Bioinformatic Analysis for Mucoepidermoid and Adenoid Cystic Carcinoma of Therapeutic Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microarray Data Information
2.2. Data Processing of Differential Expressed Genes (DEGs)
2.3. Functional Enrichment Analyses
2.4. Protein–Protein Interaction (PPI)
2.5. Selection and Analyses of Hub Genes
3. Results
3.1. PPI Network and Modular Analysis
3.2. Analysis of Core Genes Using a Kaplan–Meier Plotter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Speight, P.M.; Barret, A.W. Salivary Gland Tumors. Oral Dis. 2002, 8, 229–240. [Google Scholar] [CrossRef]
- Eveson, J.W.; Cawson, R. Tumours of the minor (oropharyngeal) salivary glands: A demographic study of 336 cases. J. Oral Pathol. 1985, 14, 500. [Google Scholar] [CrossRef]
- El-Naggar, A.; Chan, J.; Grandis, J.; Takata, T.; Slootweg, P. IARC WHO Classification of Head and Neck Tumours; WHO: Geneva, Switzerland, 2017; Volume 9. [Google Scholar]
- Eveson, J.W.; Auclair, P.; Gnepp, D.R. Tumours of the salivary glands. In Pathology & Genetics Head and Neck Tumours; IARC Press: Lyon, France, 2005; pp. 209–281. [Google Scholar]
- Mullin, M.H.; Brierley, D.J.; Speight, P.M. Second opinion reporting in head and neck pathology: The pattern of referrals and impact on final diagnosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 656–660. [Google Scholar] [CrossRef]
- Chenevert, J.; Barnes, L.E.; Chiosea, S.I. Mucoepidermoid carcinoma: A five-decade journey. Virchows. Arch. 2011, 458, 133–140. [Google Scholar] [CrossRef]
- Kang, H.; Tan, M.; Bishop, J.A.; Jones, S.; Sausen, M.; Ha, P.K.; Agrawal, N. Whole-Exome Sequencing of Salivary Gland Mucoepidermoid Carcinoma. Clin. Cancer Res. 2017, 23, 283–288, clincanres-0720. [Google Scholar] [CrossRef]
- Tonon, G.; Modi, S.; Wu, L.; Kubo, A.; Coxon, A.B.; Komiya, T.; O’Neil, K.; Stover, K.; El-Naggar, A.; Griffin, J.D.; et al. t (11; 19)(q21; p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet. 2003, 33, 208–213. [Google Scholar] [CrossRef]
- Ilic-Dimitrijević, I.; Loening, T.; Falk, M.; Konstantinović, V.; Vukadinović, M.; Tepavčević, Z.; Tabaković, S.Z.; Pejčić, N.; Miličić, B.; Milašin, J. Incidence and clinical relevance of t (11; 19) translocation in salivary gland mucoepidermoid carcinoma. Genetika 2014, 46, 601–610. [Google Scholar] [CrossRef]
- Miyabe, S.; Okabe, M.; Nagatsuka, H.; Hasegawa, Y.; Inagaki, A.; Ijichi, K.; Nagai, N.; Eimoto, T.; Yokoi, M.; Shimozato, K.; et al. Prognostic Significance of p27Kip1, Ki-67, and CRTC1-MAML2 Fusion Transcript in Mucoepidermoid Carcinoma: A Molecular and Clinicopathologic Study of 101 Cases. J. Oral Maxillofac. Surg. 2009, 67, 1432–1441. [Google Scholar] [CrossRef]
- Van Weert, S.; Reinhard, R.; Bloemena, E.; Buter, J.; Witte, B.I.; Vergeer, M.R.; Leemans, C.R. Differences in patterns of survival in metastatic adenoid cystic carcinoma of the head and neck. Head Neck 2016, 39, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Szanto, P.A.; Luna, M.A.; Tortoledo, M.E.; White, R.A. Histologic grading of adenoid cystic carcinoma of the salivary glands. Cancer 1984, 54, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.S.; Kannan, K.; Roy, D.M.; Morris, L.G.T.; Ganly, I.; Katabi, N.; Ramaswami, D.; Walsh, L.; Eng, S.; Huse, J.T.; et al. The mutational landscape of adenoid cystic carcinoma. Nat. Genet. 2013, 45, 791–798. [Google Scholar] [CrossRef] [PubMed]
- DAVID Bioinformatics Resources 6.8 [Internet]. 2022. Available online: https://david.ncifcrf.gov/ (accessed on 31 May 2022).
