5. pH Fusogenic Liposomes
3.6. Ethosomes
3.7. Transferosomes
3.8. Immuno-Liposomes
3.9. Lipid Nanoparticles
4. Factors Influencing the Efficacy of Lipid-Based Adjuvants for Vaccine Delivery
4.1. Surface Charge
4.2. Route of Administration
4.3. Membrane Fluidity
4.4. Vesicle Size
5. General Fabrication Methods of Various Lipid-Based Vaccine Delivery Systems
5.1. Thin Film Hydration Method
5.2. Microfluidization
5.3. Detergent Depletion Method
5.4. Ethanol Injection Method
5.5. Reverse Phase Evaporation
5.6. Other Methods
5.6.1. Freeze Drying Method
5.6.2. Supercritical Fluid-Assisted Method
6. Liposomes as Adjuvants
6.1. Liposomal DNA as Adjuvant
6.2. Cationic Liposomes as Vaccine Adjuvants
7. Lipid Nanoparticle-Based Messenger RNA (mRNA) Vaccines
8. Lipid-Based Deoxyribonucleic Acid (DNA) Vaccines
9. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANC-1 | Antibody nanoconjugate-1 |
BSA | Bovine serum albumin |
CHEMS | Cholesteryl hemi succinate |
CLDCs | Cationic lipid-DNA complexes |
CMV | Cytomegalovirus |
CTL | Cytotoxic T-lymphocytes |
DDA | Dimethyldioctadecylammonium |
DDAB | Didodecyldimethylammonium bromide |
DNA | Deoxyribonucleic Acid |
DOPE/EYPC | Egg yolk phosphatidylcholine |
DOPE | Dioleoyl phosphatidylethanolamine |
DOPG | 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] |
DOTAP | Dimethyl dioctyldecylammonium and 1,2-dioleoyl-3-trimethylammonium-propane |
DSPE | Distearyl phosphatidyl ethanolamine |
GALT | Gut-associated lymphoid tissues |
HAV | Hepatitis A virus |
HbsAg | Hepatitis B antigen |
HBV | Hepatitis B virus |
HEV71 | Human enterovirus 71 |
HPV | Human papillomavirus |
LNPs | Lipid nanoparticles |
Log P | Partition coefficient |
Mglu-PG | 3-methylglutarylated poly(glycidol) |
NLCs | Nanostructured lipid carriers |
Pamps | Pathogen-associated molecular patterns |
PRR | Pattern recognition receptors |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SDC | Sodium deoxycholate |
SLNs | Solid-lipid nanoparticles |
SPC | Soybean phosphatidyl choline |
Suc-PG | Succinylated poly(glycidol) |
TDB | Trehalose dibehenate |
TFFD | Thin film freeze drying |
TLRs | Toll-like receptors |
UreA | Urease alpha |
References
- Skwarczynski, M.; Toth, I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine 2014, 9, 2657–2669. [Google Scholar] [CrossRef] [PubMed]
- Weissig, V. Liposomes Came First: The Early History of Liposomology. Methods Mol. Biol. 2017, 1522, 1–15. [Google Scholar] [PubMed]
- Liu, P.; Chen, G. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Henriksen-Lacey, M.; Korsholm, K.S. Liposomal vaccine delivery systems. Expert Opin. Drug Deliv. 2011, 8, 505–519. [Google Scholar] [CrossRef]
- Schwendener, R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines 2014, 2, 159–182. [Google Scholar] [CrossRef]
- Midoux, P.; Pichon, C. Lipid-based mRNA vaccine delivery systems. Expert Rev. Vaccines 2014, 14, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Baden, L.R.; El Sahly, H.M. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Xiang, S.D.; Scholzen, A.; Minigo, G.; David, C.; Apostolopoulos, V.; Mottram, P.L.; Plebanski, M. Pathogen recognition and development of particulate vaccines: Does size matter? Methods 2006, 40, 1–9. [Google Scholar] [CrossRef]
- Attia, M.A.; Essa, E.A. Brief on recent application of liposomal vaccines for lower respiratory tract viral infections: From influenza to COVID-19 vaccines. Pharmaceuticals 2021, 14, 1173. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.; Korsholm, K.S. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 2011, 10, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Henriksen-Lacey, M.; Bramwell, V.W. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Release 2010, 142, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Marasini, N.; Ghaffar, K.A. Liposomes as a Vaccine Delivery System. In Micro and Nanotechnology in Vaccine Development, 1st ed.; Skwarczynski, M., Toth, I., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 221–239. [Google Scholar]
- Mazur, F.; Bally, M. Liposomes and lipid bilayers in biosensors. Adv. Colloid Interface Sci. 2017, 249, 88–99. [Google Scholar] [CrossRef]
- Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Mirchandani, Y.; Patravale, V.; Brijesh, S. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release 2021, 335, 457–464. [Google Scholar] [CrossRef]
- Bendas, G.; Wilhelm, F.; Ritcher, W.; Peter, N. Synthetic glycolipids as membrane-bound cryoprotectants in the freeze-drying process of liposomes. Eur. J. Pharm. Sci. 1996, 4, 211–222. [Google Scholar] [CrossRef]
- Trubetskoy, V.; Torchilin, V. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv. Drug Deliv. Rev. 1995, 16, 311–320. [Google Scholar] [CrossRef]
- Hamilton, B.S.; Whittaker, G.R. Influenza virus-mediated membrane fusion: Determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 2012, 4, 1144–1168. [Google Scholar] [CrossRef] [Green Version]
- Air, G.M.; Laver, W.G. The neuraminidase of influenza virus. Proteins Struct. Funct. Bioinform. 1989, 6, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.D.; Edwards, D.C. Formation of Virosomes From Influenza Subunits and Liposomes. Lancet 1975, 2, 899–901. [Google Scholar] [CrossRef]
- Bovier, P.A. Epaxal®: A virosomal vaccine to prevent hepatitis A infection. Expert Rev. Vaccines 2008, 7, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Hatz, C.; Van Der Ploeg, R. Successful memory response following a booster dose with a virosome-formulated hepatitis A vaccine delayed up to 11 years. Clin. Vaccine Immunol. 2011, 18, 885–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, C.; Hartmann, K. Eleven years of Inflexal® V-a virosomal adjuvanted influenza vaccine. Vaccine 2009, 27, 4381–4387. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.J.; Pedersen, G. Evaluation of a virosomal H5N1 vaccine formulated with Matrix MTM adjuvant in a phase I clinical trial. Vaccine 2011, 29, 8049–8059. [Google Scholar] [CrossRef]
- Metcalfe, I.C.; Gluck, R. Virosomes for vaccine delivery. In Immunopotentiators in Modern Vaccines; Reinhard, G., Virgil, S., Eds.; Academic Press: London, UK, 2006; pp. 179–189. [Google Scholar]
- Shukla, A.; Mishra, V. Bilosomes in the context of oral immunization: Development, challenges and opportunities. Drug Discov. Today 2016, 21, 888–899. [Google Scholar] [CrossRef]
- Shukla, A.; Katare, O.P. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int. J. Pharm. 2010, 385, 47–52. [Google Scholar] [CrossRef]
- Shukla, A.; Singh, B. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br. J. Pharmacol. 2011, 164, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Premanand, B.; Prabakaran, M. Recombinant Baculovirus Associated with Bilosomes as an Oral Vaccine Candidate against HEV71 Infection in Mice. PLoS ONE 2013, 8, e55536. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.F.S.; Scales, H.E. Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 2006, 38, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Khatri, K. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J. Pharm. Pharm. Sci. 2008, 11, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, J.F.S.; Ferro, V.A. Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 2004, 22, 2425–2429. [Google Scholar] [CrossRef] [PubMed]
- Boyer, C.; Zasadzinski, J.A. Multiple lipid compartments slow vesicle contents release in lipases and serum. ACS Nano 2007, 1, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Mahor, S. Development of novel fusogenic vesosomes for transcutaneous immunization. Vaccine 2006, 24, 5559–5570. [Google Scholar] [CrossRef]
- Shi, G.; Guo, W. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J. Control. Release 2002, 80, 309–319. [Google Scholar] [CrossRef]
- Simões, S.; Nuno Moreira, J. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev. 2004, 56, 947–965. [Google Scholar] [CrossRef]
- Torchilin, V.P.; Zhou, F. pH-sensitive liposomes. J. Liposome Res. 1993, 3, 201–255. [Google Scholar] [CrossRef]
- Watarai, S.; Iwase, T. Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier. Sci. World J. 2013, 2013, 903234. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.S.; Choi, M.J. Immunogenicity of synthetic HIV-1 V3 loop peptides by MPL adjuvanted pH-sensitive liposomes. Vaccine 1999, 17, 1540–1548. [Google Scholar] [CrossRef]
- Lee, K.Y.; Chun, E. Investigation of antigen delivery route in vivo and immune-boosting effects mediated by pH-sensitive liposomes encapsulated with Kb-restricted CTL epitope. Biochem. Biophys. Res. Commun. 2002, 292, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Yuba, E.; Kojima, C. pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity. Biomaterials 2010, 31, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Yuba, E.; Harada, A. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 2013, 34, 3042–3052. [Google Scholar] [CrossRef] [PubMed]