- STRING [Internet]. 2022. Available online: https://string-db.org/ (accessed on 31 May 2022).
- Cytoscape [Internet) 2022. Available online: http://cytoscape.org (accessed on 31 May 2022).
- KM plotter [Internet]. 2022. Available online: http://kmplot.com/analysis (accessed on 31 May 2022).
- Terhaard, C.H.J.; Lubsen, H.; Van der Tweel, I.; Hilgers, F.; Eijkenboom, W.; Marres, H.; Tjho-Heslinga, R.; De Jong, J. On behalf of the Dutch Head and Neck Oncology Cooperative Group (NWHHT) Salivary gland carcinoma: Independent prognostic factors for locoregional control, distant metastases, and overall survival: Results of the Dutch head and neck oncology cooperative group. Head Neck 2004, 26, 681–693, discussion 692-3. [Google Scholar] [CrossRef]
- Fonseca, F.P.; Carvalho, M.D.V.; de Almeida, O.P.; Rangel, A.L.C.A.; Takizawa, M.C.H.; Bueno, A.G.; Vargas, P.A. Clinicopathologic analysis of 493 cases of salivary gland tumors in a Southern Brazilian population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 230–239. [Google Scholar] [CrossRef]
- Bell, R.B.; Dierks, E.J.; Homer, L.; Potter, B.E. Management and Outcome of Patients with Malignant Salivary Gland Tumors. J. Oral Maxillofac. Surg. 2005, 63, 917–928. [Google Scholar] [CrossRef]
- Peraza, A.; Gómez, R.; Beltran, J.; Amarista, F. Mucoepidermoid carcinoma. An update and review of the literature. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 713–720. [Google Scholar] [CrossRef]
- Toper, M.H.; Sarioglu, S. Molecular Pathology of Salivary Gland Neoplasms: Diagnostic, Prognostic, and Predictive Perspective. Adv. Anat. Pathol. 2021, 28, 81–93. [Google Scholar] [CrossRef]
- Karpinets, T.V.; Mitani, Y.; Liu, B.; Zhang, J.; Pytynia, K.B.; Sellen, L.D.; Karagiannis, D.T.; Ferrarotto, R.; Futreal, A.P.; El-Naggar, A.K. Whole-Genome Sequencing of Common Salivary Gland Carcinomas: Subtype-Restricted and Shared Genetic Alterations. Clin. Cancer Res. 2021, 27, 3960–3969. [Google Scholar] [CrossRef]
- Chen, Z.; Ni, W.; Li, J.-L.; Lin, S.; Zhou, X.; Sun, Y.; Li, J.W.; Leon, M.E.; Hurtado, M.D.; Zolotukhin, S.; et al. The CRTC1-MAML2 fusion is the major oncogenic driver in mucoepidermoid carcinoma. JCI Insight 2021, 6, e139497. [Google Scholar] [CrossRef]
- Lu, H.; Han, N.; Xu, W.; Zhu, Y.; Liu, L.; Liu, S.; Yang, W. Screening and bioinformatics analysis of mRNA, long non-coding RNA and circular RNA expression profiles in mucoepidermoid carcinoma of salivary gland. Biochem. Biophys. Res. Commun. 2018, 508, 66–71. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Yang, Y.; Zhao, H.; Ma, C.; Yu, T. Potential targets identified in adenoid cystic carcinoma point out new directions for further research. Am. J. Transl. Res. 2021, 13, 1085–1108. [Google Scholar]
- Dalton, C.J.; Lemmon, C.A. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021, 10, 2443. [Google Scholar] [CrossRef]