- Yuba, E.; Harada, A. Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes. J. Control. Release 2011, 149, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touitou, E.; Dayan, N. Ethosomes-Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Rattanapak, T.; Young, K. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: Characterisation and in vitro skin penetration. J. Pharm. Pharmacol. 2012, 64, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ng, W. Formulation and in vitro stability evaluation of ethosomal carbomer hydrogel for transdermal vaccine delivery. Colloids Surf. B Biointerfaces 2018, 163, 184–191. [Google Scholar] [CrossRef]
- Raghuvanshi, A.; Shah, K. Ethosome as antigen delivery carrier: Optimisation, evaluation and induction of immunological response via nasal route against hepatitis B. J. Microencapsul. 2022, 39, 352–363. [Google Scholar] [CrossRef]
- Mirtaleb, M.S.; Shahraky, M.K. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102331. [Google Scholar] [CrossRef]
- Pielenhofer, J.; Sohl, J. Current Progress in Particle-Based Systems for Transdermal Vaccine Delivery. Front. Immunol. 2020, 11, 266. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hu, J.H. Strong cellular and humoral immune responses induced by transcutaneous immunization with HBsAg DNA-cationic deformable liposome complex. Exp. Dermatol. 2007, 16, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Bal, S.M. Transcutaneous immunization studies in mice using diphtheria toxoid-loaded vesicle formulations and a microneedle array. Pharm. Res. 2011, 28, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, Y. A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. J. Mater. Chem. B 2019, 7, 4854–4866. [Google Scholar] [CrossRef]
- Torchilin, V.P. Immunoliposomes. Drug Deliv. Oncol. From Basic Res. Cancer Ther. 2011, 2, 951–987. [Google Scholar]
- Eskandari, F.; Talesh, G.A. Immunoliposomes containing Soluble Leishmania Antigens (SLA) as a novel antigen delivery system in murine model of leishmaniasis. Exp. Parasitol. 2014, 146, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian Haftcheshmeh, S.; Zamani, P. Immunoliposomes bearing lymphocyte activation gene 3 fusion protein and P5 peptide: A novel vaccine for breast cancer. Biotechnol. Prog. 2021, 37, e3095. [Google Scholar] [CrossRef] [PubMed]
- Rodallec, A.; Brunel, J.M. Docetaxel–trastuzumab stealth immunoliposome: Development and in vitro proof of concept studies in breast cancer. Int. J. Nanomed. 2018, 13, 3451–3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenchov, R.; Bird, R. Lipid Nanoparticles from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Letao, X.; Xing, W. Lipid Nanoparticles for Drug Delivery. Adv. NanoBiomed Res. 2022, 2, 2100109. [Google Scholar]
- Han, X.; Zhang, H. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 2021, 12, 8–13. [Google Scholar] [CrossRef]
- Francis, J.E.; Skakic, I. Design and Preparation of Solid Lipid Nanoparticle (SLN)-Mediated DNA Vaccines. Methods Mol. Biol. 2022, 2412, 355–366. [Google Scholar]
- Francis, J.E.; Skakic, I. Solid lipid nanoparticle carrier platform containing synthetic TLR4 agonist mediates non-viral DNA vaccine delivery. Vaccines 2020, 8, 551. [Google Scholar] [CrossRef] [PubMed]
- Saljoughian, N.; Zahedifard, F. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol. 2013, 35, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, A.; Voigt, E. A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Mol. Ther. Methods Clin. Dev. 2022, 25, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Voigt, E.A.; Fuerte-Stone, J. Live-attenuated RNA hybrid vaccine technology provides single-dose protection against Chikungunya virus. Mol. Ther. 2021, 29, 2782–2793. [Google Scholar] [CrossRef]
- Kaur, A.; Kanwar, R. Combined delivery of TLR2 and TLR7 agonists by Nanostructured lipid carriers induces potent vaccine adjuvant activity in mice. Int. J. Pharm. 2022, 613, 121378. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.S.; Endsley, A.N. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 2012, 30, 2256–2272. [Google Scholar] [CrossRef] [Green Version]
- Perrie, Y.; Crofts, F. Designing liposomal adjuvants for the next generation of vaccines. Adv. Drug Deliv. Rev. 2016, 99, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.D.; Rhodes, D.G. Anionic liposomal delivery system for DNA transfection. AAPS J. 2004, 6, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Obeid, M.A.; Tate, R.J. Lipid-based nanoparticles for cancer treatment. In Lipid Nanocarriers for Drug Targeting; Grumezescu, A.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 313–359. [Google Scholar]
- Werninghaus, K.; Babiak, A. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FclRγ-Syk- Card9-dependent innate immune activation. J. Exp. Med. 2009, 206, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Henriksen-Lacey, M.; Christensen, D. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J. Control. Release 2010, 145, 102–108. [Google Scholar] [CrossRef]
- Gall, D. The adjuvant activity of aliphatic nitrogenous bases. Immunology 1966, 11, 369–386. [Google Scholar]
- Ma, Y.; Zhuang, Y. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale 2011, 3, 2307–2314. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, M. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release 2019, 303, 130–150. [Google Scholar] [CrossRef]
- Schmidt, S.T.; Khadke, S. The administration route is decisive for the ability of the vaccine adjuvant CAF09 to induce antigen-specific CD8+ T-cell responses: The immunological consequences of the biodistribution profile. J. Control. Release 2016, 239, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y.; Mori, M. Surface-linked liposomal antigen induces IgE-selective unresponsiveness regardless of the lipid components of liposomes. Bioconjug. Chem. 2001, 12, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Dancey, G.F. Immunogenicity of liposomal model membranes in mice: Dependence of phospholipid composition. Proc. Natl. Acad. Sci. USA 1977, 74, 1234–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Houte, A.J.; Snippe, H. Characterization of immunogenic properties of haptenated liposomal model membranes in mice. V. Effect of membrane composition on humoral and cellular immunogenicity. Immunology 1981, 44, 561–568. [Google Scholar]
- Brewer, J.M.; Tetley, L. Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J. Immunol. 1998, 161, 4000–4007. [Google Scholar] [CrossRef]
- Kaur, R.; Bramwell, V.W. Manipulation of the surface pegylation in combination with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and the rate and type of T cell response. J. Control. Release 2012, 164, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Šturm, L.; Ulrih, N.P. Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. Int. J. Mol. Sci. 2021, 22, 6547. [Google Scholar] [CrossRef]
- Gao, J.Q.; Li, P. Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo. Int. J. Nanomed. 2011, 6, 3241–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnier-Quer, C.; Elsharkawy, A. Adjuvant effect of cationic liposomes for subunit influenza vaccine: Influence of antigen loading method, cholesterol and immune modulators. Pharmaceutics 2013, 5, 392–410. [Google Scholar] [CrossRef] [PubMed]
- Conacher, M.; Alexander, J. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 2001, 19, 2965–2974. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, D.; Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022, 14, 543. [Google Scholar] [CrossRef]
- Van Swaay, D.; Demello, A. Microfluidic methods for forming liposomes. Lab. Chip. 2013, 13, 752–767. [Google Scholar] [CrossRef]
- Jahn, A.; Vreeland, W.N. Microfluidic directed formation of liposomes of controlled size. Langmuir 2007, 23, 6289–6293. [Google Scholar] [CrossRef]
- Maeki, M.; Uno, S. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 2022, 344, 80–96. [Google Scholar] [CrossRef]
- Elia, U.; Ramishetti, S. Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered via Lipid Nanoparticles. ACS Nano 2021, 15, 9627–9637. [Google Scholar] [CrossRef]
- Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014, 177, 8–18. [Google Scholar] [CrossRef]
- Martinon, F.; Krishnan, S. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 1993, 23, 1719–1722. [Google Scholar] [CrossRef]
- Mishra, H.; Mishra, D. Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis b surface antigen for vaccination using subcutaneous route. J. Pharm. Pharm. Sci. 2010, 13, 495–509. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, A.; Rezaei-sadabady, R. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, K.K.; Pandey, R.S. Immunological evaluation of colonic delivered Hepatitis B surface antigen loaded TLR-4 agonist modified solid fat nanoparticles. Int. Immunopharmacol. 2016, 39, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Duong, V.A.; Nguyen, T.T.L. Maeng H-J. Recent Advances in Intranasal Liposomes for Drug, Gene, and Vaccine Delivery. Pharmaceutics 2023, 15, 207. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Gong, J. Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine. Int. J. Biol. Macromol. 2021, 188, 855–862. [Google Scholar] [CrossRef]