- Leivo, I.; Jee, K.J.; Heikinheimo, K.; Laine, M.; Ollila, J.; Nagy, B.; Knuutila, S. Characterization of gene expression in major types of salivary gland carcinomas with epithelial differentiation. Cancer Genet. Cytogenet. 2005, 156, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zheng, X.; Zheng, Y.; Chen, Y.; Fei, W.; Wang, F.; Zheng, C. Extracellular Matrix: Emerging Roles and Potential Therapeutic Targets for Breast Cancer. Front. Oncol. 2021, 11, 650453. [Google Scholar] [CrossRef]
- Moorman, H.R.; Poschel, D.; Klement, J.D.; Lu, C.; Redd, P.S.; Liu, K. Osteopontin: A Key Regulator of Tumor Progression and Immunomodulation. Cancers 2020, 12, 3379. [Google Scholar] [CrossRef]
- Klement, J.D.; Paschall, A.V.; Redd, P.S.; Ibrahim, M.L.; Lu, C.; Yang, D.; Celis, E.; Abrams, S.I.; Ozato, K.; Liu, K. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J. Clin. Investig. 2018, 128, 5549–5560. [Google Scholar] [CrossRef]
- Bjørndal, K.; Larsen, S.R.; Godballe, C.; Krogdahl, A. Osteopontin expression in salivary gland carcinomas. J. Oral Pathol. Med. 2010, 40, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Fok, T.; Lapointe, H.; Tuck, A.; Chambers, A.; Jackson-Boeters, L.; Daley, T.; Darling, M. Expression and localization of osteopontin, homing cell adhesion molecule/CD44, and integrin αvβ3 in mucoepidermoid carcinoma and acinic cell adenocarcinoma of salivary gland origin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 320–329. [Google Scholar] [CrossRef]
- Smith, A.; Teknos, T.N.; Pan, Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013, 49, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, T.; Fu, X.; Chen, J.; Liu, Y.; Li, C.; Xia, Y.; Zhang, Z.; Li, L. EGFR inhibition prevents in vitro tumor growth of salivary adenoid cystic carcinoma. BMC Cell Biol. 2013, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, J.; Wang, Y.; Ye, W.; Zhang, X.; Ju, H.; Xu, D.; Liu, L.; Ye, D.; Zhang, L.; et al. EGFR activation induced Snail-dependent EMT and myc-dependent PD-L1 in human salivary adenoid cystic carcinoma cells. Cell Cycle 2018, 17, 1457–1470. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ren, W.; Rao, G. erbB2 gene silencing and its effect on PTEN in SACC-83 salivary adenoid cystic carcinoma cells. Oncol. Rep. 2010, 24, 1291–1296. [Google Scholar] [CrossRef] [Green Version]
- ZZhang, L.; Castanaro, C.; Luan, B.; Yang, K.; Fan, L.; Fairhurst, J.L.; Rafique, A.; Potocky, T.B.; Shan, J.; Delfino, F.J.; et al. ERBB3/HER2 Signaling Promotes Resistance to EGFR Blockade in Head and Neck and Colorectal Cancer Models. Mol. Cancer Ther. 2014, 13, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Ramos, T.C.; Morales, O.S.; Dy, G.K.; Monzón, K.L.; Dávila, A.L. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 639745. [Google Scholar] [CrossRef]
Salivary Gland Carcinoma | Ontology | Term | Count | p-Value | FDR |
---|---|---|---|---|---|
Mucoepidermoid | |||||
BP | GO:0030198~extracellular matrix organization | 11 | 6.34 × 10−14 | 2.71 × 10−11 | |
BP | GO:0030199~collagen fibril organization | 7 | 1.37 × 10−11 | 2.92 × 10−9 | |
BP | GO:0030574~collagen catabolic process | 7 | 3.08 × 10−10 | 4.38 × 10−8 | |
BP | GO:0007155~cell adhesion | 7 | 3.57 × 10−5 | 0.00213038 | |
BP | GO:0071230~cellular response to amino acid stimulus | 4 | 3.99 × 10−5 | 0.00213038 | |
BP | GO:0022617~extracellular matrix disassembly | 4 | 1.68 × 10−4 | 0.00798976 | |
BP | GO:0050900~leukocyte migration | 4 | 6.77 × 10−4 | 0.02892512 | |
BP | GO:0007267~cell-cell signaling | 4 | 0.00547321 | 0.12983679 | |
BP | GO:0007275~multicellular organism development | 4 | 0.03705893 | 0.43750278 | |
BP | GO:0045669~positive regulation of osteoblast differentiation | 3 | 0.00329429 | 0.1004757 | |
CC | GO:0005576~extracellular region | 19 | 7.88 × 10−15 | 4.10 × 10−13 | |
CC | GO:0005615~extracellular space | 12 | 3.51 × 10−7 | 3.04 × 10−6 | |
CC | GO:0070062~extracellular exosome | 10 | 0.00704296 | 0.04069265 | |
CC | GO:0031012~extracellular matrix | 9 | 2.59 × 10−9 | 6.73 × 10−8 | |
CC | GO:0005578~proteinaceous extracellular matrix | 8 | 3.84 × 10−8 | 6.66 × 10−7 | |
CC | GO:0005788~endoplasmic reticulum lumen | 7 | 1.45 × 10−7 | 1.51 × 10−6 | |
CC | GO:0005581~collagen trimer | 6 | 1.16 × 10−7 | 1.50 × 10−6 | |
CC | GO:0009986~cell surface | 4 | 0.03330161 | 0.15742581 | |
MF | GO:0005201~extracellular matrix structural constituent | 7 | 3.96 × 10−10 | 2.37 × 10−8 | |
MF | GO:0042802~identical protein binding | 6 | 0.00356876 | 0.02379175 | |
MF | GO:0005178~integrin binding | 5 | 1.36 × 10−5 | 2.73 × 10−4 | |
MF | GO:0048407~platelet-derived growth factor binding | 4 | 4.14 × 10−7 | 1.24 × 10−5 | |
MF | GO:0008201~heparin binding | 4 | 0.00146113 | 0.0144694 | |
MF | GO:0042813~Wnt-activated receptor activity | 3 | 4.40 × 10−4 | 0.00659668 | |
MF | GO:0017147~Wnt-protein binding | 3 | 8.78 × 10−4 | 0.01054057 | |
MF | GO:0046332~SMAD binding | 3 | 0.0016881 | 0.0144694 | |
MF | GO:0005518~collagen binding | 3 | 0.00326051 | 0.02379175 | |
MF | GO:0008083~growth factor activity | 3 | 0.02199846 | 0.13199073 | |
Adenoid cystic | |||||
BP | GO:0045944~positive regulation of transcription from RNA polymerase II promoter | 7 | 0.00328478 | 0.65695556 | |
BP | GO:0007165~signal transduction | 7 | 0.00748663 | 0.85056216 | |
BP | GO:0045893~positive regulation of transcription, DNA-templated | 6 | 0.00102624 | 0.30787087 | |
BP | GO:0000165~MAPK cascade | 5 | 6.61 × 10−4 | 0.30787087 | |
BP | GO:0000187~activation of MAPK activity | 3 | 0.01183287 | 0.85056216 | |
BP | GO:0071222~cellular response to lipopolysaccharide | 3 | 0.01312904 | 0.85056216 | |