- Wang, J.L.; Hanafy, M.S. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int. J. Pharm. 2021, 596, 120215. [Google Scholar] [CrossRef]
- AboulFotouh, K.; Xu, H. Development of (Inhalable) Dry Powder Formulations of AS01B-Containing Vaccines Using Thin-Film Freeze-Drying. Int. J. Pharm. 2022, 622, 121825. [Google Scholar] [CrossRef]
- Campardelli, R.; Espirito Santo, I. Efficient encapsulation of proteins in submicro liposomes using a supercritical fluid assisted continuous process. J. Supercrit. Fluids 2016, 107, 163–169. [Google Scholar] [CrossRef]
- Schmidt, S.T.; Foged, C. Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 2016, 8, 7. [Google Scholar] [CrossRef]
- Tretiakova, D.S.; Vodovozova, E.L. Liposomes as Adjuvants and Vaccine Delivery Systems. Biochem. Suppl. Ser. A Membr. Cell Biol. 2022, 16, 1–20. [Google Scholar] [CrossRef]
- Jaafari, M.R.; Badiee, A. The role of CpG ODN in enhancement of immune response and protection in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome. Vaccine 2007, 25, 6107–6117. [Google Scholar] [CrossRef]
- Camussone, C.M.; Reidel, I.G. Efficacy of immunization with a recombinant S. aureus vaccine formulated with liposomes and ODN-CpG against natural S. aureus intramammary infections in heifers and cows. Res. Vet. Sci. 2022, 145, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Duan, S. The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide. Theranostics 2018, 8, 1723–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khademi, F.; Taheri, R.A. Potential of cationic liposomes as adjuvants/delivery systems for tuberculosis subunit vaccines. Rev. Physiol. Biochem. Pharmacol. 2018, 175, 47–69. [Google Scholar] [PubMed]
- Yuba, E.; Kado, Y. Cationic lipid potentiated the adjuvanticity of polysaccharide derivative-modified liposome vaccines. J. Control. Release, 2022; in press. [Google Scholar] [CrossRef]
- Agger, E.M.; Rosenkrands, I. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): A versatile adjuvant for vaccines with different immunological requirements. PLoS ONE 2008, 3, e3116. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, D.I.; Farley, N. The adjuvant CLDC increases protection of a herpes simplex type 2 glycoprotein D vaccine in guinea pigs. Vaccine 2010, 28, 3748–3753. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Liu, F. Cationic liposome-DNA complexes (CLDC) adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice. Vaccine 2012, 30, 254–264. [Google Scholar] [CrossRef]
- Uchida, S.; Perche, F.; Cabral, H. Nanomedicine-based approaches for mRNA delivery. Mol. Pharm. 2020, 17, 3654–3684. [Google Scholar] [CrossRef]
- Meng, C.; Chen, Z. Nanoplatforms for mRNA Therapeutics. Adv. Ther. 2021, 4, 2000099. [Google Scholar] [CrossRef]
- Zhao, W.; Hou, X. RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials 2019, 217, 119291. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, X. Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J. mRNA vaccines-a new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Gebre, M.S.; Brito, L.A. Novel approaches for vaccine development. Cell 2021, 184, 1589–1603. [Google Scholar] [CrossRef]
- Anderson, E.J.; Rouphael, N.G. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef]
- John, S.; Yuzhakov, O. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 2018, 36, 1689–1699. [Google Scholar] [CrossRef]
- Thomas, S.J.; Moreira, E.D. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine through 6 Months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Brazzoli, M.; Magini, D. Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin. J. Virol. 2016, 90, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Bahl, K.; Senn, J.J. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol. Ther. 2017, 25, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R.A.; Fuhr, R. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019, 37, 3326–3334. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 13 February 2023).
- Liu, M.A. DNA vaccines: An historical perspective and view to the future. Immunol. Rev. 2011, 239, 62–84. [Google Scholar] [CrossRef]
- Hasson, S.S.A.A.; Al-Busaidi, J.K.Z. The past, current a.and future trends in DNA vaccine immunisations. Asian Pac. J. Trop. Biomed. 2015, 5, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Suschak, J.J.; Williams, J.A. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum. Vaccines Immunother. 2017, 13, 2837–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutzler, M.A.; Weiner, D.B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008, 9, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Garver, K.A.; LaPatra, S.E. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis. Aquat. Organ. 2005, 64, 13–22. [Google Scholar] [CrossRef]
- Khan, A.S.; Bodles-Brakhop, A.M. Effects of maternal plasmid GHRH treatment on offspring growth. Vaccine 2010, 28, 1905–1910. [Google Scholar] [CrossRef]
- Rodriguez, A.E.; Zamorano, P. Delivery of recombinant vaccines against bovine herpesvirus type 1 gD and Babesia bovis MSA-2c to mice using liposomes derived from egg yolk lipids. Vet. J. 2013, 196, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.M.; Souza, A.C.O. Nanobiotechnological approaches to delivery of DNA vaccine against fungal infection. J. Biomed. Nanotechnol. 2013, 9, 221–230. [Google Scholar] [CrossRef]
- Bartholomeusz, A.; Locarnini, S. Associated With Antiviral Therapy. Antivir. Ther. 2006, 55, 52–55. [Google Scholar]
- MacGregor, R.R.; Boyer, J.D. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: Safety and host response. J. Infect. Dis. 1998, 178, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical Trial No. | Phase | Name | Route of Administration | Diseases | Antigens |
---|---|---|---|---|---|
NCT03076385 | I | mRNA-1440 | IM | Influenza H10N8 | Hemagglutinin |
NCT03345043 | I | mRNA-1851 | IM | Influenza H7N9 | Hemagglutinin |
NCT04064905 | I | mRNA-1893 | IM | Zika virus | Pre-membrane and envelope glycoproteins |
NCT04528719 | I | mRNA-1345 | IM | Respiratory syncytial virus | F glycoprotein |
NCT03392389 | I | mRNA-1653 | IM | Metapneumovirus and parainfluenza virus type 3 (MPV/PIV3) | MPV and PIV3 F glycoproteins |
NCT04232280 | I | mRNA-1647 | IM | Cytomegalovirus | Pentameric complex and B glycoprotein |
NCT03325075 | II | mRNA-1388 | IM | Chikungunya virus | Chikungunya virus antigens |
NCT03713086 | I | CV7202 | IM | Rabies virus | G glycoprotein |
NCT03948763 | I | mRNA-5671/V941 | IM | Non-small-cell lung cancer/colorectal cancer/pancreatic adenocarcinoma | KRAS antigens |
NCT03897881 | I | mRNA-4157 | IM | Melanoma | Personalized neoantigens |
NCT03480152 | I/II | mRNA-4650 | IM | Gastrointestinal cancer | Personalized neoantigens |
NCT02410733 | I | FixVac | IV | Melanoma | NY-ESO-1/tyrosinase/MAGE-A3/TPTE antigen |
NCT02316457 | I | TNBC- MERIT | IV | Triple- negative breast cancer | Personalized neoantigens |