BP | GO:0043524~negative regulation of neuron apoptotic process | 3 | 0.01761926 | 0.85056216 | |
BP | GO:0006898~receptor-mediated endocytosis | 3 | 0.03332279 | 1 | |
BP | GO:0001525~angiogenesis | 3 | 0.04630619 | 1 | |
BP | GO:0014842~regulation of skeletal muscle satellite cell proliferation | 2 | 0.00925562 | 0.85056216 | |
CC | GO:0005886~plasma membrane | 13 | 0.00675959 | 0.58132464 | |
CC | GO:0005576~extracellular region | 7 | 0.02323985 | 0.67349329 | |
CC | GO:0045121~membrane raft | 3 | 0.03459211 | 0.67349329 | |
CC | GO:0070062~extracellular exosome | 9 | 0.03710032 | 0.67349329 | |
CC | GO:0005615~extracellular space | 6 | 0.03915659 | 0.67349329 | |
MF | GO:0008083~growth factor activity | 4 | 0.00191792 | 0.13097688 | |
MF | GO:0005515~protein binding | 22 | 0.0023814 | 0.13097688 | |
MF | GO:0005088~Ras guanyl-nucleotide exchange factor activity | 3 | 0.01343914 | 0.31549128 | |
MF | GO:0003700~transcription factor activity, sequence-specific DNA binding | 6 | 0.01432212 | 0.31549128 | |
MF | GO:0017124~SH3 domain binding | 3 | 0.01434051 | 0.31549128 | |
MF | GO:0044212~transcription regulatory region DNA binding | 3 | 0.04223068 | 0.55844233 | |
MF | GO:0043565~sequence-specific DNA binding | 4 | 0.04427164 | 0.55844233 | |
MF | GO:0017147~Wnt-protein binding | 2 | 0.04669972 | 0.55844233 | |
MF | GO:0017080~sodium channel regulator activity | 2 | 0.04817069 | 0.55844233 | |
MF | GO:0001077~transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding | 3 | 0.05076748 | 0.55844233 |
Salivary Gland Carcinoma | Term | Count | p-Value | Genes | FDR |
---|---|---|---|---|---|
Mucoepidermoid | |||||
hsa04512:ECM-receptor interaction | 11 | 1.05 × 10−13 | COMP, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL11A1, FN1, ITGB6, LAMB3, SPP1 | 3.98 × 10−12 | |
hsa04151:PI3K-Akt signaling pathway | 13 | 3.29 × 10−10 | COMP, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL11A1, FGF11, FGFR3, FN1, ITGB6, LAMB3, SPP1 | 6.25 × 10−9 | |
hsa04510:Focal adhesion | 11 | 6.35 × 10−10 | COMP, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL11A1, FN1, ITGB6, LAMB3, SPP1 | 8.04 × 10−9 | |
hsa04974:Protein digestion and absorption | 6 | 1.07 × 10−5 | COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL11A1 | 8.15 × 10−5 | |
hsa04611:Platelet activation | 6 | 7.11 × 10−5 | COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL11A1 | 4.50 × 10−4 | |
hsa05200:Pathways in cancer | 7 | 0.00186707 | WNT7B, FGF11, FGFR3, FN1, FZD10, LAMB3, MMP9 | 0.01013551 | |
hsa04310:Wnt signaling pathway | 4 | 0.01174631 | WNT7B, FZD10, SFRP2, SFRP | 0.051564 | |
hsa04550:Signaling pathways regulating pluripotency of stem cells | 4 | 0.01221253 | WNT7B, FGFR3, FZD10, INHBA | 0.051564 | |
hsa05205:Proteoglycans in cancer | 4 | 0.0312654 | WNT7B, FN1, FZD10, MMP9 | 0.11880852 | |
hsa04810:Regulation of actin cytoskeleton | 4 | 0.03540698 | FGF11, FGFR3, FN1, ITGB6 | 0.12231501 | |
hsa04810:Regulation of actin cytoskeleton | 4 | 0.03540698 | FGF11, FGFR3, FN1, ITGB6 | 0.12231501 | |
Adenoid cystic | |||||
hsa05200:Pathways in cancer | 10 | 7.75 × 10−6 | RUNX1T1, WNT5A, BIRC3, EGF, FGF10, FGF12, FGF13, PLCB4, PRKACB, ZBTB16 | 6.83 × 10−4 | |
hsa04014:Ras signaling pathway | 8 | 1.45 × 10−13 | RASAL1, ANGPT1, CALML5, EGF, FGF10, FGF12, FGF13, PRKACB | 6.83 × 10−4 | |
hsa05202:Transcriptional misregulation in cancer | 7 | 2.88 × 10−5 | CD14, ETV1, RUNX1T1, SIX1, FUT8, TMPRSS2, ZBTB16 | 7.11 × 10−4 | |
hsa04010:MAPK signaling pathway | 8 | 3.02 × 10−5 | CD14, CACNB2, EGF, FGF10, FGF12, FGF13, MAPT, PRKACB | 7.11 × 10−4 | |
hsa04015:Rap1 signaling pathway | 7 | 1.04 × 10−4 | ANGPT1, CALML5, EGF, FGF10, FGF12, FGF13, PLCB4 | 0.00195539 | |
hsa04151:PI3K-Akt signaling pathway | 8 | 2.16 × 10−4 | ANGPT1, CREB3L1, CHAD, EGF, EIF4EBP1, FGF10, FGF12, FGF13 | 0.0033801 | |
hsa04922:Glucagon signaling pathway | 5 | 4.73 × 10−4 | PPARGC1A, CREB3L1, CALML5, PLCB4, PRKACB | 0.00577649 | |
hsa04310:Wnt signaling pathway | 4 | 0.01465669 | WIF1, WNT5A, PLCB4, PRKACB | 0.08610805 | |
hsa05221:Acute myeloid leukemia | 3 | 0.01866771 | RUNX1T1, EIF4EBP1, ZBTB16 | 0.09748695 | |
hsa04970:Salivary secretion | 3 | 0.04135313 | CALML5, PLCB4, PRKACB | 0.15733407 |
Genes | Mucoepidermoid Carcinoma | Adenoid Cystic Carcinoma |
---|---|---|
With significantly worse survival (p < 0.05) | FN1, SPP1 | EGF, ERBB2 |
Without significantly worse survival (p > 0.05) | COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL11A1, COMP, MMP9 | PPARGC1A, WNT5A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Martínez, C.M.; Jacinto-Alemán, L.F.; Cruz-Hervert, L.P.; Portilla-Robertson, J.; Leyva-Huerta, E.R. Bioinformatic Analysis for Mucoepidermoid and Adenoid Cystic Carcinoma of Therapeutic Targets. Vaccines 2022, 10, 1557. https://doi.org/10.3390/vaccines10091557
Ramírez-Martínez CM, Jacinto-Alemán LF, Cruz-Hervert LP, Portilla-Robertson J, Leyva-Huerta ER. Bioinformatic Analysis for Mucoepidermoid and Adenoid Cystic Carcinoma of Therapeutic Targets. Vaccines. 2022; 10(9):1557. https://doi.org/10.3390/vaccines10091557
Chicago/Turabian StyleRamírez-Martínez, Carla Monserrat, Luis Fernando Jacinto-Alemán, Luis Pablo Cruz-Hervert, Javier Portilla-Robertson, and Elba Rosa Leyva-Huerta. 2022. "Bioinformatic Analysis for Mucoepidermoid and Adenoid Cystic Carcinoma of Therapeutic Targets" Vaccines 10, no. 9: 1557. https://doi.org/10.3390/vaccines10091557
APA StyleRamírez-Martínez, C. M., Jacinto-Alemán, L. F., Cruz-Hervert, L. P., Portilla-Robertson, J., & Leyva-Huerta, E. R. (2022). Bioinformatic Analysis for Mucoepidermoid and Adenoid Cystic Carcinoma of Therapeutic Targets. Vaccines, 10(9), 1557. https://doi.org/10.3390/vaccines10091557