NCT03418480 | I | HARE-40 | ID | HPV-positive cancers | HPV oncoproteins E6 and E7 |
NCT03815058 | II | RO7198457 | IV | Melanoma | Personalized neoantigens |
NCT04163094 | I | W_ova1 | IV | Ovarian cancer | Ovarian cancer antigens |
NCT03739931 | I | mRNA Vaccine | Intra-tumoral (IT) | Solid tumors and Lymphomas | Ligand for OX40 receptor associated with tumor necrosis factor receptor superfamily (OX40L) |
NCT03323398 | I/II | mRNA Vaccine | IT | Solid tumors, lymphomas and ovarian cancer | OX40L |
NCT04283461 | I | mRNA Vaccine | IM | COVID-19 | S protein |
NCT03767270 | I | mRNA Vaccine | IV | Ornithine Transcarbamylase (OTC) deficiency | Ornithine transcarbamylase (OTC) |
NCT04064905 | I | mRNA Vaccine | IM | Zika | pre-membrane protein (prM) and envelope protein (E) |
NCT03382405 | I | mRNA-1647l, mRNA-1443 | IM | CMV infection | Pentamer and T-cell antigen |
NCT03713086 | I | unmodified mRNA vaccine: CV7202 | IM | Rabies | Rabies virus glycoprotein (RABV-G)-mRNA vaccine |
NCT03014089 | I | mRNA-1325 | IM | Zika | Viral antigens |
Disease | Route of Administration | Name | Clinical Trial No. |
---|---|---|---|
HIV Infection | IM | Env-C Plasmid DNA | NCT04826094 |
HSV-2 | Particle Mediated Epidermal Delivery/PowderMed ND10 delivery system | pPJV7630 with pPJV2012 | NCT00310271 |
HIV Infections | injection/electroporation (EP) | HIV-1-Gag | NCT03560258 |
SARS-CoV-2 | EP | GX-19N | NCT04715997 |
SARS-CoV-2 | IM | Covigenix VAX-001 | NCT04591184 |
HSV-2 | IM | VCL-HB01 | NCT02030301 |
Hantaan virus (HTNV), Puumala virus (PUUV) | Intradermal Delivery (ID) and IM delivery using TriGrid Delivery System | HTNV/PUUV DNA vaccine | NCT03718130 |
Chronic Hepatitis C Virus | Electroporation-Mediated Plasmid DNA Vaccine Therapy | HCV DNA Vaccine INO-8000 | NCT02772003 |
HPV16 Positive Cervical Neoplasia | IM using the Trigrid Delivery system | pNGVL4aCRTE6E7L2 | NCT04131413 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunakaran, B.; Gupta, R.; Patel, P.; Salave, S.; Sharma, A.; Desai, D.; Benival, D.; Kommineni, N. Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines 2023, 11, 661. https://doi.org/10.3390/vaccines11030661
Karunakaran B, Gupta R, Patel P, Salave S, Sharma A, Desai D, Benival D, Kommineni N. Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines. 2023; 11(3):661. https://doi.org/10.3390/vaccines11030661
Chicago/Turabian StyleKarunakaran, Bharathi, Raghav Gupta, Pranav Patel, Sagar Salave, Amit Sharma, Dhruv Desai, Derajram Benival, and Nagavendra Kommineni. 2023. "Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications" Vaccines 11, no. 3: 661. https://doi.org/10.3390/vaccines11030661
APA StyleKarunakaran, B., Gupta, R., Patel, P., Salave, S., Sharma, A., Desai, D., Benival, D., & Kommineni, N. (2023). Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines, 11(3), 661. https://doi.org/10.3390/vaccines11030661